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Abstract. A phylogenetic tree relates taxonomic units using their sim-
ilarities over a set of characteristics. Given a set of taxonomic units and
their characteristics, the phylogeny problem under the parsimony cri-
terion consists in finding a phylogenetic tree with a minimum number
of evolutionary steps. We developed a hybrid genetic algorithm for the
problem of building a phylogenetic tree minimizing parsimony. The al-
gorithm combines local search with a crossover strategy based on path-
relinking, an intensification technique originally used in the context of
other metaheuristics such as scatter search and GRASP. Computational
experiments on benchmark and randomly generated instances show that
the proposed algorithm is very robust and outperforms other heuristics
in terms of solution quality and running times.

1 Motivation

A central problem in comparative biology is that of establishing ancestrality
relations among n species, groups of species, populations of distinct species, or
homologous genes in populations of distinct species [6, 34]. These entities can
be indistinctly designated as taxons. Ancestrality relations are represented by a
rooted tree (leaves represent the taxons under analysis, while internal nodes rep-
resent hypothetic ancestrals) which is called a phylogenetic tree or a phylogeny.
Taxons under analysis are called operational taxons, while taxons associated to
internal nodes of a phylogeny are called hypothetical taxons. Each taxon has a

� Celso C. Ribeiro is partially supported by CNPq research grants 301.694/2007-9 and
485.328/2007-0, and by FAPERJ research grant E-152.522/2006.

�� Dalessandro S. Vianna is funded by FAPERJ research grant E-26/110.514/2007 and
by CNPq research grants 308.586/2006-9 and 472.749/2006-4.



set of m characteristics. An instance of the phylogeny problem with binary char-
acteristics is defined by an m×n 0-1 matrix, in which each element corresponds
to the state (existence or absence) of a given character for a given taxon.

Different evaluation criteria exist to infer the quality of a phylogenetic tree.
Each state change along a branch of a phylogenetic tree is counted as one evo-
lutionary step. The parsimony criterion states that the best phylogeny is the
more parsimonious, i.e., the one that can be explained by the minimum number
of evolutionary steps [8, 17, 34]. Parsimony is often legitimated as the most ap-
propriate evaluation criterion for phylogenies, since evolutionary changes occur
with very small probabilities [22, 33].

Luckow and Pimentel [21] were the first to compare different mainframe
programs for computing phylogenetic trees under the parsimony criterion. Later,
Platnick [23] compared phylogeny inference systems running on microcomputers.

Andreatta et al. [4] proposed an object oriented framework for the develop-
ment of local search heuristics and metaheuristics for combinatorial optimiza-
tion problems. This framework was used for the development of a family of local
search heuristics for the phylogeny problem under the parsimony criterion. It
made possible a fair comparison of heuristics running under the same conditions
on a set of eight benchmarks problems [5].

Ribeiro and Vianna [31] proposed a GRASP heuristic that found the best
known solutions to date for benchmark instances. This heuristic makes use of the
k-SPR neighborhood. A move in the latter may be seen as the combination of k
consecutive moves in the SPR (Subtree Pruning and Regrafting) neighborhood.

Path-relinking was originally proposed as an intensification strategy to ex-
plore trajectories connecting elite solutions obtained by tabu search or scatter
search [12–15]. It was also successfully used to introduce memory mechanisms
in implementations of GRASP [11, 25, 26]. Ribeiro and Vianna [30] reported
preliminary results obtained with an innovative hybridization strategy of a ge-
netic algorithm with path-relinking, in which the latter was used to implement
a progressive crossover operation. Later, Cotta [7] used path-relinking within
an implementation of scatter search for solving the phylogeny problem under a
distance-based optimization criterion.

In this work, we extend and improve the hybridization of path-relinking
within a genetic algorithm for approximately solving the phylogeny problem un-
der the parsimony criterion. The remaining of this paper is organized as follows.
The hybrid genetic algorithm is described in detail in Section 2. The crossover op-
eration based on path-relinking is presented in Section 3. Computational results
illustrating the effectiveness of the proposed approach are reported in Section 4.
Concluding remarks are drawn in the last section.

2 Hybrid genetic algorithm

The hybrid genetic algorithm described in this work incorporates two optimiza-
tion strategies. The first is the local search heuristic described in Section 2.3,
which is applied to some of the offsprings resulting from crossover. Applying



local search to some offsprings with a small probability contributes to improve
solution quality, without leading to freezing the population.

The second optimization strategy concerns the progressive crossover opera-
tion based on path-relinking [30]. Its detailed description is delayed to Section 3.

The fitness of each individual (or solution) is defined as the inverse of the par-
simony value of its associated phylogenetic tree. A number of computational ex-
periments have been carried out to define the best policies for selection and pop-
ulation evolution. Several selection rules were implemented: random or stochas-
tic universal sampling, roulette-wheel or stochastic sampling with replacement,
tournament - random variation, tournament - roulette variation, deterministic
sampling, stochastic remainder sampling, stochastic remainder sampling with re-
placement, stochastic sampling without replacement, and ranking [16, 18]. Differ-
ent population evolution policies were implemented and tested: simple genetic
algorithm (SGA), steady state genetic algorithm (SSGA), and GAP parame-
ter [16]. Best results were obtained using the selection method known as re-
mainder sampling with replacement (see Section 2.2 for details) and SGA as the
population evolution strategy (all individuals replaced by their offsprings).

Since the main goal of this work consists in reporting and comparing the
results obtained by the hybridization of path-relinking within a genetic algorithm
to implement a progressive crossover operation, we omitted the numerical results
leading to the above choices to be able to focus on the crossover strategy. The
main phases of the hybrid genetic algorithm are detailed below.

2.1 Initial population

The genetic algorithm is initialized with a population formed by SizePop =
100 individuals generated by the randomized version GStep wR of the greedy
GStep heuristic [5]. Numerical results have shown that this algorithm finds better
solutions than others, although at the cost of slightly higher computation times.

Whenever a taxon i is inserted into a partial phylogeny under construction
by algorithm GStep, all branches of the latter are evaluated. The chosen branch
is that minimizing the insertion cost of taxon i (i.e., the most parsimonious).
In its randomized version GStep wR, the branch were taxon i will be inserted is
randomly selected from among all those with cost at most 10% higher than the
most parsimonious incremental value.

2.2 Selection by stochastic remainder sampling with replacement

The selection policy is based on a temporary population, which is built once for
all for each generation with copies of the individuals in the population of this
generation.

The temporary population is generated as follows. We first compute the
average fitness fmed = (1/SizePop)

∑SizePop
i=1 fi of the current population, with

the fitness fi of each individual i being the inverse of the parsimony value of
its associated phylogenetic tree, for i = 1, . . . , SizePop. The fitness fi of each



individual of the population is divided by the average fitness fmed and �fi/fmed�
copies of this individual are inserted into the temporary population. Therefore,
only individuals whose fitness is higher than average are candidates for selection.
Furthermore, copies of individuals with higher fitness will be more numerous in
the temporary population, making them more amenable for selection.

At this point, the temporary population has
∑SizePop

i=1 �fi/fmed� individuals.
The solutions needed to complete the temporary population are generated by the
application of the roulette-wheel method exactly SizePop−∑SizePop

i=1 �fi/fmed�
times. At each time, an individual i = 1, . . . , SizePop with fi/fmed > 1 is
randomly selected from the current population, with a probability proportional
to the fractional part of fi/fmed, and a copy of it is added to the temporary
population.

Next, two individuals are randomly selected from the temporary population
to be submitted to crossover. Their unique offspring is added to the population of
the new generation. This step is repeated until a new population with SizePop
offsprings is obtained.

2.3 Local search and mutations

The local search heuristic explores the SPR neighborhood [35, 36], also described
in [5]. First, a subtree of the current phylogeny is disconnected. Next, it is recon-
nected to the body of the original tree in a different position. Figure 1 illustrates
an example of a move in this neighborhood, in accordance with the steps below:

– Step 1: An edge q = (c, f) of the current phylogeny is selected and removed.
The subtree containing node c is the base subtree, while that containing node
f is the pending subtree.

– Step 2: Node c is destroyed in the base subtree and its two adjacent nodes
are directly connected by a new edge (a, g) which results from collapsing the
original edges (a, c) and (c, g). Next, an edge r = (b, d) of the base subtree
is selected for reconnecting the pending subtree.

– Step 3: A new node h is created and edge r = (b, d) is replaced by two edges
(b, h) and (h, d) in the base subtree.

– Step 4: The pending subtree is reconnected to the base subtree through node
h created in the previous step.

A phylogenetic tree has O(n) potential subtrees and each of them can be re-
connected by O(n) possible edges. Therefore, each solution has O(n2) neighbors
in the SPR neighborhood. The local search heuristic follows a best-improving
strategy: all neighbors are evaluated and the best improving move is selected.
The search stops when no improving move exist.

Mutations are randomly generated moves in the same SPR neighborhood. A
node is randomly selected to act as the root of the pending subtree and a branch
of the base subtree is randomly selected for reconnecting the pending subtree.
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Fig. 1. Illustration of a move in neighborhood SPR.

2.4 Population evolution

The SGA rule revealed itself as the best appropriate for population evolution.
Each population is completely replaced at the next generation.

Figure 2 presents the pseudo-code of the main steps of the hybrid genetic
algorithm GA+PR+LS. The fitness f∗ of the best solution found is initialized in line
1. The greedy randomized heuristic GStep wR described in Section 2.1 is applied
SizePop times in line 2 to create the initial population. The loop in lines 3-16
evolves the population until a given stopping criterion is met. The temporary
population associated with the current generation is built in line 4, as described
in Section 2.2. The loop in lines 5-15 ensures that the new population entirely
replaces the current one, since exactly SizePop offsprings are generated.

Two individuals parent1 and parent2 are randomly selected from the tempo-
rary population in line 6. They are submitted to crossover by path-relinking in
line 7, as described later in Section 3. Local search is applied to offspring in line



8 with probability ProbLS. A mutation is applied in line 9 to offspring with
probability ProbMut. Parameters ProbLS and ProbMut were empirically set
at 15% and 3%, respectively. If the new solution offspring improves the best
solution found, then the latter is updated in lines 10-13. The new individual
offspring is inserted into the new population in line 14.

Procedure GA+PR+LS

01. f∗ ← 0;
02. Apply heuristic GStep wR exactly SizePop times to build the initial population;
03. While stopping criterion not met do
04. Build the temporary population associated with the current generation;
05. For i = 1 to SizePop do
06. Randomly select two individuals parent1 and parent2 for crossover;
07. Apply the path-relinking crossover to parent1 and parent2, obtaining

a new individual offspring;
08. Apply local search to offspring with probability ProbLS;
09. Apply mutation to offspring with probability ProbMut;
10. If the fitness of offspring is larger than f∗then
11. Replace f∗ by the fitness of offspring;
12. Set s∗ ← offspring;
13. End-if
14. Insert offspring into the new generation population;
15. End-for
16. End-while
End-GA+PR+LS

Fig. 2. Pseudo-code of the hybrid genetic algorithm with path-relinking crossover.

3 Progressive crossover by path-relinking

Path-relinking is an intensification strategy to explore paths connecting elite so-
lutions obtained by metaheuristics. Path-relinking is usually carried out between
two solutions: one is called the initial solution, while the other is the guiding so-
lution. One or more paths in the solution space graph connecting these solutions
are explored in the search for better solutions. To generate the paths, moves ap-
plied to the initial solution introduce attributes contained in the guiding solution.
Therefore, path-relinking may be viewed as a strategy that seeks to incorporate
attributes of high quality solutions (i.e. the guiding elite solutions), by favoring
these attributes in the selected moves. Extensions, improvements, and successful
applications of path-relinking appeared in [1, 10, 25, 28, 29, 32]. Surveys reporting
on advanced path-relinking strategies can be found in [26, 27].

Path-relinking was first applied in the context of a genetic algorithm to im-
plement a progressive crossover operation by Ribeiro and Vianna [30]. In this



work, we extend our original proposal and develop a better implementation. We
follow a bidirectional (or back and forward) strategy: given two parent solutions
s1 and s2, one path is computed leading from s1 to s2 and another leading from
s2 to s1. The best solution along them is returned as the offspring resulting
from crossover. This mechanism is an extension of the traditional crossover op-
eration: instead of producing only one offspring, it investigates many solutions
that share the same characteristics of the selected parents. The solution found
by path-relinking corresponds to the best offspring that could be obtained by
applying the standard crossover to the same parents.

Let s1 and s2 be, respectively, the initial and the guiding phylogenies. Let
N1 be the root of the phylogenetic tree s1 and N2 the root of s2. By applying
path-relinking to s1 and s2, the set of operational taxons in the left subtree of
N1 will be made equal to the set of operational taxons in the left subtree of N2.
Consequently, the operational taxons in the right subtree of N1 will become the
same appearing in the right subtree of N2. This process is initiated at the roots
of trees s1 and s2 and top-down propagated until their leaves are reached.

Figure 3 presents the pseudo-code of the crossover by path-relinking opera-
tion applied to solutions s1 and s2. The fitness f̄ of the best solution found is
initialized in line 1. The loop in lines 2-34 ensures that path-relinking is applied
twice, once in each direction as defined in line 3. First, path-relinking builds
a path from the initial solution s = s1 to the guiding solution sguiding = s2.
Next, path-relinking builds a path from the initial solution s = s2 to the guiding
solution sguiding = s1. Two stacks Q1 and Q2 containing the roots of s1 and s2,
respectively, are initialized in line 4. The loop in lines 5-33 guarantees that all
nodes of the initial solution s0 will be analyzed and made in correspondence with
those of the guiding solution sguiding , beginning with their roots and continuing
until their leaves are reached. Two nodes N1 and N2 are removed from stacks
Q1 and Q2, respectively, in line 6. The left and right subtrees of nodes N1 and
N2 are identified in lines 7 and 8, respectively.

Line 9 sets comp1 to the number of operational taxons common to the left
subtrees of N1 and N2, plus the number of those common to their right subtrees.
The value of comp1 represents the number of operational taxons that appear in
the same subtrees in N1 and N2 (left-left or right-right) and, therefore, do not
have to be moved from one subtree of N1 to the other if path-relinking compares
the left subtrees of N1 and N2 and the right subtrees of N1 and N2. Similarly, line
10 sets comp2 to the number of operational taxons common to the left subtree
of N1 and to the right subtree of N2, plus the number of those common to the
right subtree of N1 and to the left subtree of N2. The value of comp2 represents
the number of operational taxons that appear in different subtrees in N1 and
N2 (left-right or right-left) and, therefore, do not have to be moved from one
subtree of N1 to the other if path-relinking compares the left subtree of N1 with
the right of N2 and the right subtree of N1 with the left of N2. The comparison
of comp1 and comp2 and the possible interchange of the positions of the left and
right subtrees of N2 in line 11 is used to speedup path-relinking, by reducing the
number of moves to be applied to the initial solution s until the guiding solution



Procedure Crossover(s1, s2)
01. f̄ ← 0;
02. For i = 1, 2 do
03. If i = 1 then s← s1; sguiding ← s2 else s← s2; sguiding ← s1;
04. Initialize the stacks Q1 and Q2 with the roots of s and sguiding , respectively;
05. While Q1 �= ∅ do
06. Remove the top nodes N1 from Q1 and N2 from Q2;
07. Let LN1 and RN1 be the left and right subtrees of N1, respectively;
08. Let LN2 and RN2 be the left and right subtrees of N2, respectively;
09. Set comp1 to the number of operational taxons common to LN1 and LN2

plus the number of operational taxons common to RN1 and RN2;
10. Set comp2 to the number of operational taxons common to LN1 and RN2

plus the number of operational taxons common to RN1 and LN2;
11. If comp2 > comp1 then interchange subtrees LN2 and RN2;
12. Set W as the set of operational taxons that appear either in RN1 and

LN2, or in LN1 and RN2;
13. While W �= ∅ do
14. Set Δ←∞;
15. For each operational taxon t ∈ W do
16. Temporarily remove taxon t from its current subtree in N1;
17. Investigate all possible branches to where taxon t can be moved

in the other subtree of N1 and let q denote that minimizing
the variation δ(t) in the parsimony of the current solution s;

18. If δ(t) < Δ then set t′ ← t, q′ ← q, and Δ← δ(t);
19. Restore taxon t to its original subtree in N1 from where

it was temporarily removed;
20. End-for;
21. Obtain a new solution s′ by moving taxon t′ from its current subtree

of N1 to branch q′ of the other;
22. Set W ←W − {t′};
23. If the fitness of s′ is greater than f̄ then
24. Set s̄← s′;
25. Set f̄ as the fitness of s′;
26. End-if
27. s← s′;
28. End-while
29. If N1 is not a leaf then
30. Insert the left and right children of N1 into stack Q1;
31. Insert the left and right children of N2 into stack Q2;
32. End-if
33. End-while
34. End-for
35. Return s̄;
End-Crossover

Fig. 3. Crossover procedure using path-relinking.



sguiding is reached. If comp1 is larger than or equal to comp2, then subtrees
that are already in the same position (left-left and right-right) in the current
and in the guiding solutions will drive the path-relinking operation. Otherwise,
it is more efficient to use subtrees in different positions (left-right and right-left)
in the current and in the guiding solutions to drive path-relinking. This can be
easily implemented by interchanging the positions of the left and right subtrees
of N2. Therefore, the algorithm always compares the left subtree of N1 with that
of N2, and the right subtree of N1 with that of N2.

Set W computed in line 12 contains all operational taxons appearing either
in LN1 and RN2, or in RN1 and LN2. These are badly positioned operational
taxons that have to be moved from one subtree of N1 to the other (left-right
or right-left). The loop in lines 13-28 moves all operational taxons in W from
one subtree of N1 to the other. Variable Δ in line 14 is initialized to handle the
computation in lines 15-20 of the taxon t′ that leads to the smallest variation in
the parsimony of the current solution s if it is moved from one subtree of N1 to
the other. Each badly positioned operational taxon t is temporarily removed from
its current subtree of N1 in line 16. In line 17, all possible positions (branches)
where taxon t can be inserted in the other subtree of N1 as a new leaf are
investigated and the corresponding variation in the parsimony of the current
solution s is evaluated. Let q be the position leading to the smallest variation
δ(t). If moving the operational taxon t from its current subtree in N1 to position
q in the other subtree improves the best move already identified for this path-
relinking iteration, than the latter is updated in line 18. Taxon t is restored
in line 19 to its original subtree in N1 from where it was temporarily removed,
before a new badly positioned taxon be investigated. The best move is applied in
line 20, with the operational taxon t′ being removed from its current subtree of
N1 and inserted into position q′ of the other subtree. Let s′ be the new solution.
The operational taxon t is removed from W since it is now in the same subtrees
of N1 and N2 (left-left or right-right). In line 22, the fitness of the new solution
s′ is compared with that of the best solution s̄ found in the previous path-
relinking steps. In case of improvement, s̄ and f̄ are updated in lines 24 and 25,
respectively. The current solution s is updated in line 27. Lines 29-32 implement
the top-down propagation of the path-relinking operation. If N1 is not a leaf
(and, consequently, so is not N2), then the left and right children of N1 and N2

are inserted into stacks Q1 and Q2, respectively, and a new step resumes.

Figure 4 illustrates the application of crossover by path-relinking to phylo-
genies s and sguiding . The phylogenetic tree s in Figure 4-i will be progressively
modified until it becomes equal to sguiding . The nodes marked in s and sguiding

are those corresponding to N1 and N2 at each step, respectively. The final situ-
ation is described in Figure 4-vi, where both phylogenies coincide.

Path-relinking was also applied by Zhang and Lai [38] as a crossover oper-
ator following the strategy proposed in [30] in the implementation of a genetic
algorithm for the multiple-level warehouse layout problem. Their approach also
makes use of path-relinking when the genetic algorithm seems to be trapped in
a locally optimal solution. Once again, path-relinking was used by Vallada and
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Ruiz [37] as a progressive crossover operator within a genetic algorithm for the
minimum tardiness permutation flowshop problem. It was also applied as an in-
tensification strategy after a number of generations without improvement in the
best solution. The selected individuals are marked in order to not be selected
again for the application of path-relinking. In another context, path-relinking was
also hybridized with a genetic algorithm as a post-optimization procedure [24],
in which the solutions obtained in the last generation of the genetic algorithm
are progressively combined and refined.

4 Computational results

Algorithm GA+PR+LS was implemented in C using version 6.0 of the Microsoft
Visual C++ compiler. All computational experiments were performed on a 2.0
GHz Pentium IV processor with 512 Mbytes of RAM.

Two sets of test instances have been used. The first corresponds to the eight
benchmark instances [21, 23] also considered in [5, 31]. The second is formed by
20 randomly generated instances. The instance generator receives as parameters
the number of taxons and the number of binary characteristics. The number of
taxons ranges from 45 to 75 and the number of characteristics from 61 to 159.

Algorithm GA+PR+LS was compared with the GRASP+VND heuristic in [31] and
with two versions of the original random-keys genetic algorithm presented in [30]:
without local search (RKGA) and with local search (RKGA+LS). To further illustrate
its behavior, we also compared algorithm GA+PR+LS with its simplified version
GA+PR, in which the offsprings are never submitted to local search.

The comparison also involved another variant of the genetic algorithm, us-
ing a uniform crossover implemented as follows. First, the phylogenetic trees
associated with the two parents parent1 and parent2 are traversed in preorder,
generating two vectors formed by the operational taxons in the order in which
their leaves are visited. These two vectors are submitted to a one-point crossover
and two offspring vectors result. These offspring vectors may be infeasible, with
missing and repeated taxons. Infeasibilities are repaired as follows. First, one of
the duplicated taxons is randomly selected to be removed. Next, one of the miss-
ing taxons is also randomly selected to replace the removed duplicated taxon.
These steps are repeated until each of the two offspring vectors contain exactly
one copy of the n different operational taxons. Finally, each of the original two
parents is traversed in preorder and the taxons in its leaves are progressively
replaced by those appearing in one of the repaired offspring vectors. The other
strategies and operators are the same used in GA+PR+LS. Once again, two ver-
sions are considered: without local search (GAUni) and with (GAUni+LS) local
search.

In the first experiment, ten runs of each algorithm were performed on each
instance, with the computation times limited to 1,000 seconds. Table 1 gives
the number of taxons (n) and the number of binary characteristics (m) for
each instance, followed by the average and best parsimony values obtained by
each algorithm over ten runs. Results marked in bold are the best obtained for



each instance. Algorithm GA+PR+LS obtained the best average values for seven
benchmark instances. It also obtained the best average values for 17 out of the 20
randomly generated instances. Algorithm GA+PR+LS found the best solutions for
all benchmark instances and for 14 out of the 20 randomly generated instances.

Time-to-target plots (tttplots) display on the ordinate axis the probability
that an algorithm will find a solution at least as good as a given target value
within a given running time, shown on the abscissa axis. They were used by Feo
et al. [9] and have been advocated by Hoos and Stützle [19, 20] as a way to charac-
terize the running times of stochastic algorithms for combinatorial optimization.
Aiex et al. [2] suggested and largely explored the use of tttplots to evaluate and
compare different randomized algorithms running on the same instance. Their
use has been growing ever since and they have been extensively applied in com-
putational studies of sequential and parallel randomized algorithms [25, 26, 28].
The foundations of the construction of time-to-target plots, together with their
interpretation and applications, were surveyed by Aiex et al. [3].

In the second experiment, we used tttplots to compare the hybrid algorithm
GA+PR+LS with its simpler version GA+PR and with the other algorithms involved
in the first experiment. Since similar results have been observed for all instances,
they are summarized by those obtained for instance SCHU. We performed 250
independent runs of each algorithm. Each run finishes when a solution value less
than or equal to a given target is found or after three hours of computations if
the target was not attained. The target value was set to 760, which is the value
of the best previously known solution for this instance. The empirical probability
distributions of the time-to-target random variables are plotted in Figure 5 for
each algorithm. These plots show that algorithm GA+PR+LS systematically finds
better solutions than the others in smaller computation times. Furthermore,
algorithm GA+PR+LS is also more robust, presenting a much smaller variability
in the computation times over different runs.

The final experiment makes use of the results obtained for the random in-
stance TST17 to assess the evolution of the solutions found by each algorithm
along one hour (3,600 seconds) of computations. For each algorithm RKGA, GA+PR,
and GAUni, Figure 6 presents the solution value at the end of each generation
for each of the 100 individuals in the population.

Since the original random-keys genetic algorithm RKGA made use of elitism,
the solution values it obtained are confined in a smaller interval ranging from
2500 to 2620. The solution values obtained by the two other algorithms present
a larger variability. The solutions progressively found by algorithm GA+PR are
better than those obtained by RKGA and GAUni, illustrating the contribution of
the strategy based on path-relinking to implement the crossover operation.

Similarly, for each algorithm RKGA+LS, GA+PR+LS, and GAUni+LS using local
search, Figure 7 presents the solution value at the end of each generation for
each of the 100 individuals in the population. These algorithms found better
solutions than their counterparts without local search. The solutions obtained
by each of them are clearly separated in two clouds: one formed by offsprings to



Fig. 5. Empirical probability distributions of time-to-target (instance SCHU).

which local search was not applied (higher values), and the other corresponding
to the solutions obtained by local search (smaller values).

Figure 8 superimposes the results report for algorithms GA+PR+LS and RKGA+LS
in the previous figure. The solution values obtained by algorithm GA+PR+LS are
plotted in green, while those obtained by RKGA+LS are given in red.

5 Conclusion

In this work, we compared different genetic algorithm implementations and a
GRASP with VND heuristic for the phylogeny problem. In particular, we as-
sessed the results obtained by a hybridization of a genetic algorithm with a
path-relinking scheme to implement the crossover operator.

The resulting hybrid genetic algorithm GA+PR+LS also makes use of a local
search procedure to improve some offsprings resulting from crossover. Compu-
tational results have shown that the hybrid algorithm GA+PR+LS systematically
found better solutions in smaller computation times. It matched the best solu-
tions previously reported in the literature for all benchmark instances. It also
found better solutions than the other algorithms for most random test instances.
Furthermore, it is more robust and presents much smaller variability in the com-
putation times.

The numerical results clearly illustrate the contribution of the path-relinking
scheme in the implementation of an effective crossover operator. Path-relinking



was also very appropriate for handling the complex solution coding data struc-
ture associated with phylogenetic trees.
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Fig. 6. Solutions obtained for instance TST17 along 3,600 seconds by the algorithms
without local search.
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Fig. 7. Solutions obtained for instance TST17 along 3,600 seconds by the algorithms
with local search.



Fig. 8. Solution values obtained for instance TST17 by algorithms GA+PR+LS (red) and
RKGA+LS (green) along 3,600 seconds.


