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ABSTRACT. A frame relay service offers virtual private networks to customers by provi-
sioning a set of long-term private virtual circuits (PVCs) between customer endpoints on
a large backbone network. During the provisioning of a PVC, routing decisions are made
without any knowledge of future requests. Over time, these decisions can cause inefficien-
cies in the network and occasional offline rerouting of the PVCs is needed. In this paper,
the offline PVC routing problem is formulated as an integer multicommodity flow prob-
lem with additional constraints and with an objective function that minimizes propagation
delays and/or network congestion. We propose variants of a GRASP with path-relinking
heuristic for this problem. Experimental results for realistic-size problems are reported,
showing that the proposed heuristics are able to improve the solutions found with standard
routing techniques. Moreover, the structure of our objective function provides a useful
strategy for setting the appropriate value of its weight parameter, to achieve some quality
of service (QoS) level defined by a desired balance between propagation delay and delay
due to network congestion.

1. INTRODUCTION

A frame relay service offers virtual private networks to customers by provisioning a
set of permanent (long-term) private virtual circuits (PVCs) between endpoints on a large
backbone network. During the provisioning of a PVC, routing decisions are made either
automatically by the frame relay switch or by the network designer, through the use of
preferred routing assignments and without any knowledge of future requests. Over time,
these decisions usually cause inefficiencies in the network and occasional rerouting of the
PVCs is needed. The new routing scheme is then implemented on the network through
preferred routing assignments. Given a preferred routing assignment, the switch will move
the PVC from its current route to the new preferred route as soon as this move becomes
feasible.

One possible way to create the preferred routing assignments is to appropriately order
the set of PVCs currently in the network and apply an algorithm that mimics the routing
algorithm used by the frame relay switch to each PVC in that order. However, more elab-
orate routing algorithms, that take into account factors not considered by the switch, could
further improve the efficiency of network resource utilization.

Typically, the routing scheme used by the frame relay switch to automatically provision
PVCs is also used to reroute them in the case of trunk or card failures. Therefore, this
routing algorithm should be efficient in terms of running time, a requirement that can
be traded off for improved network resource utilization when building preferred routing
assignments offline.
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In this paper, we propose variants of a GRASP (greedy randomized adaptive search
procedure) with path-relinking algorithm for the problem of routing offline a set of PVC
demands over a backbone network, such that a combination of the delays due to propa-
gation and congestion is minimized. This problem and its variants are also known in the
literature as bandwidth packing problems. The set of PVCs to be routed can include all or
a subset of the PVCs currently in the network, and/or a set of forecast PVCs. The explicit
handling of propagation delays, as opposed to just handling the number of hops (as in the
routing algorithm implemented in Cisco switches) is particularly important in international
networks, where distances between backbone nodes vary considerably. The minimization
of network congestion is important for providing the maximum flexibility to handle the
following situations:
• overbooking, which is typically used by network designers to account for non-coin-

cidence of traffic;
• PVC rerouting, due to link or card failures; and
• bursting above the committed rate, which is not only allowed but sold to customers

as one of the attractive features of frame relay.
In Section 2, we formulate the offline PVC routing problem as an integer multicom-

modity flow problem with additional constraints and a hybrid objective function, which
takes into account delays due to propagation as well as delays due to network congestion.
Minimum cost multicommodity network flow problems are characterized by a set of com-
modities flowing through an underlying network, each commodity having an associated
integral demand which must flow from its source to its destination. The flows are simul-
taneous and the commodities share network resources. If the cost function in each edge is
convex, then this problem can be solved in polynomial time [23]. The problem is NP-hard
if the flows are required to be integral [12] or if each commodity is required to follow a
single path from its source to its destination [10]. In Section 3, we propose variants of a
GRASP with path-relinking heuristic for the latter problem. Experimental results, reported
in Section 4, show that the proposed heuristics are able to improve the solutions found with
standard routing techniques on realistic-size problems. Concluding remarks are made in
Section 5.

Though we motivate the algorithm with a frame relay routing application, we note that
it can be applied to routing problems that arise in other connection-switched protocols,
such as in asynchronous transfer mode (ATM).

2. PROBLEM FORMULATION

Let G = (V,E) be an undirected graph representing the frame relay network. We denote
by V = {1, . . . ,n} the set of backbone nodes where switches reside, while E is set of trunks
(or edges) that connect the backbone nodes, with |E| = m. Parallel trunks are allowed.
Since G is an undirected graph, flows through each trunk (i, j) ∈ E have two components
to be summed up, one in each direction. However, for modeling purposes, costs and capac-
ities will always be associated only with the ordered pair (i, j) satisfying i < j. For each
trunk (i, j) ∈ E, we denote by bi j its maximum allowed bandwidth (in kbits/second), while
ci j denotes the maximum number of PVCs that can be routed through it and di j is the prop-
agation, or hopping, delay associated with the trunk. Each commodity k ∈ K = {1, . . . , p}
is a PVC to be routed, associated with an origin-destination pair and with a bandwidth re-
quirement (or demand, also known as its effective bandwidth) rk. It takes into account the
actual bandwidth required by the customer in the forward and reverse directions, as well
as an overbooking factor.
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The ultimate objective of the offline PVC routing problem is to minimize propagation
delays and/or network congestion, subject to several technological constraints. Queueing
delays are often associated with network congestion and in some networks account for a
large part of the total delay. In other networks, distances may be long and loads low, caus-
ing propagation delay to account for a large part of the total delay. For a discussion of delay
in data networks, see [5]. Two common measures of network congestion are the load on
the most utilized trunk, and the average delay in a network of independent M/M/1 queues,
as in [15]. Another measure, which we use in this paper, is a cost function that penalizes
heavily loaded trunks. This function resembles the average delay function, except that it
allows loads to exceed trunk capacities. Routing assignments with minimum propagation
delays may not achieve the least network congestion. Likewise, routing assignments hav-
ing the least congestion may not minimize propagation delays. A compromising objective
is to route the PVCs such that a desired point in the tradeoff curve between propagation
delays and network congestion is achieved.

The upper bound on the number of PVCs allowed on a trunk depends on the port card
used to implement it. A set of routing assignments is feasible if and only if for every trunk
(i, j)∈E the total PVC effective bandwidth requirements routed through it does not exceed
its maximum bandwidth bi j and the number of PVCs routed through it is not greater than
ci j.

Let xk
i j be a 0-1 variable such that xk

i j = 1 if and only if trunk (i, j) ∈ E is used to route
commodity k ∈ K from node i to node j. The following linear integer program models the
problem:

minφ(x) = ∑
(i, j)∈E,i< j

φi j(x1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji)(1)

subject to

∑
k∈K

rk(xk
i j + xk

ji)≤ bi j, ∀(i, j) ∈ E, i < j,(2)

∑
k∈K

(xk
i j + xk

ji)≤ ci j, ∀(i, j) ∈ E, i < j,(3)

∑
(i, j)∈E

xk
i j− ∑

(i, j)∈E
xk

ji = ak
i , ∀i ∈V,∀k ∈ K,(4)

xk
i j ∈ {0,1}, ∀(i, j) ∈ E,∀k ∈ K.(5)

Constraints of type (2) limit the total flow on each trunk to at most its capacity. Con-
straints of type (3) enforce the limit on the number of PVCs routed through each trunk.
Constraints of type (4) are flow conservation equations, which together with (5), state that
the flow associated with each PVC cannot be split, where ak

i = 1 if node i is the source for
commodity k, ak

i =−1 if node i is the destination for commodity k, and ak
i = 0 otherwise.

The cost function φi j(x1
i j, . . . ,x

p
i j ,x

1
ji, . . . ,x

p
ji) associated with each trunk (i, j) ∈ E with

i < j is the linear combination of a trunk propagation delay component and a trunk con-
gestion component. The propagation delay component is defined as

φd
i j(x1

i j, . . . ,x
p
i j ,x

1
ji, . . . ,x

p
ji) = di j ·∑

k∈K
ρk(xk

i j + xk
ji),(6)

where coefficients ρk are used to model two plausible delay functions:
• If ρk = 1, then this component leads to the minimization of the number of hops

weighted by the propagation delay on each trunk.
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FIGURE 1. Piecewise linear load balance cost component associated
with each trunk.

• If ρk = rk, then the minimization takes into account the effective bandwidth routed
through each trunk weighted by its propagation delay.

Let yi j = ∑k∈K rk(xk
i j + xk

ji) be the total flow through trunk (i, j) ∈ E with i < j. The
trunk congestion component depends on the utilization rates ui j = yi j/bi j of each trunk
(i, j) ∈ E with i < j. It is taken as the piecewise linear function proposed by Fortz and
Thorup [14] and depicted in Figure 1, which increasingly penalizes flows approaching or
violating the capacity limits:

φb
i j(x1

i j, . . . ,x
p
i j,x

1
ji, . . . ,x

p
ji) = bi j ·





ui j, ui j ∈ [0,1/3)
3 ·ui j−2/3, ui j ∈ [1/3,2/3),
10 ·ui j−16/3, ui j ∈ [2/3,9/10),
70 ·ui j−178/3, ui j ∈ [9/10,1),
500 ·ui j−1468/3, ui j ∈ [1,11/10),
5000 ·ui j−16318/3, ui j ∈ [11/10,∞).

(7)

The value Ω = max(i, j)∈E,i< j{ui j} gives a global measure of the maximum congestion in
the network.

In this paper, we use the cost function

(8) φi j(x1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji) =

= (1−δ) ·φd
i j(x1

i j , . . . ,x
p
i j,x

1
ji, . . . ,x

p
ji) + δ ·φb

i j(x1
i j , . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji)

associated with each trunk (i, j) ∈ E with i < j, where weights (1− δ) and δ correspond
respectively to the propagation delay and the network congestion components, with δ ∈
[0,1]. Note that if δ> 0, then the network congestion component is present in the objective
function and the capacity constraints (2) can be relaxed. Accordingly, δ > 0 is assumed
in the algorithms proposed in Section 3. We show in Section 4 that small values, such as
δ = 0.1, lead to feasible solutions minimizing the overall propagation delays (measured in
terms of either hops or propagation) and with balanced loads on the trunks, characterized
by reduced values of the maximum congestion index Ω.
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Several heuristics have been proposed for different variants of the bandwidth packing
problem. One of the first algorithms for routing virtual circuits in communication networks
was proposed by Yee and Lin [30]. Their problem is formulated as a nonlinear multicom-
modity flow problem with integer decision variables. Their heuristic applies Lagrangean
relaxation and a multiplier adjustment procedure to solve a sequence of restricted prob-
lems. Computational results are illustrated for problems in three different networks. Their
largest problem had 61 nodes and 148 links. Sung and Park [28] have also developed a
Lagrangean heuristic for a similar variant of this problem. They limited its application to
six small networks, the largest of which had 20 nodes and 52 links. Laguna and Glover
[20] considered a bandwidth packing problem in which they want to assign calls to paths
in a capacitated graph, such that capacities are not violated and some measure of the total
profit is maximized. They develop a tabu search algorithm which makes use of an efficient
implementation of the k-shortest path algorithm. Computational results for small problems
involving up to 31 nodes and 50 calls are reported. Amiri et al. [3] proposed another
formulation for the bandwidth packing problem. They consider both revenue losses and
costs associated with communication delays as part of the objective. A heuristic procedure
based on Lagrangean relaxation is applied for finding bounds and solutions. Computa-
tional results are reported for problems with up to 50 nodes, with the number of calls
ranging from 50 to 90% of the maximum number of all possible calls. Resende and Re-
sende [25] proposed a GRASP for offline PVC rerouting in which a different objective
function is considered. Their construction and local search procedures are different from
those proposed in this paper. In particular, the construction procedure often encountered
difficulties in finding feasible solutions for tightly constrained instances. Also, their local
search procedure is much more time-consuming, limiting its application to small instances.
Shyur and Wen [27] proposed a tabu search algorithm for optimizing the system of virtual
paths. The objective function consists of minimizing the maximum link load, by requiring
that each route visits the minimum number of hubs. The load of a link is defined as the
sum of the virtual path capacities, summed over the virtual paths that traverse the link.
Computation results for problems with up to 64 nodes, 112 links, and 2048 demand pairs
are given.

A number of exact approaches for solving variants of the bandwidth packing problem
have also appeared in the literature. Parker and Ryan [24] described a branch and bound
procedure for optimally solving a bandwidth packing problem. Their objective is to al-
locate bandwidth so as to maximize the total revenue. The linear relaxation of the asso-
ciated integer programming problem is solved using column generation. Computational
results for 14 different networks with up to 29 nodes, 61 links, and 93 calls are presented.
LeBlanc et al. [22] addressed packet switched telecommunication networks, considering
restrictions on paths and flows: hop limits, node and link capacity constraints, and high-
and low-priority flows. They minimize the expected queueing time and do not impose
integrality constraints on the flows. Dahl et al. [11] studied a network configuration prob-
lem in telecommunications, searching for paths in a capacitated network to accommodate
a given traffic demand matrix. Their model also involves an intermediate pipe layer. The
problem is formulated as an integer linear program, where the 0-1 variables represent dif-
ferent paths. An associated integral polytope is studied and different classes of facets are
described. These are embedded in a cutting plane algorithm. Computational results for
realistic-size problems, with up to 62 nodes, 81 links, and 33 origin-destination pairs are
presented. Barnhart et al. [4] proposed a branch-and-cut-and-price algorithm for origin-
destination integer multicommodity flow problems. This problem is a constrained version
of the linear multicommodity network flow problem, in which each flow may use only
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one path from its origin to its destination. Because this model contains one variable for
each origin-destination path, for every commodity, the linear programming relaxations are
solved using column generation. New branching rules allow columns to be efficiently gen-
erated at each node of the branch and bound tree. New cuts can also be generated at each
node of the branch and bound tree, helping to strengthen the linear programming relax-
ation. Implementation details, together with computational results for problems with at
most 50 nodes, 130 edges, and 585 commodities, are reported.

The model (1)–(5) proposed in this section has two distinctive features with respect to
other formulations. First, it takes into account a two component objective function which
is able to handle both delays and load balance. Second, it enforces constraints that limit
the maximum number of PVCs that can be routed through any trunk. An approximate
algorithm for its solution is described in the next section.

3. APPROXIMATE ALGORITHM FOR PVC ROUTING

A GRASP is a multistart or iterative process, in which each GRASP iteration consists
of two phases, a construction phase, in which a feasible solution is produced, and a local
search phase, in which a local optimum in the neighborhood of the constructed solution is
sought [13]. The best overall solution is kept as the result. The pseudo-code in Figure 2
illustrates a general GRASP procedure for the minimization of an objective function f (x)
under constraints x ∈ X , in which Max Iterations GRASP iterations are done.

procedure GRASP
1 f ∗← ∞;
2 for k = 1, . . . ,Max Iterations do
3 Construct a greedy randomized solution x ∈ X ;
4 Find y by applying local search to x;
5 if f (y)< f ∗ do
6 x∗← y;
6 f ∗← f (x∗);
7 end if;
8 end for;
9 return x∗;
end GRASP;

FIGURE 2. Pseudo-code of a general GRASP procedure.

A feasible solution is iteratively constructed in the first phase, one element at a time.
At each construction iteration, the choice of the next element to be added is determined by
ordering all candidate elements (i.e., those that can be added to the solution) in a candidate
list with respect to its contribution to the objective function. The list of best candidates is
called the restricted candidate list (RCL). The random selection of an element from the
RCL allows for different solutions to be obtained at each GRASP iteration.

Another construction mechanism, called heuristic-biased stochastic sampling, was in-
troduced by Bresina [7]. In the construction procedure of the basic GRASP, the next el-
ement to be introduced in the solution is chosen at random from the candidates in the
RCL. The elements of the RCL are assigned equal probabilities of being chosen. How-
ever, any probability distribution can be used to bias the selection toward some particular
candidates. Bresina [7] introduced a family of such probability distributions. In Bresina’s
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selection procedure, all elements are ranked according to the greedy function. Binato et al.
[6] use Bresina’s selection procedure, but restricted to candidate elements of the RCL.

Since solutions generated by a GRASP construction are not guaranteed to be locally
optimal, it is almost always beneficial to apply a local search to attempt to improve each
constructed solution.

In the remainder of this section, we customize a GRASP for the offline PVC routing
problem. We describe construction and local search procedures, as well as a path-relinking
intensification strategy.

3.1. Construction phase. In the construction phase, the routes are determined, one at
a time. A new PVC is selected to be routed in each iteration. To reduce the compu-
tation times, we used a combination of the strategies usually employed by GRASP and
heuristic-biased stochastic sampling. We create a restricted candidate list with a fixed
number of elements nc. At each iteration, it is formed by the nc unrouted PVC pairs with
the largest demands. An element ` is selected at random from this list with probability
π(`) = r`/∑k∈RCL rk.

Once a PVC ` ∈ K is selected, it is routed on a shortest path from its origin to its
destination. The capacity constraints (2) are relaxed and handled via the penalty function
introduced by the trunk congestion component (7) of the edge weights. The constraints
of type (3) are explicitly taken into account by forbidding routing through trunks already
using its maximum number of PVCs. The weight ∆φi j of each edge (i, j) ∈ E is given by
the increment of the cost function value φi j(x1

i j, . . . ,x
p
i j,x

1
ji, . . . ,x

p
ji), associated with routing

r` additional units of demand through edge (i, j).
More precisely, let K ⊆ K be the set of previously routed PVCs and K i j ⊆ K be the

subset of PVCs that are routed through trunk (i, j) ∈ E. Likewise, let K = K∪{`} ⊆ K be
the new set of routed PVCs and K i j = K i j ∪{`} ⊆ K be the new subset of PVCs that are
routed through trunk (i, j). Then, we define xh

i j = 1 if PVC h ∈ K is routed through trunk
(i, j) ∈ E from i to j, xh

i j = 0 otherwise. Similarly, we define xh
i j = 1 if PVC h∈ K is routed

through trunk (i, j) ∈ E from i to j, xh
i j = 0 otherwise. According to (8), the cost associated

with each edge (i, j) ∈ E in the current solution is given by φi j(x1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji). In

the same manner, the cost associated with each edge (i, j) ∈ E after routing PVC ` will
be φi j(x1

i j, . . . ,x
p
i j,x

1
ji, . . . ,x

p
ji). Then, the incremental edge weight ∆φi j associated with

routing PVC `∈ K through edge (i, j) ∈ E, used in the shortest path computations, is given
by

∆φi j = φi j(x1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji)−φi j(x1

i j, . . . ,x
p
i j,x

1
ji, . . . ,x

p
ji).(9)

The enforcement of type (3) constraints may lead to unroutable demand pairs. In this
case, the current solution is discarded and a new construction phase starts.

3.2. Local search. Each solution built in the first phase may be viewed as a set of routes,
one for each PVC. Our local search procedure seeks to improve each route in the current
solution. For each PVC k ∈ K, we start by removing rk units of flow from each edge in
its current route. Next, we compute incremental edge weights ∆φi j associated with routing
this demand through each trunk (i, j) ∈ E according to (9), as described in Section 3.1. A
tentative new shortest path route is computed using the incremental edge weights. If the
new route improves the solution, it replaces the current route of PVC k. This is continued
until no improving route can be found.
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3.3. Path-relinking. Path-relinking was originally proposed by Glover [16] as an inten-
sification strategy exploring trajectories connecting elite solutions obtained by tabu search
or scatter search [17, 18, 19]. Starting from one or more elite solutions, paths in the so-
lution space leading toward other elite solutions are generated and explored in the search
for better solutions. This is accomplished by selecting moves that introduce attributes con-
tained in the guiding solutions. Path-relinking may be viewed as a strategy that seeks to
incorporate attributes of high quality solutions, by favoring these attributes in the selected
moves.

The use of path-relinking within a GRASP procedure as an intensification strategy ap-
plied to each locally optimal solution was first proposed by Laguna and Martı́ [21], being
followed by several extensions, improvements, and successful applications [1, 9, 26].

In this context, path-relinking is applied to pairs {x1,x2} of solutions, where x1 is the
locally optimal solution obtained after local search and x2 is one of a few elite solutions
randomly chosen from a pool with a limited number Max Elite of elite solutions found
along the search. The pool is originally empty. Each locally optimal solution obtained by
local search is considered as a candidate to be inserted into the pool if it is different (by
at least one trunk in one route, in the case of the bandwidth packing problem) from every
other solution currently in the pool. If the pool already has Max Elite solutions and the
candidate is better than the worst of them, then the former replaces the latter. If the pool is
not full, the candidate is simply inserted.

The algorithm starts by computing the symmetric difference ∆(x1,x2) between x1 and
x2, resulting in the set of moves which should be applied to one of them (the initial solution)
to reach the other (the guiding solution). Starting from the initial solution, the best move
still not performed is applied to the current solution, until the guiding one is attained. The
best solution found along this trajectory is also considered as a candidate for insertion
in the pool and the incumbent is updated. Several alternatives have been considered and
combined in recent implementations to explore trajectories connecting x1 and x2:

• do not apply path-relinking at every GRASP iteration, but only periodically;
• explore two different trajectories, using first x1, then x2 as the initial solution;
• explore only one trajectory, starting from either x1 or x2; and
• do not follow the full trajectory, but instead only part of it.

All these alternatives involve the trade-offs between computation time and solution quality.
Ribeiro et al. [26] observed that exploring two different trajectories for each pair {x1,x2}
takes approximately twice the time needed to explore only one of them, with very marginal
improvements in solution quality. They have also observed that if only one trajectory is to
be investigated, better solutions are found when path-relinking starts from the best among
x1 and x2. Since the neighborhood of the initial solution is much more carefully explored
than that of the guiding solution, starting from the best of them gives to the algorithm
a better chance to investigate with more details the neighborhood of the most promising
solution. For the same reason, the best solutions are usually found closer to this initial
solution than to the guiding one, allowing pruning the relinking trajectory before the latter
is reached.

Computational results illustrating a trade-off between these strategies for the bandwidth
packing problem are reported later in Section 4. In this case, the set of moves correspond-
ing to the symmetric difference ∆(x1,x2) between any pair {x1,x2} of solutions is the subset
Kx1,x2 ⊆K of PVCs routed through different routes in x1 and x2. Without loss of generality,
let us suppose that path-relinking starts from any elite solution z in the pool and uses the
locally optimal solution y as the guiding solution.
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The best solution y along the new path to be constructed is initialized with z. For each
PVC k ∈ Ky,z, the same shortest path computations described in Sections 3.1 and 3.2 are
used to evaluate the cost of the new solution obtained by rerouting the demand associated
with PVC k through the route used in the guiding solution y instead of that used in the
current solution originated from z. The best move is selected and removed from Ky,z. The
new solution obtained by rerouting the above selected PVC is computed, the incumbent y is
updated, and a new iteration resumes. These steps are repeated, until the guiding solution
y is reached. The incumbent y is returned as the best solution found by path-relinking and
inserted into the pool if it satisfies the membership conditions.

The pseudo-code with the complete description of the procedure GRASP+PR BPP for the
bandwidth packing problem arising in the context of offline PVC rerouting is given in
Figure 3. This description incorporates the construction, local search, and path-relinking
phases.

procedure GRASP+PR BPP;
1 φ∗← ∞;
2 Pool← /0;
3 for k = 1, . . . ,Max Iterations do
4 Construct a greedy randomized solution x;
5 Find y by applying local search to x;
6 if y satisfies the membership conditions then insert y into Pool;
7 Randomly select an elite solution z ∈ Pool with uniform probability;
8 Compute Ky,z;
9 Let y be the best solution found by applying path-relinking to the pair {y,z};
10 if y satisfies the membership conditions then insert y into Pool;
11 if φ(y)< φ∗ do
12 x∗← y;
13 φ∗← φ(x∗);
14 end if;
15 end for;
16 return x∗;
end GRASP+PR BPP;

FIGURE 3. Pseudo-code of the GRASP with path-relinking procedure
for the bandwidth packing problem

4. COMPUTATIONAL EXPERIMENTS

The experiments were performed on an SGI Challenge computer (28 196-MHz MIPS
R10000 processors) with 7.6 Gb of memory. Each run used a single processor. The algo-
rithms were coded in Fortran and were compiled with the SGI MIPSpro F77 compiler using
flags -O3 -64 -static. CPU times were measured with the system function etime.

The experiments were run on two groups of test instances. The first one is formed by
some of the test problems from three of the classes used by Fortz and Thorup [14]. The
first class is the AT&T Worldnet backbone with projected demands, a real-world network
with 90 nodes and 274 links. The other two classes are formed by synthetic networks.
More specifically, 2-level hierarchical graphs are generated using the GT-ITM generator
[31], based on a model of Calvert et al. [8] and Zegura et al. [32]. Edges are of two types:
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TABLE 1. Problem characteristics.

Instance Network type |V | |E| |K| Φuncap
att AT&T Worldnet backbone 90 274 272 92,607
hier50a 2-level hierarchical 50 148 2450 113,976,500
hier100a 2-level hierarchical 100 360 9900 435,618,300
wax50a Waxman 50 476 9900 47,719,429
wax100a Waxman 100 230 2220 198,827,455
fr250 Frame-relay 60 344 250 173,194
fr500 Frame-relay 60 453 500 288,086
fr750 Frame-relay 60 498 750 448,220
fr1000 Frame-relay 60 518 1000 603,362
fr1250 Frame-relay 60 535 1250 955,568

local access trunks and long distance trunks. The capacities of edges of the same type are
equal. Local access trunks have lower capacities than long distance trunks. On Waxman
graphs, the nodes are uniformly distributed points in the unit square. The probability of
having an edge between two nodes u and v is given by ηe−δ(u,v)/2θ, where η is a parameter
used to control the density of the graph, δ(u,v) is the Euclidean distance between u and v,
and θ is the maximum distance between any two nodes [29]. All trunk capacities are equal.
The demands are such that different nodes have different levels of activity, modeling hot
spots on the network. The demands are relatively larger between closer pairs of nodes. We
have used another problem generator [25] to create the second group of test instances, with
characteristics more similar to those of a frame-relay network. This problem generator and
the test instances are available from the authors.

Five problems were selected from each of these groups, whose characteristics are sum-
marized in Table 1. These ten instances are among the largest, to date, to appear in the
literature. They are available for download 1 from the authors. The table shows, for each
instance, its name, network type, number of nodes, number of trunks, number of demand
pairs, and the value Φuncap, which is the same normalizing scaling factor used by Fortz and
Thorup [14]. This normalization allows us to compare costs across different network sizes
and topologies. This uncapacitated measure is defined as

Φuncap = ∑
k∈K

rk ·hk,

where rk is the bandwidth requirement associated with pair k ∈ K and hk is the minimum
distance measured with unit weights (hop count) between the origin and destination nodes
of demand pair k.

4.1. Algorithm variants. In the first set of experiments, we considered four variants of
the GRASP and path-relinking schemes proposed in Section 3.3:
• G: This variant is a pure GRASP with no path-relinking.
• GPRf: This variant adds to G a one-way path-relinking starting from a locally optimal

solution and using a randomly selected elite solution as the guiding solution.
• GPRb: This variant adds to G a one way path-relinking starting from a randomly

selected elite solution and using a locally optimal solution as the guiding solution.
• GPRfb: This variant combines GPRf and GPRb, performing path-relinking in both

directions.

1http://www.research.att.com/˜mgcr/data/pvc-routing.tar.gz
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FIGURE 4. Empirical distributions of time to target solution for GRASP,
GRASP with forward path-relinking, GRASP with backward path-
relinking, and GRASP with back and forward path-relinking for instance
att.

We evaluate the effectiveness of the above variants in terms of the tradeoffs between com-
putational time and solution quality. The parameter δ was set to 1 in the objective function,
i.e., only the trunk congestion component is used.

To study the effect of path-relinking on GRASP, we compared the four variants on two
instances. The first is instance att of Table 1. The second is instance fr750a, derived from
instance fr750 from Table 1 by scaling all demands by a factor of 1/1.3 = 0.76923. Two
hundred independent runs for each variant were done for each problem. Execution was
terminated when a solution of value less than or equal to look4 was found. We used look4
values of 129400 and 479000 for att and fr750a, respectively. These are sub-optimal
values chosen such that the slowest variant could terminate in a reasonable amount of
computation time. Empirical probability distributions for time to target solution are plotted
in Figures 4 and 5. To plot the empirical distribution for each algorithm and each instance,
we follow the procedure described in [2]. We associate with the i-th smallest running time
ti a probability pi = (i− 1

2 )/200, and plot the points zi = (ti, pi), for i = 1, . . . ,200. Due to
the time taken by the pure GRASP procedure, we limited its plot in Figure 5 to 60 points.

These plots show a similar relative behavior of the four variants on the two instances.
Since instance fr750a is harder for all variants and computation times are longer, its plot
is more discerning. For a given computation time, the probability of finding a solution at
least as good as the target value increases from G to GPRf, from GPRf to GPRfb, and from
GPRfb to GPRb. For example, there is 9.25% probability for GPRfb to find a target solution
in less than 100 seconds, while this probability increases to 28.75% for GPRb. For G, there
is a 8.33% probability of finding a target solution within 2000 seconds, while for GPRf this
probability increases to 65.25%. GPRb finds a target solution in at most 129 seconds with
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FIGURE 5. Empirical distributions of time to target solution for GRASP,
GRASP with forward path-relinking, GRASP with backward path-
relinking, and GRASP with back and forward path-relinking for instance
fr750a.

50% probability. For the same probability, this time increases to 172, 1727, and 10933
seconds, respectively, for variants GPRfb, GPRf, and G.

In accordance with these results, variant GPRb, which does path-relinking backwards
from an elite solution to a locally optimal solution, is the most effective. Because of this,
we limit ourselves to only this GRASP with path-relinking variant in the remaining exper-
iments.

4.2. Comparison with other heuristics. We now compare GPRb using a relatively small
number of iterations, fixed at 200, with other simpler heuristics, one of them (heuristic H1
described below) used in traffic engineering by network planners:

• Heuristic H1 starts by sorting the pairwise demands in decreasing order and sequen-
tially routes each pair in this order. Each pair is assigned to a minimum hop path (a
path minimizing the number of links between the origin and destination nodes).

• Heuristic H2 also starts by sorting the pairwise demands in decreasing order and
sequentially routes each pair in this order. Each pair is assigned to a route minimizing
the same cost function φ used in GPRb.

• Heuristic H3 adds to H2 the same local search procedure used in GPRb.

The heuristics above have been implemented in Fortran using the same components used
to implement the GRASP with path-relinking variants.

We considered the test problems listed in Table 1. We also wanted to compare our
heuristics on other test problems, and with other algorithms, described in [4, 27]. Unfortu-
nately, data for these problems were not available from the authors.
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TABLE 2. Numerical results for short runs.

H1 H2
Instance Φ∗ Ω distribution Φ∗ Ω distribution
att 615.34 6.079 228/17/13/1/2/13 1.4995 0.700 216/52/6
hier50a 312.03 2.355 109/21/6/4/0/8 1.2586 0.669 86/60/2
hier100a 460.48 3.151 231/54/25/12/6/39 1.4211 0.900 141/177/42
wax50a 49.048 1.290 109/79/24/3/6/9 1.7204 0.810 5/212/13
wax100a 101.01 2.026 198/218/42/4/5/9 3.8827 1.125 13/447/11/2/0/3
fr250 670.57 3.245 227/62/9/6/9/31 4.0348 1.026 62/223/44/13/2
fr500 959.05 4.119 264/68/37/13/9/62 3.6743 1.006 0/307/125/20/1
fr750 1118.5 4.749 235/98/44/12/13/96 4.3025 1.012 0/43/429/25/1
fr1000 1254.1 4.087 224/96/40/17/10/131 4.9545 0.935 0/1/454/63
fr1250 1909.5 6.420 185/77/49/20/21/183 2472.6 3.278 0/0/0/0/1/534

H3 GPRb
Instance Φ∗ Ω distribution Φ∗ Ω distribution
att 1.3682 0.689 225/46/3 1.3578 0.689 230/40/4
hier50a 1.2295 0.668 92/54/2 1.2141 0.667 103/44/1
hier100a 1.3363 0.898 202/136/22 1.3195 0.875 220/124/16
wax50a 1.4938 0.773 29/197/4 1.4467 0.772 29/197/4
wax100a 2.0175 1.087 18/451/4/0/3 1.9791 1.097 20/449/4/0/3
fr250 4.0042 1.026 69/217/43/13/2 3.3590 1.008 104/194/34/11/1
fr500 3.6270 1.006 2/315/115/20/1 3.1477 1.006 48/304/82/18/1
fr750 4.0242 1.012 1/152/316/28/1 3.5415 1.012 6/206/268/17/1
fr1000 4.6429 0.935 0/19/467/32 3.8461 0.990 0/88/416/14
fr1250 414.56 3.794 0/0/0/1/168/366 345.89 4.867 0/0/0/3/229/303

Table 2 summarizes the numerical results. For each algorithm and for each instance,
we give the normalized value Φ∗ = Φ/Φuncap (where Φ is the cost function value of the
best solution found), the corresponding maximum edge utilization rate Ω, and the distribu-
tion of the number of edges that have flow in each of the intervals defining each function
φb

i j. The distribution is represented by a sequence of integers, separated by slashes. Right
trailing zeroes are omitted. For example, 0/88/416/14 (results obtained by GPRb for in-
stance fr1000) corresponds to a solution in which 88 edges have their utilization rates in
the interval [1/3,2/3), 416 edges have their utilization rates in the interval [2/3,9/10),
and 14 edges have their utilization rates in the interval [9/10,1). Better solutions, in gen-
eral, will be characterized by smaller cost values, smaller maximum utilization rates, and
distributions skewed to the left.

Heuristic H1 does not take into account the cost function φ. As expected, for the other
heuristics, H3 systematically finds solutions with smaller costs than those found by H2,
while GPRb further improves upon H3. Though none of the heuristics considers explicitly
the minimization of the maximum utilization rate, this rate is systematically reduced by
going from H1 to H2, to H3, and to GPRb.

In general, both the local search in H3 and, more strongly GPRb, contribute to improve
the distribution of edges and to rerouting them on less loaded edges. As a result, the
skewness to the left is accentuated and the maximum utilization rate is reduced. GPRb
tends to improve trunk utilization with respect to H3 by more strongly shifting flow from
overloaded to underutilized edges. As a consequence, it obtains solutions characterized by
smaller costs and smaller utilization rates.

Heuristics H1, H2, and H3, which are not multi-start heuristics, are much faster than the
multi-start GPRb. However, there is a clear tradeoff in terms of solution quality when extra
time is taken by GPRb. We ran GPRb on five of the ten instances in the experiment for about
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TABLE 3. Numerical results for long runs.

computation time
Instance 25s 125s 625s 3125s 15625s 78125s Ω distribution
att 1.3607 1.3578 1.3577 1.3577 1.3562 1.3562 0.689 231/39/4
hier50a 1.2219 1.2189 1.2146 1.2136 1.2129 1.2113 0.667 98/50
wax50a 1.4849 1.4716 1.4533 1.4462 1.4412 1.4384 0.758 21/206/3
fr250 3.7091 3.3590 3.2796 3.2727 3.2497 3.2496 1.008 135/163/34/11/1
fr500 3.5496 3.3340 3.1466 3.1317 3.1306 3.0912 1.006 39/326/69/18/1
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FIGURE 6. Delay and maximum utilization as a function of objective
function parameter δ on instance att with unit edge delays.

one CPU-day. Table 3 lists objective function values as a function of the running time for
these instances, as well as the maximum utilization rate and the distribution of the number
of edges that have flow in each of the intervals defining each cost function φb

i j, for the best
solution found. We notice that in most of the cases GPRb continues to improve the solution
as the running time increases. Even if the maximum utilization rate does not change, the
distribution of the number of edges does. For example, on instance hier50a, the improved
solution shifted several edges into the lowest range with respect to the solution in Table 2.

4.3. Variation of the hybrid objective function parameter. In this last experiment, we
investigate the behavior of the hybrid objective function φ with the variation of the param-
eter δ, used to weight the network congestion and propagation delay components. We ran
GPRb for 2000 iterations on instance att using 41 different values of δ, ranging from 0 to
1. For each value of δ (with the exception of δ = 0 which cannot be plotted on a log scale),
the plot in Figure 6 shows the delay and the maximum utilization rate of the best solution
found. We note that although the maximum utilization rate is not explicitly considered
in the objective function, it appears to be inversely correlated with the parameter δ of the



GRASP FOR PVC ROUTING 15

objective function. Delays were computed using ρk = rk (see Section 2) and using unit
delays, i.e., di j = 1, for every (i, j) ∈ E.

We first notice from this figure that there is a range of small values of δ, for which the
delay is kept at a low value without serious overload. As the value of δ approaches 1, the
maximum utilization rate is strongly reduced at the cost of larger delays. Likewise, as the
value of δ approaches 0, the delay is strongly reduced at the expense of higher utilization
rates. The extreme case, where δ = 0, corresponds to using the purely greedy heuristic H1.
In this case, the utilization rate is 6.08, and the delay is 92607, which is a lower bound on
the value of the optimal solution of the capacity constrained delay minimization problem.
Since the resulting utilization rate is high, this is an indication that one should use a strictly
positive value of δ.

We also observe that, as the value of δ increases from 0 to 1, the maximum utilization
rate decreases, following approximately a step function taking values equal to those ap-
pearing in the definition of the functions φb

i j, i.e. 1.1, 1.0, 0.9, and 0.67. As the value of δ
increases, the minimization of the maximum utilization rate dominates the objective func-
tion. As a consequence, the algorithm attempts to reduce the flow on edges with higher
loads. To balance this reduction, flows on less loaded edges are increased up to the next
breakpoint in its cost function. Therefore, the flows have a tendency to concentrate around
breakpoint levels. This characteristic provides a useful strategy for setting the appropriate
value of parameter δ of the objective function, to achieve some quality of service (QoS)
level defined by a desired balance between propagation delay and delay due to network
congestion.

5. CONCLUDING REMARKS

In this paper, we presented a new formulation for the bandwidth packing problem aris-
ing in the context of offline PVC routing. This formulation uses an objective function
that simultaneously takes into account propagation delays and network congestion. Em-
phasis on either component is controlled by a single parameter. We proposed a family of
heuristics for finding approximate solutions to this problem, ranging from a simple greedy
algorithm (H2) and its improved version using local search (H3), to an elaborate combina-
tion of GRASP and path-relinking.

Experimental results on realistic-size test problems show that even the simplest greedy
heuristic (H2) is able to improve on a heuristic used in traffic engineering by network plan-
ners (H1). The two new simple heuristics (H2 and H3) are fast and find good approximate
solutions. The GRASP with path-relinking variants are able to significantly improve upon
these simple heuristics, at the expense of additional computation time. GRASP with path-
relinking has been shown to be efficiently implemented in parallel with approximate linear
speedups in the number of processors [1] and such a strategy could be applied to accelerate
GPRb and its variants.

The structure of the objective function proposed in this paper is such that as the weight
of its network congestion component increases, the maximum utilization rate decreases,
following approximately a step function. As a consequence, this structure provides a use-
ful strategy for setting the appropriate value of the weight parameter of the objective func-
tion, to achieve some quality of service (QoS) level defined by a desired balance between
propagation delay and delay due to network congestion.
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