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Abstract. GRASP with path-relinking is a hybrid metaheuristic, or
stochastic local search (Monte Carlo) method, for combinatorial opti-
mization. A restart strategy in GRASP with path-relinking heuristics is
a set of iterations {i1,42,...} on which the heuristic is restarted from
scratch using a new seed for the random number generator. Restart
strategies have been shown to speed up stochastic local search algo-
rithms. In this paper, we propose a new restart strategy for GRASP
with path-relinking heuristics. We illustrate the speedup obtained with
our restart strategy on GRASP with path-relinking heuristics for the
maximum cut problem, the maximum weighted satisfiability problem,
and the private virtual circuit routing problem.

Keywords: GRASP, path-relinking, restart strategy, experimental al-
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1 Introduction

A combinatorial optimization problem is defined by a finite ground set E =
{1,...,n}, aset of feasible solutions F' C 2 and an objective function f : 28 —
R. In its minimization version, a global optimum z* € F' is sought such that
f(z*) < f(x), Vx € F, with each solution being represented by its characteristic
vector x € {0, 1}‘E |. The ground set E, the cost function f, and the set of feasible
solutions F' are defined for each specific problem.

Metaheuristics are high level procedures for combinatorial optimization that
coordinate simple heuristics, such as local search, to find solutions that are of
better quality than those found by the simple heuristics alone. Many metaheuris-
tics have been introduced in the last thirty years [10,12]. Among these, we find
genetic algorithms, tabu search, variable neighborhood search, scatter search,
iterated local search, path-relinking, and GRASP.

GRASP, or greedy randomized adaptive search procedure, was first intro-
duced in 1989 by Feo and Resende [3]. Path-relinking [11,13,25,26] is an in-
tensification scheme which explores paths in the solution space that connect



high-quality solutions. Often, even better-quality solutions can be found in these
paths. The hybridization of GRASP with path-relinking adds memory mecha-
nisms to GRASP. It was first proposed by Laguna and Mart{ [15] and has become
the standard way to implement effective GRASP heuristics [24, 26].
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Fig. 1. Typical iteration count distribution of GRASP with path-relinking.

Runtime distributions, or time-to-target plots, display on the ordinate axis
the probability that an algorithm will find a solution at least as good as a given
target value within a given running time, shown on the abscissa axis. They are
constructed by independently running the algorithm a number of times, each
time stopping when the algorithm finds a solutions at least as good as a given
target solution. Runtime distributions have been advocated as a way to charac-
terize the running times of stochastic algorithms for combinatorial optimization.
Runtime distributions are, however, machine dependent. A machine independent
alternative is the iteration count distribution. Similar to runtime distributions,
they show the probability that an algorithm will find a solution at least as good
as a given target value within a given number of iterations. We should note
that while an iteration count distribution characterizes the behavior of a given
combinatorial optimization algorithm, these distributions should not be used to
compare two algorithms that have different running times per iteration, as e.g.



to compare GRASP with GRASP with path-relinking. For those comparisons
runtime distributions are more appropriate.

Figure 1 shows a typical iteration count distribution for a GRASP with
path-relinking heuristic. The reader will note in this example that for most of
the independent runs, the algorithm finds the target solution in relatively few
iterations: 25% of the runs take at most 101 iterations; 50% take at most 192
iterations; and 75% take at most 345. However, some runs take much longer: 10%
take over 1000 iterations; 5% over 2000; and 2% over 9715 iterations. The longest
run took 11607 iterations to find a solution as good as the target. These long
tails contribute to a large average iteration count as well as to a high standard
deviation. The objective of this paper is to propose strategies to reduce the tail
of the distribution, consequently reducing the average iteration count and its
standard deviation.

Consider again the distribution in Figure 1. With 25% probability the run
will take over 345 iteration. By restarting the algorithm after 345 iterations, the
new run will finish by iteration 690 with 75% probability. The probability that
the algorithm will still be running after k periods of 345 iterations is 1/(4%). In
the example of Figure 1, the probability that the algorithm will be running after
1725 iterations will be about 0.1%, i.e. much less than the 5% probability that
the algorithm will take over 2000 iterations without restart.

Restart strategies for speeding up stochastic local search algorithms were first
proposed by Luby et al. [16]. They define a restart strategy as an infinite sequence
of time intervals S = {7y, T2, 73 . ..} which define epochs 71,7 + 72, 1 + T2+ 73, . . .
when the algorithm is restarted from scratch, i.e. using a new random number
generator seed. Luby et al. [16] prove that the optimal restart strategy uses 71 =
Ty = --- =7 where 7* is a constant. Restart strategies in metaheuristics have
been addressed in [1,14,18,19,27]. Some recent work on restart strategies can
be found in [28,29]. To the best of our knowledge no paper to date has addressed
restart strategies for GRASP or GRASP with path-relinking heuristics.

The paper is organized as follows. In Section 2, we review basic concepts of
GRASP with path-relinking. Simple restart strategies for GRASP with path-
relinking are proposed in Section 3. Computational results are summarized in
Section 4 and concluding remarks are made in Section 5.

2 GRASP with path-relinking

A GRASP [3,4] is a multi-start metaheuristic where at each iteration a greedy
randomized solution is constructed to be used as a starting solution for local
search. If the greedy randomized solution is infeasible, a repair routine may
need to be called to make it feasible before local search is applied. The best local
minimum found over all GRASP iterations is output as the solution. See [4, 20,
21, 24] for surveys of GRASP and [7-9] for annotated bibliographies.

GRASP iterations are independent, i.e. solutions found in previous GRASP
iterations do not influence the algorithm in the current iteration. The use of
previously found solutions to influence the procedure in the current iteration



begin GRASP+PR

1 Elite set E + 0;

2 while stopping criterion not satisfied do

3 z < RandomizedGreedy(-);

if x is infeasible then x < Repair(z);

x < LocalSearch(z);

Select y € E at random;

z + PathRelinking(z,y);

Insert x in F if it meets quality and diversity criteria;
9 Insert z in FE if it meets quality and diversity criteria;
10 end-while;

11 return z < argmin{c(z) | z € E};

end

0~ O O

Fig. 2. Pseudo-code of GRASP with path-relinking for minimization

can be thought of as a memory mechanism. One way to incorporate memory
into GRASP is with path-relinking [11,13,25]. In GRASP with path-relinking
(GRASP+PR) [15,23], an elite set of diverse good-quality solutions is main-
tained to be used during each GRASP iteration. After a solution is produced
with greedy randomized construction and local search, that solution is combined
with a randomly selected solution from the elite set using the path-relinking op-
erator. The solution of the local search as well as the best of the combined
solutions from path-relinking are candidates for inclusion in the elite set and
each is added to the elite set if it meets quality and diversity criteria. Figure 2
shows pseudo-code for a GRASP with path-relinking heuristic.

3 Restart strategy for GRASP with path-relinking

Recall that the optimal restart strategy proposed by Luby et al. [16] uses equal
time intervals 7y = 75 = - -+ = 7* between restarts. Implementing such a strategy
may be difficult in practice because it requires inputting the constant value 7*.
Since we have no a priori information about the runtime distribution of the
heuristic for the optimization problem under consideration, we run the risk of
choosing a value of 7* that is either too small or too large. On the one hand,
a value that is too small can cause the restart-variant of the heuristic to take
much longer to converge than the no-restart variant. On the other hand, a value
that is too large may never restart, causing the restart-variant of the heuristic
to take as long to converge as the no-restart variant.

A characteristic with less variation between heuristic/instance/target triples
than run times is the number of iterations between improvements of the incum-
bent (or best so far) solution. We propose the following restart strategy: Keep
track of the last iteration when the incumbent solution was improved and restart
the GRASP with path-relinking heuristic if  iterations have gone by without



improvement. We shall call such a strategy restart(x). This strategy is illustrated
in Figure 3 which shows the average time to find a cut of weight at least 554
for max-cut instance G12 [6] as a function of the restart parameter x. For each
restart parameter, we ran the algorithm 100 times to compute each average. The
figure shows that best values of x are between 200 and 1000 since it is in that
range that the average time to target solution is smallest.
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Fig. 3. Average time to find a cut of weight at least 554 for max-cut instance G12 as
a function of the restart parameter . The figure shows that the best values are in the
range from 200 to 1000 iterations.

Restarting GRASP with path-relinking requires emptying out the elite set,
discarding the incumbent, and starting a new iteration with a new seed for the
random number generator. In practice, one would also input a maximum number
of restarts and store the overall incumbent (over all restarts) to output as the
solution. In the experiments in Section 4 we do not do this since we run the
heuristics until a solution as good as the target solution is found, i.e. the overall
incumbent is the incumbent of the last restart period.

While this strategy also requires us to input a value for parameter £ we will
see in the next section that even for heuristic/instance/target triples that differ
significantly with respect to runtime distributions, a limited number of values for



k almost always achieves the desired result, i.e. to reduce the average iteration
count as well as its standard deviation.

4 Experiments

In this section we present some preliminary computational results with our
restart strategies for GRASP with path-relinking heuristics. We consider three
GRASP with path-relinking heuristics: for the maximum cut problem [6], max-
imum weighted satisfiability [5], and private virtual circuit routing [22]. Each
heuristic was implemented using no restart (original GRASP with path-relinking
heuristic) and restart strategies: restart(100), restart(500), and restart(1000),
which restart, respectively, after 100, 500, and 1000 iterations without improve-
ment in the value of the incumbent.

We consider two instances for each heuristic. For the maximum cut problem
we consider instances GI and G12 [6] with target values 11575 and 554, respec-
tively. For the maximum weighted satisfiability problem we consider instances
jnhl and jnh304 [5] with target values 420780 and 444125, respectively. Finally,
for the private virtual circuit routing problem we consider instances att and
fr750 [22] with target values 124625 and 2040000, respectively.

We run each heuristic strategy independently 100 times for each instance,
stopping when a solution at least as good as the target is found. For each run
the iteration count at termination is recorded. Figures 4, 5, and 6, are iteration
count distribution plots for, respectively, the maximum cut, maximum weighted
satisfiability, and private virtual circuit routing problems. Table 1 summarizes
the experiments. For each instance, the table shows statistics for each of the
four strategies (no restart and restart(100), restart(500), and restart(1000)). The
statistics are the maximum iteration counts for each quartile of the distribution
(maximum number of iterations taken by the fastest 25%, 50%, 756%, and 100%
of the runs) as well as the average iteration count and its standard deviation
computed over all 100 runs.

We make the following observations regarding the experiment.

— The effect of the restart strategies can be mainly observed in the column
corresponding to the fourth quartile of Table 1. The entries in this quar-
tile correspond to those in the heavy tails of the distributions. The restart
strategies in general did not affect the other quartiles of the distributions,
which is a desirable characteristic.

— For all instances, compared to the no-restart strategy, at least one restart
strategy was able to reduce the maximum number of iterations, average
number of iterations, and the standard deviation of number of iterations.

— In only three strategy / instance pairs was the restart strategy not able to
reduce the maximum number of iterations taken by the no-restart strategy.
These were restart(1000)/ jnh1 and restart(1000)/ jnh408, and restart(1000)/
fr750. In the first two pairs, however, both average number of iterations and
standard deviation were reduced. In the case of restart(1000)/ fr750, no
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Fig. 4. Runtime distributions comparing the no restart strategy with several restart
strategies on maximum cut instances G1 and G12.
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strategies on private virtual circuit routing instances att and fr750.



Table 1. Summary of computational results. For each instance and strategy, 100 in-
dependent runs were executed, each stopped when a solution as good as a given target
solution was found. For each instance / strategy pair, the table shows the distribution
of number of iterations by quartile. For each quartile the table shows the maximum
number of iterations taken by all runs in that quartile, i.e. the slowest of the fastest
25% (1st), 50% (2nd), 75% (3rd), and 100% (4th) of the runs. The average number of
iterations over the 100 runs as well as the standard deviation is given for each instance /
strategy pair.

max itr in quartile
instance strategy 1st  2nd 3rd 4th avg sdev

maxcut: G1 no restart 708 1145 2610 96763 3331.7 10448.6
restart(1000) 687 1145 2270 10753 1943.7 2021.9
restart(500) 708 1292 2404 7849 1850.0 1591.7
restart(100) 1120 2775 5557 14343 3672.5 3053.9

maxcut: G12 no restart 326 550 1596 68813 4525.1 11927.0
restart(1000) 326 550 1423 5014 953.2 942.1
restart(500) 326 550 1152 4178 835.0 746.1

restart(100) 509 1243 3247 8382 2055.0 2005.9

maxsat: jnhl no restart 281 684 1611 6206 1319.7 1522.0
restart(1000) 281 684 1547 7737 1170.6 1317.7
restart(500) 281 684 2142 5708 1309.2 1363.9
restart(100) 308 812 1562 4323 1071.3 960.5

maxsat: jnh304 no restart 657 1621 3488 18095 2546.1 2738.2
restart(1000) 657 1610 3255 19124 2508.0 2957.2
restart(500) 657 1432 2483 12651 2091.6 2247.3
restart(100) 605 1266 2558 11390 1929.7 1907.5

pver: att no restart 101 192 345 11607 527.4 1518.2
restart(1000) 101 192 345 5567 397.9 737.7
restart(500) 101 192 345 1891 313.6 355.5
restart(100) 101 192 345 1948 277.9 291.7
pver: fr750 no restart 186 223 438 5260 359.0 547.4
restart(1000) 163 223 438 5260 359.0 547.4
restart(500) 163 223 438 1924 325.6 287.8

restart(100) 163 223 438 1717 327.5 288.2




restarts were done since the no-restart strategy never took more than 1000
iterations without improvement of the incumbent.

— In only one strategy / instance pair (restart(100)/ G1) was the average
number of iterations larger than that of the no-restart strategy. The increase
was about 10%.

— In only one strategy / instance pair (restart(1000)/jnh304) was the stan-
dard deviation of the number of iterations larger than that of the no-restart
strategy. The increase was about 8%.

— Compared to the no-restart strategy, restart strategy restart(1000) was able
to reduce the maximum number of iterations as well as the average and
standard deviation for instances G1, G12, and att. For jnhl and jnh304
it increased the maximum number of iterations. In addition, for jnh304 it
increased the standard deviation. On fr750 it was not activated a single
time.

— Compared to the no-restart strategy, strategy restart(500) was able to reduce
the maximum number of iterations as well as the average and standard
deviation for all instances. Strategy restart(100) did so, too, for all but one
instance (G1) where it had a larger average number of iterations than the
no-restart strategy.

— Restart strategy restart(500) was clearly the best strategy for instances G1
and G12 while restart(100) was the best for instances jnhl and jnh304. On
both private virtual circuit routing instances restart strategies restart(100)
and restart(500) were better than restart(1000). Strategy restart(500) re-
duced the maximum number of generation more than restart(100), while
restart(100) reduced the average number of iterations and standard devia-
tion more than restart(500).

5 Concluding remarks

In this paper, we propose new restart strategies for GRASP with path-relinking
heuristics. Unlike the strategies considered in the literature, our strategy is based
on the number of iterations without improvement of the incumbent solution, This
number is monitored and once it reaches a trigger value, the heuristic is restarted
by emptying the elite set and incumbent and using a new seed for the random
number generator.

We proposed three restart strategies using three different restart trigger
values: 100, 500, and 1000. We tested the strategies with GRASP with path-
relinking heuristics for maximum cut, maximum weighted satisfiability, and pri-
vate virtual circuit routing on instances where the average number of iterations
of the no-restart variant varied from 359 to 4525 and the maximum number of
iterations from 5260 to 96763.

While no restart strategy increased all three performance measures (maxi-
mum, average, standard deviation of number of iterations) for a single instance,
restart(500) decreased all three measure for all instances while restart(100) in-
creased a single measure for a single instance. Overall, restart(500) was the best
strategy.



‘We must emphasize that these conclusions are valid for these implementations
of GRASP with path-relinking on these instances and for these target solution
values. Though we conjecture that they are also valid for other implementations,
instances, and target values, we will need to carry out further experiments to
confirm this. In the full paper, we plan to extend the experiment to a few more
GRASP with path-relinking implementations, such as the one for the generalized
quadratic assignment problem [17] and for the antibandwidth problem [2] and
on a wider range of instances and target solution values.
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