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Abstract

Given an undirected graph with edge weights, the MAX-CUT problem consists in
finding a partition of the nodes into two subsets, such that the sum of the weights of
the edges having endpoints in different subsets is maximized. It is a well-known
NP-hard problem with applications in several fields, including VLSI design and
statistical physics. In this paper, a greedy randomized adaptive search procedure
(GRASP), a variable neighborhood search (VNS), and a path-relinking (PR) inten-
sification heuristic for MAX-CUT are proposed and tested. New hybrid heuristics
that combine GRASP, VNS, and PR are also proposed and tested. Computational
results indicate that these randomized heuristics find near-optimal solutions. On a
set of standard test problems, new best known solutions were produced for many
of the instances.

1 INTRODUCTION
Given an undirected graph G = (V,E), where V = {1, . . . ,n} is the set of vertices and E
is the set of edges, and weights wi j associated with the edges (i, j) ∈ E, the MAX-CUT
problem consists in finding a subset of vertices S such that the weight of the cut (S, S̄)
given by

w(S, S̄) = ∑
i∈S, j∈S̄

wi j

is maximized. The decision version of the MAX-CUT problem was proved to be NP-
complete by Karp [27]. Applications are found in VLSI design and statistical physics,
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see e.g. [4, 10, 11, 33] among others. The reader is referred to Poljak and Tuza [35]
for an introductory survey.

The MAX-CUT problem can be formulated as the following integer quadratic pro-
gram:

max
1
2 ∑

1≤i< j≤n
wi j(1− yiy j)

subject to

yi ∈ {−1,1} ∀ i ∈V.

Each set S = {i ∈V : yi = 1} induces a cut (S, S̄) with weight

w(S, S̄) =
1
2 ∑

1≤i< j≤n
wi j(1− yiy j).

In recent years, several continuous and semidefinite programming relaxations of
the above formulation have been considered. The idea that the MAX-CUT problem
can be naturally relaxed to a semidefinite programming problem was first observed by
Lovász [29] and Shor [41]. Goemans and Williamson [22] proposed a randomized
algorithm that uses semidefinite programming to achieve a performance guarantee of
0.87856 if the weights are nonnegative. Since then, many approximation algorithms
for NP-hard problems have been devised using SDP relaxations [22, 26, 34].

More recent algorithms for solving the semidefinite programming relaxation are
particularly efficient, because they explore the structure of the MAX-CUT problem.
One approach along this line is the use of interior-point methods [6, 16, 17]. In par-
ticular, Benson, Ye, and Zhang [6] used the semidefinite relaxation for approximating
combinatorial and quadratic optimization problems subject to linear, quadratic, and
Boolean constraints. They proposed a dual potential reduction algorithm that exploits
the sparse structure of the relaxation.

Other nonlinear programming approaches have also been presented for the MAX-
CUT semidefinite programming relaxation [24, 25]. Homer and Peinado [25] reformu-
lated the constrained problem as an unconstrained one and used the standard steepest
ascent method on the latter. A variant of the Homer and Peinado algorithm was pro-
posed by Burer and Monteiro [7]. Their idea is based on the constrained nonlinear
programming reformulation of the MAX-CUT semidefinite programming relaxation
obtained by a change of variables.

More recently, Burer, Monteiro, and Zhang [8] proposed a rank-2 relaxation heuris-
tic for MAX-CUT and described a computer code, called circut, that produces better
solutions in practice than the randomized algorithm of Goemans and Williamson.

The remainder of this paper is organized as follows. In Section 2 we propose var-
ious randomized heuristics for finding approximate solutions of the MAX-CUT prob-
lem, based on the instantiation of several metaheuristics and their hybrids. Compu-
tational results are reported in Section 3. Concluding remarks are given in the last
section.
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2 RANDOMIZED HEURISTICS
Recent surveys on randomized metaheuristics can be found in [32]. Almost all random-
ization effort in implementations of the GRASP (greedy randomized adaptive search
procedure) metaheuristic [12, 13, 37] involves the construction phase. On the other
hand, strategies such as VNS (Variable Neighborhood Search) and VND (Variable
Neighborhood Descent) [23, 31] rely almost entirely on the randomization of the local
search to escape from local optima. With respect to this issue, probabilistic strategies
such as GRASP and VNS may be considered as complementary and potentially capa-
ble of leading to effective hybrid methods. A first attempt in this direction was done
by Martins et al. [30]. The construction phase of their hybrid heuristic for the Steiner
problem in graphs follows the greedy randomized strategy of GRASP, while the local
search phase makes use of two different neighborhood structures as a VND strategy.
Their heuristic was later improved by Ribeiro, Uchoa, and Werneck [39], one of the key
components of the new algorithm being another strategy for the exploration of different
neighborhoods. Ribeiro and Souza [38] also combined GRASP with VND in a hybrid
heuristic for the degree-constrained minimum spanning tree problem. Canuto, Re-
sende, and Ribeiro [9] used path-relinking in a GRASP for the prize collecting Steiner
tree problem.

In this paper, we designed, implemented, and tested several pure and hybrid heuris-
tics:

• a pure GRASP;

• a GRASP that uses path-relinking for intensification;

• a pure VNS;

• a VNS that uses path-relinking for intensification;

• a GRASP that uses VNS to implement the local search phase; and

• a GRASP that uses VNS to implement the local search phase and path-relinking
for intensification.

In the algorithms described in the next subsections, we combined the main character-
istics of some of the state-of-the-art heuristics, in an attempt to take advantage of their
best properties in terms of computation time and solution quality.

2.1 A pure GRASP
GRASP is a randomized multistart iterative method proposed in Feo and Resende
[12, 13]. For a comprehensive study of GRASP strategies and variants, the reader
is referred to the survey chapter by Resende and Ribeiro [37], as well as to the anno-
tated bibliography of Festa and Resende [14] for a survey of applications. Generally
speaking, GRASP is a randomized heuristic having two phases: a construction phase
and a local search phase. The construction phase adds one element at a time to a set
that ends up with a representation of a feasible solution. At each iteration, an element is
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procedure GRASP(MaxIterations)
1 for i = 1, . . . ,MaxIterations do
2 Build a greedy randomized solution x;
3 x← LocalSearch(x);
4 if i = 1 then x∗← x;
5 else if w(x) > w(x∗) then x∗← x;
6 end;
7 return (x∗);
end GRASP;

Figure 1: Pseudo-code of a generic GRASP.

randomly selected from a restricted candidate list, whose elements are among the best
ordered, according to some greedy function. Once a feasible solution is obtained, the
local search procedure attempts to improve it by producing a locally optimal solution
with respect to some neighborhood structure. The construction and the local search
phases are repeatedly applied. The best solution found is returned as an approximation
of the optimal. Figure 1 depicts the pseudo-code of a generic GRASP heuristic.

The construction phase makes use of an adaptive greedy function, a construction
mechanism for the restricted candidate list, and a probabilistic selection criterion. The
greedy function takes into account the contribution to the objective function achieved
by selecting a particular element. In the case of the MAX-CUT problem, it is intuitive
to relate the greedy function to the sum of the weights of the edges in each cut. More
formally, let (S, S̄) be a cut. Then, for each vertex v 6∈ S∪ S̄ we define σS(v) = ∑u∈S wvu
and σS̄(v) = ∑u∈S̄ wvu. The greedy function, g(v) = max{σS(v),σS̄(v)}, measures how
much additional weight will result from the assignment of vertex v to S or S̄. The
greedy choice consists in selecting the vertex v with the highest greedy function value.
If σS(v) > σS̄(v), then v is placed in S̄; otherwise it is placed in S. To define the
construction mechanism for the restricted candidate list, let

wmin = min{min
v∈V ′

σS(v), min
v∈V ′

σS̄(v)}

and

wmax = max{max
v∈V ′

σS(v), max
v∈V ′

σS̄(v)}

= max
v∈V ′
{g(v)},

where V ′ = V \{S∪ S̄} is the set of vertices which are not yet assigned to either subset
S or subset S̄. Denoting by µ = wmin + α · (wmax−wmin) the cut-off value, where α is a
parameter such that 0 ≤ α ≤ 1, the restricted candidate list is made up by all vertices
whose value of the greedy function is greater than or equal to µ. A vertex is randomly
selected from the restricted candidate list.

The local search phase is based on the following neighborhood structure. Let (S, S̄)
be the current solution. To each vertex v ∈ V we associate either the neighbor (S \
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procedure LocalSearch(x = {S, S̄})
1 change← .TRUE.
2 while change do;
3 change← .FALSE.
4 for v = 1, . . . , |V | while .NOT.change circularly do
5 if v ∈ S and δ(v) = σS(v)−σS̄(v)> 0
6 then do S← S\{v}; S̄← S̄∪{v}; change← .TRUE. end;
7 if v ∈ S̄ and δ(v) = σS̄(v)−σS(v)> 0
8 then do S̄← S̄\{v}; S← S∪{v}; change← .TRUE. end;
9 end;
10 end;
11 return (x = {S, S̄});
end LocalSearch;

Figure 2: Pseudo-code of the local search phase.

{v}, S̄∪{v}) if v ∈ S, or the neighbor (S∪{v}, S̄\{v}) otherwise. The value

δ(v) =

{
σS(v)−σS̄(v), if v ∈ S,
σS̄(v)−σS(v), if v ∈ S̄,

represents the change in the objective function associated with moving vertex v from
one subset of the cut to the other. All possible moves are investigated. The current
solution is replaced by its best improving neighbor. The search stops after all possible
moves have been evaluated and no improving neighbor was found. The pseudo-code
of the local search procedure is given in Figure 2.

2.2 Hybrid GRASP with path-relinking
Path-relinking is an enhancement to the basic GRASP procedure, leading to signif-
icant improvements in solution quality. Path-relinking was originally proposed by
Glover [18] as an intensification strategy exploring trajectories connecting elite so-
lutions obtained by tabu search or scatter search [19, 20, 21]. Starting from one or
more elite solutions, paths in the solution space leading towards other guiding elite
solutions are generated and explored in the search for better solutions. This is ac-
complished by selecting moves that introduce attributes contained in the guiding solu-
tions. Successful applications of path-relinking combined with GRASP are described
in [1, 2, 9, 28, 36, 39]. Implementation strategies are described and investigated in
detail by Resende and Ribeiro [37].

We now briefly describe the integration of path-relinking into the pure GRASP
algorithm described in Subsection 2.1. In this context, path-relinking is applied to
pairs (x,z) of solutions, where x is the locally optimal solution obtained by local search
(initial solution) and z (guiding solution) is randomly chosen from a pool with a limited
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procedure PR(x,EliteSet)
1 Let (S, S̄) be the partition defined by x;
2 Randomly select a solution z ∈ EliteSet;
3 Compute the symmetric difference ∆(x,z) = {i = 1, . . . , |V | : xi 6= zi};
4 w∗←max{w(x),w(z)};
5 x̄,y← x;
6 while |∆(x,z)| ≥ 2 do
7 i∗ = argmax{σS(i)−σS̄(i),∀i ∈ S̄∩∆(x,z) ;

σS̄(i)−σS(i),∀i ∈ S∩∆(x,z)};
8 Place vertex i∗ in the other partition and set yi∗ ← 1− yi∗;
9 if w(y)> w∗ then do w∗← w(y); x̄← y end;
10 ∆(x,z)← ∆(x,z)\{i∗};
11 end;
12 return (x̄);
end PR;

Figure 3: Pseudo-code of the path-relinking heuristic.

number MaxElite of high quality solutions found along the search. The pseudo-code
for the path-relinking procedure is shown in Figure 3.

Each solution y = (S, S̄) is represented by its characteristic vector y, such that yi = 1
if vertex i ∈ S; yi = 0 otherwise. The path-relinking procedure starts by computing the
set ∆(x,z) = {i = 1, . . . ,n : xi 6= zi} of variables with different values in the initial and
guiding solutions. Each iteration of this procedure has two steps. In the first step, we
evaluate the incremental cost δ(i) resulting from changing the subset of the partition in
which vertex i is currently placed, for each i ∈ ∆(x,z) (see the description of the local
search procedure in Section 2.1). In the second step, the vertex

i∗ = argmax{σS(i)−σS̄(i),∀i ∈ S̄∩∆(x,z) ; σS̄(i)−σS(i),∀i ∈ S∩∆(x,z)}

with the largest incremental cost is selected, the value of variable yi∗ is flipped, we set
∆(x,z)← ∆(x,z) \ {i∗}, and a new iteration resumes. The relinking procedure stops
when the guiding solution is attained. The best solution x̄ found along this trajectory is
returned.

The pool of elite solutions is originally empty. The best solution x̄ found along the
relinking trajectory is considered as a candidate to be inserted into this pool. If the pool
already has MaxElite solutions and the candidate is better than the best elite solution,
then x̄ replaces the worst elite solution. If the candidate is better than the worst elite
solution, but not better than the best, it replaces the worst if it is sufficiently different
(see Section 3) from all elite solutions. If the pool is not full, the candidate is simply
inserted. Figure 4 depicts the pseudo-code of the proposed GRASP with path-relinking
hybrid algorithm.
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procedure GRASP+PR(MaxIterations)
1 for i = 1, . . . ,MaxIterations do
2 Construct a greedy randomized solution x;
3 x← LocalSearch(x);
4 if i = 1 then do EliteSet←{x}; x∗← x;
5 else do
6 x̄← PR(x,EliteSet);
7 Update EliteSet with x̄;
8 if w(x̄)> w(x∗) then x∗← x̄;
9 end;
10 end;
11 return (x∗);
end GRASP+PR;

Figure 4: Pseudo-code of the hybrid GRASP with path-relinking.

2.3 A pure VNS
The variable neighborhood search (VNS) metaheuristic, proposed by Hansen and Mlade-
nović [23], is based on the exploration of a dynamic neighborhood model. Contrary
to other metaheuristics based on local search methods, VNS allows changes of the
neighborhood structure along the search.

VNS explores increasingly distant neighborhoods of the current best found solution
x. Each step has three major phases: neighbor generation, local search, and jump. Let
Nk, k = 1, . . . ,kmax be a set of pre-defined neighborhood structures and let Nk(x) be
the set of solutions in the kth-order neighborhood of a solution x. In the first phase, a
neighbor x′ ∈ Nk(x) of the current solution is applied. Next, a solution x′′ is obtained
by applying local search to x′. Finally, the current solution jumps from x to x′′ in case
the latter improved the former. Otherwise, the order of the neighborhood is increased
by one and the above steps are repeated until some stopping condition is satisfied. The
pseudo-code of a typical VNS procedure is illustrated in Figure 5.

In the case of the MAX-CUT problem, the kth-order neighborhood is defined by all
solutions that can be derived from the current one by selecting k vertices and transfering
each of them from one subset of the partition to the other. The same local search
strategy used within the pure GRASP algorithm described in Section 2.1 is used in the
VNS heuristic.

2.4 Hybrid VNS with path-relinking
As is the case for GRASP, VNS also can be hybridized with path-relinking. At the end
of each major VNS cycle, an intensification phase using path-relinking is carried out.
Figure 6 shows the pseudo-code for this hybrid heuristic.
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procedure VNS(MaxIterations,kmax)
1 for i = 1, . . . ,MaxIterations do
2 k← 1;
3 Generate a starting solution x at random;
4 while k≤ kmax do
5 Generate x′ ∈ Nk(x) at random;
6 x′′← LocalSearch(x′);
7 if w(x′′)> w(x)
8 then do x← x′′; k← 1;
9 else k← k + 1;
10 end
11 end;
12 end;
13 x∗← x;
14 return (x∗);
end VNS;

Figure 5: Pseudo-code of a generic VNS heuristic.

2.5 Hybrid GRASP with VNS
This hybrid procedure is simply obtained by replacing the local search phase of the
GRASP procedure described in Section 2.1 (line 4 of the pseudo-code in Figure 1) by
the VNS procedure presented in Section 2.3. To speed up the search, a smaller value
of kmax is used in the VNS. The resulting pseudo-code is depicted in Figure 7.

2.6 Hybrid GRASP with VNS and path-relinking
Finally, path-relinking intensification can be added to the GRASP with VNS, resulting
in the hybrid GRASP with VNS and path-relinking heuristic, whose pseudo-code is
shown in Figure 8.

3 EXPERIMENTAL RESULTS
In this section, we describe computational experience with the heuristics proposed in
this paper. We describe the computer environment, discuss implementation details,
describe the instances, and report on the experimental evaluation of the different algo-
rithms.

The computational experiments were performed on an SGI Challenge computer,
with 28 196-Mhz MIPS R10000 processors and 7.6 Gb of memory. All runs were done
using a single processor. Our codes were written in Fortran 77 and compiled with the
SGI MIPSpro F77 compiler using flags -O3 -r4 -64. The rank-2 relaxation heuristic
circut was compiled with the SGI MIPSpro 7 F90 compiler using flags -O3 -r4 -64.
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procedure VNS+PR(MaxIterations,kmax)
1 for i = 1, . . . ,MaxIterations do
2 k← 1;
3 Generate a starting solution x at random;
4 while k≤ kmax do
5 Generate x′ ∈ Nk(x) at random;
6 x′′← LocalSearch(x′);
7 if w(x′′)> w(x)
8 then do x← x′′; k← 1;
9 else k← k + 1;
10 end;
11 end;
12 if i = 1
13 then do EliteSet←{x}; x∗← x;
14 else do
15 x̄← PR(x,EliteSet);
16 Update EliteSet with x̄;
17 if w(x̄)> w(x∗) then x∗← x̄;
18 end;
19 end;
20 return (x∗);
end VNS+PR;

Figure 6: Pseudo-code of VNS with path-relinking.
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procedure GRASP+VNS(MaxIterations,kmax)
1 for i = 1, . . . ,MaxIterations do
2 k← 1;
3 Build a greedy randomized solution x;
4 while k ≤ kmax do
5 Generate x′ ∈ Nk(x) at random;
6 x′′← LocalSearch(x′);
7 if w(x′′)> w(x)
8 then do x← x′′; k← 1;
9 else k← k + 1;
10 end;
11 end;
12 if i = 1 then x∗← x;
13 else if w(x) > w(x∗) then x∗← x;
14 end;
15 return (x∗);
end GRASP+VNS;

Figure 7: Pseudo-code of the hybrid GRASP with VNS.

Processing times were measured with the system function etime. The portable random
number generator of Schrage [40] was used.

Our initial objective was to compare our heuristics with the randomized algorithm
of Goemans and Williamson [22], to show that the solutions produced by our random-
ized heuristics are of much better quality than theirs and can be found in a fraction
of the time taken by their algorithm. Recently, however, Burer, Monteiro, and Zhang
[8] showed that circut, a Fortran 90 implementation of their rank-2 relaxation heuris-
tic for MAX-CUT, produces higher quality approximate solutions in practice than the
randomized algorithm of Goemans and Williamson. In addition, running times were
shown to be small. For this reason, in this section we compare our heuristics directly
with circut. We compiled version 0.612 of circut on our computer and used it to
solve all but one of the test problems used to test our heuristics. We set the circut
parameters to their default values with the exception of (N,M) = (50,10), the most
intensive parameter settings used in [8].

We implemented the following six heuristics described in Section 2:

1. g: A pure GRASP, where MaxIterations independent GRASP iterations are
executed. Each iteration uses the restricted candidate list parameter α selected
from the uniform distribution interval [0,1]. During a GRASP iteration the value
of α does not change.

2. gpr: The pure GRASP g with forward path-relinking (path-relinking from the
local search solution to a randomly chosen elite solution, see [37]) executed after
each GRASP local search phase.

10



procedure GRASP+VNS+PR(MaxIterations,kmax)
1 for i = 1, . . . ,MaxIterations do
2 k← 1;
3 Build a greedy randomized solution x;
4 while k ≤ kmax do
5 Generate x′ ∈ Nk(x) at random;
6 x′′← LocalSearch(x′);
7 if w(x′′)> w(x)
8 then do x← x′′; k← 1;
9 else k← k + 1;
10 end;
11 end;
12 if i = 1
13 then do EliteSet←{x}; x∗← x;
14 else do
15 x̄← PR(x,EliteSet);
16 Update EliteSet with x̄;
17 if w(x̄)> w(x∗) then x∗← x̄;
18 end;
19 end;
20 return (x∗);
end GRASP+VNS+PR;

Figure 8: Pseudo-code of GRASP with VNS and path-relinking.
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3. vns: A pure VNS with MaxIterations cycles, each starting with a randomly
constructed initial solution, and maximum neighborhood parameter kmax = 100.

4. vnspr: The variable neighborhood search vns with forward path-relinking (path-
relinking from a locally optimum VNS solution to a randomly chosen elite solu-
tion) done after each VNS cycle.

5. gvns: The pure GRASP g using VNS (with kmax = 15) as the local search phase.

6. gvnspr: gvns with forward path-relinking (path-relinking from a locally opti-
mum VNS solution to a randomly chosen elite solution) done after the VNS local
search.

Path-relinking is performed within gpr, vnspr, and gvnspr. The maximum size
of the elite set was set to 30. Recall that the characteristic vector x of a solution {S, S̄}
is such that xi = 1 if vertex i ∈ S and xi = 0 if vertex i ∈ S̄. For inclusion in the elite
set, we use a strategy suggested by Fleurent and Glover [15]. In the case that the
candidate solution is better than the worst elite set solution but not better than the best,
the characteristic vector of the candidate x̄ is compared to the characteristic vectors of
all elite set solutions. If the candidate differs from all elite solutions by more than 1%,
it replaces the worst solution in the elite set.

The experiments consisted of three parts.
In the first part, we tested circut and the six randomized heuristics on test prob-

lems G1, G2, G3, G14, G15, G16, G22, G23, G24, G35, G36, G37, G43, G44, G45, G48, G49,
and G50. These test problems were created by Helmberg and Rendl [24] using a graph
generator written by Rinaldi and were used by Burer and Monteiro [7], Benson et al.
[5], and Burer, Monteiro, and Zhang [8] for testing their algorithms. They consist of
toroidal, planar, and randomly generated graphs of varying sparsity and sizes. These
graphs vary in size from 800 to 3000 nodes and in density from 0.17% to 6.12%.

We first ran the randomized heuristics g, gvns, and vns on the Helmberg and Rendl
instances using the random number generator seed 270001 for a single iteration. Our
objective was to show that the value guaranteed to be achieved by the randomized algo-
rithm of Goemans and Williamson can be easily achieved by our randomized heuristics.
Since only one iteration of each algorithm was done, path-relinking was not used. The
weights of optimal cuts for these instances are not known. Therefore, we compare the
solutions found by our randomized heuristics with the value 0.87856 of the SDP upper
bound (which is at least as large as the value guaranteed to be achieved by the random-
ized algorithm of Goemans and Williamson). Table 1 summarizes these results. We
make the following observations about the results in Table 1:

• The pure GRASP (g), GRASP with VNS local search (gvns), as well as pure
VNS (vns) found, in their first iteration, a cut with weight at least as large as
0.87856 of the SDP upper bound on all the 18 instances.

• As expected, the processing time increased when going from g to gvns to vns.
Pure GRASP times varied from less than 0.5 second to less than 7 seconds. Pure
VNS times went from a little over 10 seconds to over 200 seconds.
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Table 1: Experimental results for Helmberg and Rendl [24] instances. Total solution times and cut values for 1 iteration of heuristics g,
gvns, and vns. Times are in seconds on an SGI Challenge computer (196Mhz R10000 processor). All cut values are larger than 0.87856
of the SDP bound.

Randomized heuristics
Problem g gvns vns SDP .879 SDP

Name |V | density time cut cut/bound time cut cut/bound time cut cut/bound bound bound
G1 800 6.12% 2.10 11420 0.95 6.09 11475 0.95 40.95 11549 0.96 12078 10612
G2 1.98 11488 0.95 3.30 11499 0.95 37.32 11575 0.96 12084 10617
G3 2.02 11419 0.95 4.72 11507 0.95 16.98 11577 0.96 12077 10611
G14 800 1.58% 0.50 3011 0.94 1.81 3009 0.94 12.89 3040 0.95 3187 2800
G15 0.46 2978 0.94 3.57 3008 0.95 18.09 3017 0.95 3169 2785
G16 0.46 2970 0.94 1.78 2983 0.94 10.30 3017 0.95 3172 2787
G22 2000 1.05% 6.29 13027 0.92 43.00 13156 0.93 56.98 13087 0.93 14123 12408
G23 6.29 13121 0.93 41.98 13181 0.93 141.23 13190 0.93 14129 12414
G24 6.55 13059 0.92 46.25 13097 0.93 192.81 13209 0.93 14131 12415
G35 2000 0.64% 3.83 7539 0.94 13.23 7564 0.95 142.54 7593 0.95 8000 7029
G36 3.83 7530 0.94 22.12 7556 0.94 186.05 7584 0.95 7996 7025
G37 3.36 7511 0.94 17.32 7576 0.95 205.48 7598 0.95 8009 7037
G43 1000 2.10% 1.32 6537 0.93 6.03 6583 0.94 36.78 6599 0.94 7027 6174
G44 1.35 6522 0.93 5.19 6559 0.93 40.55 6559 0.93 7022 6170
G45 1.27 6524 0.93 6.54 6553 0.93 24.30 6555 0.93 7020 6168
G48 3000 0.17% 3.61 5902 0.98 11.33 6000 1.00 49.98 6000 1.00 6000 5272
G49 2.48 5924 0.99 7.90 5932 0.99 52.48 5874 0.98 6000 5272
G50 3.94 5812 0.97 19.31 5838 0.97 75.58 5820 0.97 5988 5261
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Table 2: Experimental results for Helmberg and Rendl [24] instances. Best solution found in 1000 iterations for g, gpr, vns, vnspr, gvns,
and gvnspr. The rank-2 relaxation heuristic circut of Burer, Monteiro, and Zhang [8] uses parameters (N,M) = (50,10). SDP UB is the
best known semidefinite programming upper bound. For each of the seven heuristics, as well as the SDP bound, the last two rows of this
table list the sum of the cuts/bounds over the 24 instances and those sums normalized by the total SDP upper bounds.

Problem Cut values
Name |V | density circut g gpr gvns gvnspr vns vnspr SDP UB
G1 800 6.12% 11624 11540 11563 11589 11589 11621 11621 12078
G2 11617 11567 11567 11598 11598 11615 11615 12084
G3 11622 11551 11585 11596 11596 11622 11622 12077
G11 800 0.63% 560 552 564 560 564 560 564 627
G12 552 546 552 550 556 554 556 621
G13 574 572 580 576 578 580 580 645
G14 800 1.58% 3058 3027 3041 3044 3044 3055 3055 3187
G15 3049 3013 3034 3031 3031 3043 3043 3169
G16 3045 3013 3028 3031 3031 3043 3043 3172
G22 2000 1.05% 13346 13185 13203 13246 13246 13295 13295 14123
G23 13317 13203 13222 13258 13260 13290 13290 14129
G24 13314 13165 13242 13255 13255 13276 13276 14131
G32 2000 0.25% 1390 1370 1392 1382 1394 1386 1396 1560
G33 1360 1348 1362 1356 1368 1362 1376 1537
G34 1368 1348 1364 1360 1368 1368 1372 1541
G35 2000 0.64% 7670 7567 7588 7605 7605 7635 7635 8000
G36 7660 7555 7581 7604 7604 7632 7632 7996
G37 7666 7576 7602 7601 7608 7643 7643 8009
G43 1000 2.10% 6656 6592 6621 6622 6622 6659 6659 7027
G44 6643 6587 6618 6634 6634 6642 6642 7022
G45 6652 6598 6620 6629 6629 6646 6646 7020
G48 3000 0.17% 6000 6000 6000 6000 6000 6000 6000 6000
G49 6000 6000 6000 6000 6000 6000 6000 6000
G50 5880 5862 5880 5854 5880 5868 5880 5988

Sum 150623 149337 149809 149981 150060 150395 150441 157743
% of SDP UB 95.49 94.67 94.97 95.08 95.13 95.34 95.37 100.00
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Table 3: Experimental results for Helmberg and Rendl [24] instances. Total solution times for the rank-2 relaxation heuristic circut of
Burer, Monteiro, and Zhang [8] and 1000 iterations of heuristics g, gpr, vns, vnspr, gvns, and gvnspr. The last column lists time when
heuristic vnspr made its last solution improvement. For each of the seven heuristics, as well as the time to best for heuristic vnspr, the
last two rows of this table list the sum of the processing times over the 24 instances and those sums normalized by the time taken by the
heuristic circut. Times are in seconds on an SGI Challenge computer (196Mhz R10000 processor).

Processing time (seconds)
Problem Total To best

Name |V | density circut g gpr gvns gvnspr vns vnspr vnspr
G1 800 6.12% 352 2111 2111 4647 4684 22713 22732 2536
G2 283 2037 2067 4625 4570 22689 22719 21504
G3 330 2053 2048 4566 4567 23878 23890 11183
G11 800 0.63% 74 276 285 1212 1222 10077 10084 686
G12 58 275 284 1174 1184 10845 10852 1572
G13 62 278 287 1175 1185 10469 10479 3652
G14 800 1.58% 128 478 489 2323 2337 16742 16734 13474
G15 155 478 488 2485 2495 17175 17184 14315
G16 142 478 488 2360 2369 16539 16562 16014
G22 2000 1.05% 493 6667 6724 32114 32175 197689 197654 44384
G23 457 6795 6749 31238 31065 193741 193707 27662
G24 521 6760 6697 31006 31143 195766 195749 152171
G32 2000 0.25% 221 1962 2017 8030 8079 82331 82345 12891
G33 198 1979 2036 7946 7995 76250 76282 72782
G34 237 1967 2113 7999 7954 79363 79406 52380
G35 2000 0.64% 440 3671 3654 19495 19573 167056 167221 96028
G36 400 3692 3646 20609 20701 167102 167203 63522
G37 382 3670 3631 19910 20125 170633 170786 47564
G43 1000 2.10% 213 1361 1379 5637 5584 35366 35324 3152
G44 192 1377 1377 5628 5645 34567 34519 14238
G45 210 1369 1387 5670 5683 34202 34179 10822
G48 3000 0.17% 119 5723 5881 15318 15495 64538 64713 50
G49 134 6165 6273 14447 14497 64596 64749 711
G50 231 4967 5095 16215 16217 146965 147132 846

Sum 6033 66589 67206 265829 266544 1861292 1862205 684139
Sum w.r.t. circut 1.00 11.04 11.14 44.06 44.18 308.51 308.67 113.40
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The heuristic circut and the six randomized heuristics were run a single time on
the Helmberg and Rendl test instances. Instances G11, G12, G13, G32, G33, and G34,
which have negative weights, were added to the the set of test problems. For each in-
stance, we ran each of our heuristics a total of 1000 iterations, i.e. with MaxIterations=
1000. The random number generator seed 270001 was used on all runs. For each in-
stance, Table 2 shows the cut weights found by circut and each of our six random-
ized heuristics, as well as the best known semidefinite programming upper bound (SDP
UB). Table 3 lists times (in seconds) to run circut using parameters (N,M) = (50,10)
and to run 1000 iterations with each randomized heuristic.

On this class of problems, we make the following observations:

• All heuristics were, on average, between 4.5% and 5.4% off from the semidefi-
nite programming upper bound.

• With only two exceptions, all heuristics found cuts greater than 0.87856 of the
SDP upper bound. The two exceptions occured with the pure GRASP (g) on
instances G33 and G34.

• For the randomized heuristics g, gvns, and vns, the incorporation of path-relinking
was beneficial, improving some of the solutions, with little additional computa-
tional burden.

• At the expense of increased running times, the use of VNS in the local search
phase of GRASP was beneficial. Likewise, at the expense of increased run-
ning times, using a pure VNS strategy with larger neighborhoods improved upon
GRASP with VNS (with a smaller neighborhood).

• Among the randomized heuristics, the variable neighborhood search with path-
relinking (vnspr) found the best cuts. Heuristic circut found slightly better
solutions than the randomized heuristic vnspr on 13 of the 24 instances. On
seven of the 24 instances, vnspr found slightly better cuts, while on the remain-
ing four instances, cuts of the same weight were found by circut and vnspr.
Overall, the quality of the solutions found by circut and vnspr differed by less
than 0.12%.

• In terms of solution quality, circut and vnspr seemed to be sensitive to prob-
lem characteristics. For problems with |V |= 800, circut found better solutions
for the densest classes (with densities 1.58% and 6.12%), while vnspr found
better solutions for the sparsest class (with density 0.63%). Likewise, for prob-
lems with |V |= 2000, circut found better solutions for the densest classes (with
densities 0.64% and 1.05%), while vnspr found better solutions for the sparsest
class (with density 0.25%). For the three problems with |V |= 1000, all with den-
sity 2.1%, circut found better solutions on two instances, while vnspr found
the better solution on the other instance. For the largest and sparsest instances
(|V |= 3000 with density 0.17%) both algorithms found equally good solutions.
The solutions found by both heuristics for G48 and G49 were optimal.

• Running times for 1000 iterations of the randomized heuristics went from a fac-
tor of 11 with respect to the running time of circut to over a factor of 300. Even
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when one considers the time to best, vnspr is still over two orders of magnitude
slower than circut.

Since the running times per iteration of our six randomized heuristics vary substan-
tially, we plot in Figure 9 the empirical distributions of the random variable time-to-
target-solution-value considering instances G11, G12, and G13, using the target values
those found by the pure GRASP in the 1000 iteration runs, i.e. 552, 546, and 572, re-
spectively. We performed 200 independent runs of each heuristic using random number
generator seeds 270001, 270002, . . . , and 270200 and recorded the time taken to find a
solution at least as good as the target solution. As in [3], to plot the empirical distribu-
tion we associate with the i-th sorted running time (ti) a probability pi = (i− 1

2 )/200,
and plot the points zi = (ti, pi), for i = 1, . . . ,200. We make the following observations
about the runs shown in Figure 9:

• The pure GRASP (g) is the heuristic that most benefited from path-relinking.
Running times for g varied from less than one second to about 2000 seconds,
while with GRASP with path-relinking (gpr), in 80%, 90%, and 100% of the
200 runs on G13, G12, and G11, respectively, the target solution was found in less
than 10 seconds.

• The second heuristic to most benefit from path-relinking was GRASP with VNS
as the local search procedure (gvns). Heuristic gvns found the target solution in
less than 10 seconds on 17%, 20%, and 38% of the 200 runs on instances G13,
G12, and G11 runs, respectively, while with path-relinking (gvnspr) found the
target solution in less than 10 seconds on 50%, 50%, and 87% of the runs on
G13, G12, and G11 runs, respectively.

• Though not as much as GRASP and GRASP with VNS local search, pure VNS
also benefited slightly from path-relinking.

• Overall, pure GRASP with path-relinking was the fastest heuristic to find sub-
optimal solutions with cut weights at least as large as the target values.

In the second part of the experiments, we report on instance pm3-8-50, from the
benchmark problem set of the 7th DIMACS Implementation Challenge 1. This instance
has |V | = 512 nodes and density 1.17%. It was generated by M. Jünger and F. Liers
using the Ising model of spin glasses. The best known solution prior to this paper was
456 and the best known upper bound is 461. The SDP upper bound of 527 is far from
the optimal. Burer, Monteiro, and Zhang [8] report a solution of 454 using circut
with parameters (N,M) = (8,100). Using variable neighborhood search with path-
relinking (vnspr), we were able to improve the best known solution for this instance.
We ran the algorithm 60 times, using random number generator seeds 270001, 270002,
. . . , and 270060, for a maximum of 1000 iterations. In 16 of these 60 runs, vnspr
found a solution of weight 456. On the remaining 44 runs, new best known solutions
of weight 458 were found. We recorded the time taken to find a solution of weight 458

1http://dimacs.rutgers.edu/Challenges/Seventh/
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Figure 9: Empirical probability distributions of time to target solution for the six ran-
domized heurisitics on problems G11, G12, and G13. Target solution is the solution
found by the pure GRASP on the 1000 iteration run.
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Figure 10: Empirical probability distributions of time to target solution value for vnspr
on problem pm3-8-50. Target solution value is the new best known solution with value
458.

and plotted the empirical distribution of the random variable time-to-target-solution-
value in Figure 10. To plot the empirical distribution, we associate with the i-th sorted
running time (ti) a probability pi = (i− 1

2 )/44, and plot the points zi = (ti, pi), for
i = 1, . . . ,44.

Finally, we considered ten instances from MAX-CUT problems arising in physics,
proposed by Burer, Monteiro, and Zhang [8]. These instances correspond to cubic lat-
tice graphs modeling Ising spin glasses. We used ten instances sg3dl101000, sg3dl102000,
. . . , sg3dl1010000 with |V | = 1000 and density 0.60% and ten larger and sparser in-
stances sg3dl141000, sg3dl142000, . . . , sg3dl1410000 with |V |= 2744 and density
0.22%. To the best of our knowledge, SDP upper bounds are not known for these in-
stances. We ran circut using the most intensive parameter settings used in [8], i.e.
(N,M) = (50,10), and the randomized heuristics gpr, gvnspr, and vnspr for 1000
iterations. Table 4 summarizes the results. For each instance, the table lists the best
cut weights found by each heuristic, as well as the total processing times and the time
when vnspr made its last solution improvement. Sums of cut weights found by each
heuristic over the instances are listed. Sums of processing times, as well as those sums
normalized by the sum of the processing times of circut, are also listed for each
heuristic. We make the following observations about these runs:

• The processing time for circut was the smallest. For the three randomized
heuristics gpr, gvnspr, and vnspr, cut weights increased with processing times.
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• On the smaller set of problems, runs for circut were 5 to 180 times faster than
1000 iterations of the randomized heuristics. On the larger set of problems, runs
for circut were 13 to 530 times faster than 1000 iterations of the randomized
heuristics. Even when considering the time when vnspr stopped making solu-
tion improvements, circut was still on average about 52 and 279 times faster
than vnspr, on the smaller and larger set of instances, respectively.

• Overall, vnspr found the best cuts, followed by circut, gvnspr, and gpr.

• On the set of ten smaller instances vnspr found the best solution for nine in-
stances, while circut found the best solution for only two instances. On one
instance there was a tie.

• On the set of ten larger instances vnspr found the best solution for seven in-
stances, while circut found the best solution for four instances. On two in-
stances both heuristics found solutions with the same weight.
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Table 4: Experimental results for Ising spin glasses cubic lattice graphs of Burer, Monteiro, and Zhang [8]. Best cuts weights found for
circut using parameters (N,M) = (50,10), and in 1000 iterations of gpr, gvnspr, and vnspr. Total processing times are given for the
four heuristics. The last column lists time when last improvement was made by heuristic vnspr. At the bottom of each table, the sum of
cut vales found and the sum of processing times over each set of ten instances is given, as is the sum of processing times, normalized by
the sum of processing times for heuristic circut.

Processing time (seconds)
Problem Cut values Total To best

Name |V | density circut gpr gvnspr vnspr circut gpr gvnspr vnspr vnspr
sg3dl101000 1000 0.60% 880 884 884 892 106 564 2269 20409 2417
sg3dl102000 892 896 896 900 116 569 2308 20873 12715
sg3dl103000 882 878 878 884 112 568 2269 20574 5158
sg3dl104000 894 884 890 896 103 570 2300 19786 1906
sg3dl105000 882 868 874 882 106 565 2241 19160 4765
sg3dl106000 886 870 880 880 119 564 2228 17872 590
sg3dl107000 894 890 892 896 115 568 2362 21044 10569
sg3dl108000 874 876 878 880 104 565 2243 19760 6805
sg3dl109000 890 884 896 898 121 569 2282 20930 3098
sg3dl1010000 886 888 886 890 111 567 2271 20028 10717

Sum 8860 8818 8854 8898 1113 5669 22773 200436 58740
Time w.r.t. circut 1.0 5.1 20.5 180.1 52.8

Processing time (seconds)
Problem Cut values Total To best

Name |V | density circut gpr gvnspr vnspr circut gpr gvnspr vnspr vnspr
sg3dl141000 2744 0.22% 2410 2378 2388 2416 382 5009 18775 188390 171255
sg3dl142000 2416 2382 2410 2416 351 4981 19008 187502 129819
sg3dl143000 2408 2390 2394 2406 377 4971 19076 190028 53439
sg3dl144000 2414 2382 2400 2418 356 4968 18985 198809 120112
sg3dl145000 2406 2374 2390 2416 388 5012 18969 196725 190947
sg3dl146000 2412 2390 2406 2420 331 4965 18990 189366 89151
sg3dl147000 2410 2384 2394 2404 381 5028 18814 187902 155018
sg3dl148000 2418 2378 2396 2418 332 4940 18665 194838 3005
sg3dl149000 2388 2362 2372 2384 333 4985 19224 193627 32903
sg3dl1410000 2420 2390 2406 2422 391 4959 19334 196456 64588

Sum 24102 23810 23956 24120 3622 49818 189840 1923643 1010237
Time w.r.t. circut 1.0 13.8 52.4 531.1 278.9
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4 CONCLUDING REMARKS
In this paper we proposed, implemented, and tested six randomized heuristics for the
MAX-CUT problem. The heuristics are derived from a greedy randomized adaptive
search procedure (GRASP), variable neighborhood search (VNS), and path-relinking
(PR).

Without adding much additional computational burden, path-relinking is able to
improve the basic GRASP, the basic VNS, as well as the GRASP with VNS local
search. GRASP benefits the most from path-relinking, with VNS enjoying the least
benefit. GRASP with path-relinking was the fastest among the six randomized heuris-
tics to converge to a solution with the weight at least as good as a specified sub-optimal
value. The VNS with path-relinking found the best-quality solutions, but required the
longest running times.

The randomized heuristics can quickly find solutions that are competitive with
those found by the randomized algorithm of Goemans and Williamson [22], such as
implemented by Benson, Ye, and Zhang [6] and, at the expense of additional processing
time, can find solutions that come within 5% of the semidefinite programming (SDP)
upper bound. For many sparse instances, better cuts than those found by the rank-2
relaxation heuristic of Burer, Monteiro, and Zhang [8] where identified. On problems
arising from physics, one of the randomized heuristics (variable neighborhood search
with path-relinking) improved the best known lower bound for pm-3-8-50, a prob-
lem from the 7th DIMACS Implementation Challenge. On Ising spin glasses problems
on lattice graphs, the variable neighborhood search with path-relinking found smaller
cut weights than circut on only five of 20 instances, again at the expense of longer
processing times.

As shown in [1], the random variable time-to-target-solution-value in GRASP with
path-relinking fits a two-parameter exponential distribution. Consequently, one can
expect good speed-ups in a parallel implementation of this algorithm.

We experimented with only one neighborhood parameter setting for GRASP with
VNS local search, as well as with pure VNS. A more systematic investigation of dif-
ferent parameter settings may yield algorithm with improved performance.

Finally, the algorithms described in this paper can be hybridized with previously
described methods. For example, local search could be applied on the cuts produced
by the Goemans and Williamson approximation algorithm and path-relinking could be
incorporated into circut.
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[23] P. Hansen and N. Mladenović. Developments of variable neighborhood search. In
C.C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages
415–439. Kluwer Academic Publishers, 2002.

[24] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite program-
ming. SIAM J. on Optimization, 10:673–696, 2000.

[25] S. Homer and M. Peinado. Two distributed memory parallel approximation algo-
rithms for Max-Cut. J. of Parallel and Distributed Computing, 1:48–61, 1997.

[26] S.E. Karisch, F. Rendl, and J. Clausen. Solving graph bisection problems with
semidefinite programming. SIAM J. on Computing, 12:177–191, 2000.

[27] R.M. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, NY, 1972.

[28] M. Laguna and R. Martı́. GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS Journal on Computing, 11:44–52, 1999.

[29] L. Lovász. On the Shannon capacity of a graph. IEEE Trans. of Information
Theory, IT-25:1–7, 1979.

[30] S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P. Pardalos. A parallel GRASP
for the Steiner tree problem in graphs using a hybrid local search strategy. Journal
of Global Optimization, 17:267–283, 2000.

24
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