
Chapter 11
GRASP: Greedy Randomized Adaptive Search
Procedures

Mauricio G.C. Resende and Celso C. Ribeiro

11.1 Introduction

Metaheuristicsare general high-level procedures that coordinate simple heuristics
and rules to find good quality solutions to computationally difficult combinatorial
optimization problems. Among them, we find simulated annealing (see Chapter 10),
tabu search (see Chapter 9), genetic algorithms (see Chapter 4), scatter search (see
Chapter 5), VNS (see Chapter 12), ant colonies (see Chapter 8), and others. The
method described in this chapter represents another example of such a technique.
Metaheuristics are based on distinct paradigms and offer different mechanisms to
escape from locally optimal solutions. They are among the most effective solution
strategies for solving combinatorial optimization problems in practice and they have
been applied to a wide array of academic and real-world problems. The customiza-
tion (or instantiation) of a metaheuristic to a given problem yields aheuristic for
that problem.

In this chapter, we consider the combinatorial optimization problem of minimiz-
ing f (S) over all solutionsS∈ X, which is defined by a finite setE = {e1, . . . ,en}
(called the ground set), by a set of feasible solutionsX ⊆ 2E, and by an objective
function f : 2E→R. The ground setE, the objective functionf , and the constraints
defining the set of feasible solutionsX are defined and specific for each problem.
We seek an optimal solutionS∗ ∈ X such thatf (S∗)≤ f (S), ∀S∈ X.

GRASP, which stands forGreedy Randomized Adaptive Search Procedures[46,
47], is a multi-start, or iterative metaheuristic, in whicheach iteration consists of
two phases: construction and local search. The construction phase builds a solution.
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If this solution is not feasible, a repair procedure should be applied to attempt to
achieve feasibility. If feasibility cannot be reached, it is discarded and a new solution
is created. Once a feasible solution is obtained, its neighborhood is investigated until
a local minimum is found during the local search phase. The best overall solution is
kept as the result.

Principles and building blocks of GRASP, which are also common to other meta-
heuristics, are reviewed in Section 11.2. A template for thebasic GRASP algorithm
is described in Section 11.3. The GRASP with path-relinkingheuristic is consid-
ered in Section 11.4, where different strategies for the efficient implementation of
path-relinking are discussed. Hybridizations of GRASP with data mining and other
metaheuristics are reviewed in Section 11.5. Recommendations and good problem-
solving practices leading to more efficient implementations are presented in Sec-
tion 11.6. Finally, the last section provides several sources of additional information,
with references and links to literature surveys, annotatedbibliographies and source
codes, tools and software for algorithm evaluation and comparison, and accounts of
applications and parallel implementations of GRASP.

11.2 Principles and building blocks

Several principles and building blocks appear as components common to GRASP
and other metaheuristics. They are often blended using different strategies and ad-
ditional features that distinguish one metaheuristic fromanother.

11.2.1 Greedy algorithms

In a greedy algorithm, solutions are progressively built from scratch. At each itera-
tion, a new element from the ground setE is incorporated into the partial solution
under construction, until a complete feasible solution is obtained. The selection of
the next element to be incorporated is determined by the evaluation of all candidate
elements according to agreedy evaluation function. This greedy function usually
represents the incremental increase in the cost function due to the incorporation of
this element into the partial solution under construction.The greediness criterion
establishes that an element with the smallest incremental increase is selected, with
ties being arbitrarily broken. Figure 11.1 provides a template for a greedy algorithm
for a minimization problem.

The solutions obtained by greedy algorithms are not necessarily optimal. Greedy
algorithms are often used to build initial solutions to be explored by local search or
metaheuristics.
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procedure GreedyAlgorithm
1. S← /0;
2. Initialize the candidate set:C← E;
3. Evaluate the incremental costc(e) for all e∈C;
4. while C 6= /0 do
5. Select an elements∈C with the smallest incremental costc(s);
6. Incorporates into the current solution:S← S∪{s};
7. Update the candidate setC;
8. Reevaluate the incremental costc(e) for all e∈C;
9. end;
10. return S;
end.

Fig. 11.1 Greedy algorithm for minimization.

11.2.2 Randomization and greedy randomized algorithms

Randomization plays a very important role in algorithm design. Metaheuristics such
as simulated annealing, GRASP, and genetic algorithms relyon randomization to
sample the search space. Randomization can also be used to break ties, enabling
different trajectories to be followed from the same initialsolution in multistart meth-
ods, or sampling different parts of large neighborhoods. One particularly important
use of randomization appears in the context of greedy algorithms.

Greedy randomized algorithms are based on the same principle guiding pure
greedy algorithms. However, they make use of randomizationto build different so-
lutions at different runs. Figure 11.2 illustrates the pseudo-code of a greedy random-
ized algorithm for minimization. At each iteration, the setof candidate elements is
formed by all elements that can be incorporated into the partial solution under con-
struction without destroying feasibility. As before, the selection of the next element
is determined by the evaluation of all candidate elements according to a greedy eval-
uation function. The evaluation of the elements by this function leads to the creation
of a restricted candidate list (RCL) formed by the best elements, i.e. those whose in-
corporation into the current partial solution results in the smallest incremental costs.
The element to be incorporated into the partial solution is randomly selected from
those in the RCL. Once the selected element has been incorporated into the par-
tial solution, the set of candidate elements is updated and the incremental costs are
reevaluated.

Greedy randomized algorithms are used for a variety of purposes. For example,
they are used in the construction phase of GRASP heuristics or to create initial
solutions for population-based metaheuristics such as genetic algorithms or scatter
search. Randomization is also a major component of metaheuristics, such as sim-
ulated annealing and VNS, in which a solution in the neighborhood of the current
solution is randomly generated at each iteration.



4 Mauricio G.C. Resende and Celso C. Ribeiro

procedure GreedyRandomizedAlgorithm(Seed)
1. S← /0;
2. Initialize the candidate set:C← E;
3. Evaluate the incremental costc(e) for all e∈C;
4. while C 6= /0 do
5. Build a list with the candidate elements having the smallest incremental costs;
6. Select an elements from the restricted candidate list at random;
7. Incorporates into the solution:S← S∪{s};
8. Update the candidate setC;
9. Reevaluate the incremental costc(e) for all e∈C;
10. end;
11. return S;
end.

Fig. 11.2 Greedy randomized algorithm for minimization.

11.2.3 Neighborhoods

A neighborhoodof a solutionSis a setN(S)⊆X. Each solutionS′ ∈N(S) is reached
from Sby an operation called amove. Normally, two neighbor solutionsSandS′ ∈
N(S) differ by only a few elements. Neighborhoods may also eventually contain
infeasible solutions not inX.

A solution S∗ is a local optimum with respect to a given neighborhoodN if
f (S∗) ≤ f (S),∀S∈ N(S∗). Local search methods are based on the exploration of
solution neighborhoods, searching for improving solutions until a local optimum is
found.

The definition of a neighborhood is not unique. Some implementations of meta-
heuristics make use of multiple neighborhood structures. Ametaheuristic may also
modify the neighborhood, by excluding some of the possible moves and introducing
others. Such modifications might also require changes in thenature of solution eval-
uation. The strategic oscillation approach [59] illustrates this intimate relationship
between changes in neighborhood and changes in evaluation.

11.2.4 Local search

Solutions generated by greedy algorithms are not necessarily optimal, even with
respect to simple neighborhoods. A local search technique attempts to improve so-
lutions in an iterative fashion, by successively replacingthe current solution by a
better solution in a neighborhood of the current solution. It terminates when no bet-
ter solution is found in the neighborhood. The pseudo-code of a basic local search
algorithm for a minimization problem is given in Figure 11.3. It starts from a solu-
tion Sand makes use of a neighborhood structureN.
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procedure LocalSearch(S)
1. while S is not locally optimaldo
2. FindS′ ∈N(S) with f (S′) < f (S);
3. S← S′;
4. end;
5. return S;
end.

Fig. 11.3 Local search algorithm for minimization.

The effectiveness of a local search procedure depends on several aspects, such as
the neighborhood structure, the neighborhood search technique, the speed of evalua-
tion of the cost function, and the starting solution. The neighborhood search may be
implemented using either a best-improving or a first-improving strategy. In the case
of a best-improvingstrategy, all neighbors are investigated and the current solution
is replaced by the best neighbor. In the case of afirst-improvingstrategy, the current
solution moves to the first neighbor whose cost function value is smaller than that
of the current solution.

11.2.5 Restricted neighborhoods and candidate lists

Glover and Laguna [60] point out that the use of strategies torestrict neighborhoods
and to create candidate lists is essential to restrict the number of solutions examined
in a given iteration in situations where the neighborhoods are very large or their
elements are expensive to evaluate.

Their goal consists of attempting to isolate regions of the neighborhood contain-
ing desirable features and inserting them into a list of candidates for close exam-
ination. The efficiency of candidate list strategies can be enhanced by the use of
memory structures for efficient updates of move evaluationsfrom one iteration to
another. The effectiveness of a candidate list strategy should be evaluated in terms of
the quality of the best solution found in some specified amount of computation time.
Strategies such as aspiration plus, elite candidate list, successive filtering, sequential
fan candidate list, and bounded change candidate list are reviewed in [60].

Ribeiro and Souza [130] used a candidate list strategy, based on quickly com-
puted estimates of move values, to significantly speedup thesearch for the best
neighbor in their tabu search heuristic for the Steiner problem in graphs. Moves
with bad estimates were discarded. Restricted neighborhoods based on filtering out
unpromising solutions with high evaluations are discussed, e.g., in [87, 119].
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11.2.6 Intensification and diversification

Two important components of metaheuristics are intensification and diversification.
Intensificationstrategies encourage move combinations and solution features histor-
ically found to be good or to return to explore attractive regions of the solution space
more thoroughly. The implementation of intensification strategies enforces the in-
vestigation of neighborhoods of elite solutions and makes use of explicit memory
to do so. Intensification is often implemented in GRASP heuristics by using path-
relinking, as described below.

Diversificationstrategies encourage the search to examine unvisited regions of
the solution space or to generate solutions that significantly differ from those previ-
ously visited. Penalty and incentive functions are often used in this context. Diversi-
fication is often implemented by means of perturbations which destroy the structure
of the current solution. In the context of GRASP, they are used, for example, within
hybridizations with the iterated local search (ILS) metaheuristic, as described in
Section 11.5.

11.2.7 Path-relinking

Path-relinking was originally proposed by Glover [59] as anintensification strategy
exploring trajectories connecting elite solutions obtained by tabu search or scatter
search [61]. Starting from one or more elite solutions, paths in the solution space
leading toward other elite solutions are generated and explored in the search for
better solutions. To generate paths, moves are selected to introduce attributes in the
current solution that are present in the elite guiding solution. Path-relinking may be
viewed as a strategy that seeks to incorporate attributes ofhigh quality solutions, by
favoring these attributes in the selected moves.

The algorithm in Figure 11.4 illustrates the pseudo-code ofthe path-relinking
procedure applied to a pair of solutionsSs (starting solution) andSt (target solution).
The procedure starts by computing the symmetric difference∆(Ss,St) between the
two solutions, i.e. the set of elements of the ground setE that appear in one of them
but not in the other. The symmetric difference also defines the set of moves that have
to be successively applied toSs until St is reached. At each step, the procedure ex-
amines all movesm∈ ∆(S,St) from the current solutionSand selects the one which
results in the least cost solution, i.e. the one which minimizesf (S⊕m), whereS⊕m
is the solution resulting from applying movem to solutionS. The best movem∗ is
made, producing solutionS⊕m∗. The set of available moves is updated. If neces-
sary, the best solution̄S is updated. The procedure terminates whenSt is reached,
i.e. when∆(S,St) = /0. A path of solutions is thus generated linkingSs to St andS̄ is
the best solution in this path. Since there is no guarantee that S̄ is a local minimum,
local search can be applied to it and the resulting local minimum is returned by the
algorithm.



11 GRASP: Greedy Randomized Adaptive Search Procedures 7

procedure PathRelinking(Ss,St)
1. Compute the symmetric difference∆(Ss,St);
2. f̄ ←min{ f (Ss), f (St)};
3. S̄← argmin{ f (Ss), f (St)};
4. S← Ss;
5. while ∆(S,St) 6= /0 do
6. m∗← argmin{ f (S⊕m) : m∈ ∆(S,St)};
7. ∆(S⊕m∗,St)← ∆(S,St)\{m∗};
8. S← S⊕m∗;
9. if f (S) < f̄ then
10. f̄ ← f (S);
11. S̄← S;
12. end if;
13. end while;
14. S̄← LocalSearch(S̄);
15. return S̄;
end.

Fig. 11.4 Path-relinking procedure for minimization.

Path-relinking may also be viewed as a constrained local search strategy applied
to the initial solutionSs, in which only a limited set of moves can be performed and
uphill moves are allowed. Several alternatives have been considered and combined
in successful implementations of path-relinking in conjunction with GRASP and
other metaheuristics. They are reviewed in Section 11.4.

11.3 A template for GRASP

Each iteration of the original GRASP metaheuristic proposed in [46] may be divided
in two main phases: construction and local search (see also [47, 110, 118, 119,
120, 122] for other surveys on GRASP and its extensions). These steps are repeated
many times, characterizing a multistart metaheuristic. The construction phase builds
a solution. If this solution is not feasible, it is either discarded or a repair heuristic is
applied to achieve feasibility (examples of repair procedures can be found in [39, 40,
92, 96]). Once a feasible solution is obtained, its neighborhood is investigated until
a local minimum is found during the local search phase. The best solution found
over all iterations is returned.

The pseudo-code in Figure 11.5 illustrates the main blocks of a GRASP proce-
dure for minimization, in whichMaxIterations iterations are performed andSeed
is used as the initial seed for the pseudo-random number generator.

An especially appealing characteristic of GRASP is the easewith which it can
be implemented. Few parameters need to be set and tuned, and therefore develop-
ment can focus on implementing efficient data structures to assure quick iterations.
Basic implementations of GRASP rely exclusively on two parameters: the num-
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procedure GRASP(MaxIterations,Seed)
1. Set f ∗← ∞;
2. for k = 1, . . . ,MaxIterations do
3. S← GreedyRandomizedAlgorithm(Seed);
4. if S is not feasiblethen
5. S← RepairSolution(S);
6. end;
7. S← LocalSearch(S);
8. if f (S) < f ∗ then
9. S∗← S;
10. f ∗← f (S);
11. end;
12. end;
13. return S∗;
end.

Fig. 11.5 Template of a GRASP heuristic for minimization.

ber MaxIterations of iterations and the parameter used to limit the size of the
restricted candidate list within the greedy randomized algorithm used by the con-
struction phase. In spite of its simplicity and ease of implementation, GRASP is a
very effective metaheuristic and produces the best known solutions for many prob-
lems, see [55, 56, 57] for extensive surveys of applicationsof GRASP.

For the construction of the RCL used in the first phase we consider, without loss
of generality, a minimization problem such as the one formulated in Section 11.1.
As before, we denote byc(e) the incremental cost associated with the incorporation
of elemente∈ E into the solution under construction. At any GRASP iteration, let
cmin andcmax be, respectively, the smallest and the largest incrementalcosts.

The restricted candidate list is made up of the elementse ∈ E with the best
(i.e., the smallest) incremental costsc(e). This list can be limited either by the
number of elements (cardinality-based) or by their quality(value-based). In the
first case, it is made up of thep elements with the best incremental costs, where
p is a parameter. In this chapter, the RCL is associated with a threshold param-
eter α ∈ [0,1]. The restricted candidate list is formed by all “feasible” elements
e∈ E which can be inserted into the partial solution under construction without
destroying feasibility and whose quality is superior to thethreshold value, i.e.,
c(e) ∈ [cmin,cmin + α(cmax− cmin)]. The caseα = 0 corresponds to a pure greedy
algorithm, whileα = 1 is equivalent to a random construction. The pseudo code in
Figure 11.6 is a refinement of the greedy randomized construction algorithm, whose
pseudo-code appears in Figure 11.2.

GRASP may be viewed as a repetitive sampling technique. Eachiteration pro-
duces a sample solution from an unknown distribution, whosemean value and vari-
ance are functions of the restrictive nature of the RCL. The pseudo code in Fig-
ure 11.6 shows that the parameterα controls the amounts of greediness and ran-
domness in the algorithm. Resende and Ribeiro [119, 122] have shown that what
often leads to good solutions are relatively low average solution values (i.e., close
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procedure GreedyRandomizedConstruction(α ,Seed)
1. S← /0;
2. Initialize the candidate set:C← E;
3. Evaluate the incremental costc(e) for all e∈C;
4. while C 6= /0 do
5. cmin←min{c(e) | e∈C};
6. cmax←max{c(e) | e∈C};
7. Build the restricted candidate list: RCL←{e∈C | c(e) ≤ cmin+α(cmax−cmin)};
8. Choosesat random from RCL;
9. Incorporates into solution:S← S∪{s};
10. Update the candidate setC;
11. Reevaluate the incremental costc(e) for all e∈C;
12. end;
13. return S;
end.

Fig. 11.6 Refined pseudo-code of the construction phase using parameter α for defining a quality
threshold.

to the value of the purely greedy solution obtained withα = 0) in the presence of a
relatively large variance (i.e., solutions obtained with alarger degree of randomness
asα increases), such as is often the case forα = 0.2.

Prais and Ribeiro [105] showed that using a single fixed valuefor the value of
the RCL parameterα often hinders finding a high-quality solution, which eventu-
ally could be found if another value was used. An alternativeis to use a different
value ofα, chosen uniformly at random in the interval[0,1], at each GRASP iter-
ation. Prais and Ribeiro [105] proposed another alternative, theReactiveGRASP
extension of the basic procedure, in which the parameterα is self-tuned and its
value is periodically modified according with the quality ofthe solutions previously
obtained. Applications to other problems (see e.g. [56, 122]) have shown that Re-
active GRASP outperforms the basic algorithm. These results motivated the study
of the behavior of GRASP for different strategies for the variation of the value of
the RCL parameterα. The experiments reported in [105] show that implementation
strategies based on the variation ofα are likely to be more affective than one using
a single fixed value for this parameter.

Two other randomized greedy approaches, with smaller worst-case complexities
than that depicted in the pseudo-code of Figure 11.6 were proposed in [123]. Instead
of combining greediness and randomness at each step of the construction procedure,
the random plus greedyscheme applies randomness during the firstp construction
steps to produce a random partial solution. Next, the algorithm completes the solu-
tion with one or more pure greedy construction steps. By changing the value of the
parameterp, one can control the balance between greediness and randomness in the
construction: larger values ofp correspond to solutions that are more random, with
smaller values corresponding to greedier solutions. Thesampled greedyconstruc-
tion provides a different way to combine randomness and greediness. This proce-
dure is also controlled by a parameterp. At each step of the construction process, the
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procedure builds a restricted candidate list by sampling min{p, |C|} elements of the
candidate setC. Each of the sampled elements is evaluated by the greedy function
and an element with the smallest greedy function value is added to the partial solu-
tion. These steps are repeated until there are no more candidate elements. As before,
the balance between greediness and randomness can be controlled by changing the
value of the parameterp, i.e. the number of candidate elements that are sampled.
Small sample sizes lead to more random solutions, while large sample sizes lead to
more greedy solutions.

11.4 GRASP with path-relinking

GRASP, as originally proposed, is a memoryless procedure inwhich each iteration
does not make use of information gathered in previous iterations. Path-relinking is a
major enhancement used for search intensification with GRASP. By adding memory
structures to the basic procedure described above, path-relinking leads to significant
improvements in solution time and quality.

The basic principles of path-relinking were described in Section 11.2.7. The use
of path-relinking within a GRASP procedure was proposed in [81] and followed by
extensions, improvements, and successful applications (see Section 11.7). Surveys
of GRASP with path-relinking can be found in [118, 120, 122].Different schemes
have been proposed for the implementation of path-relinking. In essence, it has been
applied as a post-optimization phase (between every pair ofelite solutions in the
pool of elite solutions) and as an intensification strategy (between every local op-
timum obtained after the local search phase and one or more elite solutions in the
pool of elite solutions).

In this last context, path-relinking is applied to pairs of solutions, one of which is
a locally optimal solution and the other is randomly chosen from a pool with a lim-
ited numberMaxElite of elite solutions found along the search. A simple strategy
is to assign equal probabilities of being selected to each elite solution. Another strat-
egy assigns probabilities proportional to the cardinalityof the symmetric difference
between the elite solution and the locally optimal solution. This strategy favors elite
solutions that result in longer paths. One of these solutions is called theinitial solu-
tion, while the other is theguiding solution. One or more paths in the solution space
graph connecting these solutions may be explored in the search for better solutions.
The pool of elite solutions is originally empty. Since we wish to maintain a pool of
good but diverse solutions, each locally optimal solution obtained by local search
is considered as a candidate to be inserted into the pool if itis sufficiently different
from every other solution currently in the pool. If the pool already hasMaxElite
solutions and the candidate is better than the worst of them,then a simple strategy
is to have the candidate replace the worst elite solution. This strategy improves the
quality of the elite set. Another strategy is to have the candidate replace an elite
solution with worse objective function value that is most similar to it. This strategy
improves the diversity of the elite set as well as its quality.
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The pseudo-code in Figure 11.7 illustrates the main steps ofa GRASP procedure
using path-relinking to implement a memory-based intensification strategy.

procedure GRASPwithPathRelinking(MaxIterations ,Seed)
1. Set f ∗← ∞;
2. SetPool← /0;
3. for k = 1, . . .,MaxIterations do
4. S← GreedyRandomizedAlgorithm(Seed);
5. if S is infeasiblethen
6. S← RepairSolution(S);
7. endif;
8. S← LocalSearch(S);
9. if k > 1 then
10. Randomly select a solutionS′ ∈ Pool;
11. S← PathRelinking(S′,S);
12. endif;
13. if f (S) < f ∗ then
14. S∗← S;
15. f ∗← f (S);
16. end if;
17. UpdatePool with S if it satisfies the membership conditions;
18. end for;
19. return S∗;
end.

Fig. 11.7 Template of a GRASP with path-relinking heuristic for minimization.

Several alternatives for applying path-relinking to a pairof solutionsS andS′

have been considered and combined in the literature. These include forward, back-
ward, back and forward, mixed, truncated, greedy randomized adaptive, and evo-
lutionary path-relinking. All these alternatives involvetrade-offs between computa-
tion time and solution quality.

In forward path-relinking, the GRASP local optimumS is designated as the ini-
tial solution and the pool solutionS′ is made the guiding solution. The roles of
S andS′ are interchanged inbackwardpath-relinking. This scheme was originally
proposed in Aiex et al. [7], Ribeiro et al. [131], and Resendeand Ribeiro [118].
The main advantage of this approach over forward path-relinking comes from the
fact that, in general, there are more high-quality solutions near pool elements than
near GRASP local optima. Backward path-relinking exploresmore thoroughly the
neighborhood around the pool solution, whereas forward path-relinking explores
more thoroughly the neighborhood around the GRASP local optimum. Experiments
in [7, 118] have confirmed that backward path-relinking usually outperforms for-
ward path-relinking.Back and forwardpath-relinking combines forward and back-
ward path-relinking, exploring two different paths. It finds solutions at least as good
as forward path-relinking or backward path-relinking, butat the expense of taking
about twice as long to run.Mixedpath-relinking shares the benefits of back and for-
ward path-relinking, in about the same time as forward or backward path-relinking
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alone. This is achieved by interchanging the roles of the initial and guiding solu-
tions at each step of the path-relinking procedure. Ribeiroand Rosseti [128] have
shown experimentally that it outperforms forward, backward, and back and forward
path-relinking (see also [122]).

Other strategies have been proposed more recently.Truncatedpath-relinking can
be applied to either forward, backward, back and forward, ormixed path-relinking.
Instead of exploring the entire path, it takes only a fraction of those steps and con-
sequently takes a fraction of the time to run. Since high-quality solutions tend to be
near the initial or guiding solutions, exploring part of thepath near the extremities
may produce solutions about as good as those found by exploring the entire path.
Indeed, Resende et al. [113] showed experimentally that this is the case for instances
of the max-min diversity problem.Greedy randomized adaptivepath-relinking, in-
troduced by Binato et al. [42], is a semi-greedy version of path-relinking. Instead
of taking the best move in the symmetric difference still notperformed, a restricted
candidate list of good moves still not performed is set up anda randomly selected
move from the RCL is applied. By applying this strategy several times between
the initial and guiding solutions, several alternative paths can be explored. Resende
and Werneck [123, 124] described anevolutionarypath-relinking scheme applied
to pairs of elite solutions and used as a post-optimization phase, in which the pool
resulting from the GRASP with path-relinking iterations progressively evolves as a
population. Similar schemes were also used in [7, 113].

11.5 Extensions

Hybridizations of GRASP with metaheuristics such as tabu search, simulated an-
nealing, variable neighborhood search, iterated local search, and genetic algorithms
have been reported in the literature.

Almost all the randomization effort in GRASP involves the construction phase,
since the local search always stops at the first local optimum. VNS (Variable Neigh-
borhood Search, see Chapter 12) relies almost entirely on the randomization of the
local search to escape from local optima. Thus, GRASP and VNSmay be considered
as complementary and potentially capable of leading to effective hybrid methods.
Festa et al. [54] studied different variants and combinations of GRASP and VNS for
the MAX-CUT problem, finding and improving the best known solutions for some
open instances in the literature. Other examples of hybridsof GRASP with VNS
include [24, 31].

GRASP has also been used in conjunction with genetic algorithms. Basically, the
greedy randomized strategy used in the construction phase of a GRASP is applied to
generate the initial population for a genetic algorithm. Wemay cite, e.g., the genetic
algorithm of Ahuja et al. [5] for the quadratic assignment problem, which makes use
of the GRASP proposed by Li et al. [83] to create the initial population of solutions.
A similar approach was used by Armony et al. [19], with the initial population made
up of both randomly generated solutions and those built by a GRASP.
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The hybridization of GRASP with tabu search was first studiedby Laguna and
González-Velarde [80]. Delmaire et al. [37] considered two approaches. In the
first, GRASP is applied as a powerful diversification strategy in the context of a
tabu search procedure. The second approach is an implementation of the Reactive
GRASP algorithm, in which the local search phase is strengthened by tabu search.
Two two-stage heuristics are proposed in [1] for solving themulti-floor facility lay-
out problem. GRASP/TS applies a GRASP to find the initial layout and tabu search
to refine it. Souza et al. [139] used a short-term tabu search procedure as a substitute
for the standard local search in a GRASP heuristic for the capacitated minimum
spanning tree problem.

Iterated local search (ILS) iteratively builds a sequence of solutions generated by
the repeated application of local search and perturbation of the local optimum found
by local search [84, 86]. Ribeiro and Urrutia [132] presented a GRASP with ILS
heuristic for the mirrored traveling tournament problem. In this case, the GRASP
construction produces a solution which is passed on to the ILS procedure.

The hybridization of GRASP with data mining techniques was introduced in [133].
This scheme uses a data mining algorithm to search for solution patterns that oc-
cur in high-quality elite solutions produced by the basic GRASP algorithm. These
mined patterns are used as initial building blocks that guide the construction of new
solutions that are submitted to local search. A survey of applications of DM-GRASP
can be found in [137].

11.6 Tricks of the trade

1. An especially appealing characteristic of GRASP is the ease with which it can
be implemented. Few parameters need to be set and tuned. Therefore, algorithm
development and coding can focus on implementing efficient data structures to
ensure quick GRASP iterations.

2. Most metaheuristics benefit from good initial solutions.Clever low-complexity
algorithms leading to good feasible solutions can often be devised by examina-
tion of the problem structure. Good initial solutions lead to better final solutions
and significantly reduce the time taken by local search.

3. Using a single, fixed value for the restricted candidate list parameterα very of-
ten hinders finding a high-quality solution, which eventually could be found if
another value was used. The use of strategies such as Reactive GRASP which
vary the value ofα may lead to better and more diverse solutions. The reactive
approach leads to improvements over the basic GRASP in termsof robustness
and solution quality, due to greater diversification and less reliance on parameter
tuning. In addition to the original applications reported in [105, 106], it has also
been applied in [13, 25, 26, 30, 37, 138]. Another simple strategy is to uniformly
select at random a value forα at each GRASP iteration from the interval[0,1].

4. Local search procedures may be implemented using a best-improving or a first-
improving strategy, as well as any combination of them. In the case of the best-
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improving strategy, all neighbors are investigated and thecurrent solution is re-
placed by the best neighbor. In the case of a first-improving strategy, the current
solution moves to the first neighbor whose cost function value is smaller than that
of the current solution. Both strategies quite often lead tosame quality solutions,
but in smaller computation times when the first-improving strategy is used. Pre-
mature convergence to a non-global local minimum is more likely to occur with
a best-improving strategy.

5. The definition of a neighborhood is not unique. Some implementations of meta-
heuristics make use of multiple neighborhood structures toimprove solution
quality and to speed up the search. Variable neighborhood descent (VND) al-
lows the systematic exploration of multiple neighborhoods[64]. It is based on
the facts that a local minimum with respect to one neighborhood is not necessar-
ily a local minimum with respect to another and that a global minimum is a local
minimum with respect to all neighborhoods. Furthermore, VND is also based on
the empirical observation that, for many problems, local minima with respect to
one or more neighborhoods are relatively close to each other[64]. Since a global
minimum is a local minimum with respect to all neighborhoods, it should be eas-
ier to find a global minimum if more neighborhoods are explored. In the case
of nested neighborhoods, the search is first confined to smaller neighborhoods.
A larger neighborhood is explored only after a local minimumis found in the
current, smaller neighborhood. Neighborhoods are not necessarily nested. Non-
nested neighborhoods have been successfully used, e.g., byAloise et al. [10]).

6. Local search can be considerably accelerated with the useof appropriate data
structures and efficient algorithms. All possible attemptsshould be made to im-
prove the neighborhood search procedure. Algorithms should be coded to have
minimum complexity. The use of circular lists to represent and search the neigh-
borhood is very helpful. Candidate lists storing the move values may be easy to
update or may be used as quick approximations to avoid their reevaluation at ev-
ery iteration. We have seen several implementations in which the time taken by
the first local search code dropped from several minutes to a few milliseconds in
the final version.

7. Path-relinking is a very effective strategy to improve solution quality and to re-
duce computation times, leading to more robust implementations. Any available
knowledge about the problem structure should be used in the development of
efficient algorithms to explore the most attractive strategy for path-relinking.

8. Different metaheuristics make use of a number of common components, such
as greedy constructions, local search, randomization, candidate lists, multiple
neighborhoods, path-relinking, etc. Borrowing and incorporating principles from
other metaheuristics lead to efficient hybridizations of GRASP, which often re-
sults in the best algorithm for some problem class.

9. There is no universal, general purpose metaheuristic that gives the best results for
every problem [142] (see Chapter 16). The structure of each problem should be
explored to bring additional intelligence into the solution strategy. Knowledge,
experience, and information available in the literature for similar problems are
very helpful. However, one should not be obsessed with a fixedidea or bounded
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by strategies that worked for other problems but might not beappropriate for the
one on hand. The best algorithm is always the one that most exploits the structure
of your problem and gives the best results.

11.7 Sources of additional information

Surveys on GRASP [47, 119, 122], path-relinking [120], and its applications [55,
56, 57] can be found in the literature, to where the interested reader is referred for
more details and references.

The web page athttp://www.research.att.com/∼mgcr contains an
always-updated on-line version of the annotated bibliography on GRASP which
appeared in [55, 56, 57]. Source codes for GRASP heuristics for several prob-
lems are also available athttp://www.research.att.com/∼mgcr/src/
index.html. The Twitter pagehttp://twitter.com/graspheuristic
posts links to recently published papers on GRASP and its applications.

Time-to-target (TTT) plots display on the ordinate axis theprobability that an
algorithm will find a solution at least as good as a given target value within a given
running time, shown on the abscissa axis. TTT plots were usedby Feo, Resende,
and Smith [48] and have been advocated also by Hoos and Stützle [75] as a way
to characterize the running times of stochastic algorithmsfor combinatorial opti-
mization. Aiex et al. [8] advocate and largely explored the use of TTT plots to eval-
uate and compare different randomized algorithms running on the same problem.
The use of TTT plots has been growing ever since and they have been extensively
applied in computational studies of sequential and parallel implementations of ran-
domized algorithms (see, e.g., [119, 122, 128]. The foundations of the construction
of time-to-target plots, together with their interpretation and applications, were sur-
veyed by Aiex et al. [9]. This reference also describes a Perllanguage program to
create time-to-target plots for measured CPU times that canbe downloaded from
http://www.research.att.com/∼mgcr/tttplots.

The first application of GRASP described in the literature concerned the set cov-
ering problem [46]. GRASP has been applied to many problems in different areas,
such as routing [18, 34, 78, 107]; logic [38, 52, 100, 111, 115, 116]; covering and
partitioning [12, 17, 46, 62]; location [1, 32, 35, 63, 73, 37, 76, 141]; minimum
Steiner tree [31, 87, 88, 91, 131]; optimization in graphs [2, 3, 4, 20, 48, 53, 54,
74, 79, 82, 85, 88, 102, 109, 112, 117, 126, 131, 139]; assignment [5, 7, 45, 58, 83,
93, 94, 95, 97, 99, 101, 104, 106, 114, 136]; timetabling, scheduling, and manufac-
turing [6, 13, 11, 15, 21, 22, 23, 25, 30, 33, 43, 44, 49, 50, 77,80, 132, 134, 135,
143, 144]; transportation [18, 43, 45, 138]; power systems [26, 27, 42]; telecom-
munications [2, 14, 15, 76, 103, 106, 108, 109, 118, 127, 140]; graph and map
drawing [35, 51, 81, 85, 98, 117, 126]; biology [16, 41]; and VLSI [17], among
others.

GRASP is a metaheuristic very well suited for parallel implementation, due to the
independence of its iterations. Parallel cooperative versions of GRASP with path-
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relinking may also be implemented in parallel if a centralized pool of elite solutions
is kept by one of the processors. Surveys and accounts of parallel implementations
of GRASP in networks of workstations, clusters, and grids may be found in [36, 89,
90, 121, 125, 127, 128].

11.8 Some promising areas for future applications

We conclude this chapter with two promising areas for futureapplications of
GRASP.

11.8.1 Continuous GRASP

Hirsch et al. [67] (see also [65]) proposed an adaptation of GRASP for derivative-
free continuous global optimization. Continuous GRASP (orsimply C-GRASP) was
shown to perform well on a set of multimodal test functions, as well as on difficult
real-world applications [67]. It was applied to the registration of sensors in a sen-
sor network [70], to compute solutions for systems of nonlinear equations [71], to
determine which drugs are responsible for adverse reactions in patients [66], and
for dynamic, decentralized path planning of unmanned aerial vehicles [68, 69]. Im-
provements to the original C-GRASP [67] are presented in [72]. These improve-
ments are aimed at making implementations of the algorithm more efficient and
increasing robustness, while at the same time keeping the overall algorithm simple
to implement.

The local improvement procedures in the derivative-free C-GRASP sample
points around the solution produced by the global greedy randomized procedure.
Since they only make function evaluations and do not use gradient information, they
can be used for local optimization of any type of function, including ones that are
not smooth. Birgin et al. [28] adapt C-GRASP for global optimization of functions
for which gradients can be computed. This is accomplished byusing GENCAN
[29], an active-set method for bound-constrained local minimization.

11.8.2 Probabilistic-based stopping rules

The absence of effective stopping criteria is one of the maindrawbacks of most
metaheuristics. Implementations of such algorithms usually stop after performing a
given maximum number of iterations or a given maximum numberof consecutive
iterations without improvement in the best known solution value, or after the stabi-
lization of a set of elite solutions found along the search. Ribeiro, Rosseti, and Souza
[129] proposed effective probabilistic stopping rules forrandomized metaheuristics
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such as GRASP, VNS, simulated annealing, and genetic algorithms, based on the
estimation of the probability of finding better solutions than the incumbent. Such
probabilities may be computed and used on-line to estimate the trade-off between
solution improvement and the time needed to achieve it. The results described in
[129] are being extended to encompass memory-based methodssuch as GRASP
with path-relinking and tabu search.
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64. P. Hansen and N. Mladenović. Variable neighborhood search. In F. Glover and G. Kochen-
berger, editors,Handbook of Metaheuristics, pages 145–184. Kluwer Academic Publishers,
2003.

65. M. J. Hirsch. GRASP-based heuristics for continuous global optimization problems. PhD
thesis, University of Florida, December 2006.

66. M. J. Hirsch, C. N. Meneses, P. M. Pardalos, M. A. Ragle, and M. G. C. Resende. A Contin-
uous GRASP to determine the relationship between drugs and adverse reactions. In O. Seref,
O. E. Kundakcioglu, and P. M. Pardalos, editors,Data Mining, Systems Analysis, and Opti-
mization in Biomedicine, volume 953, pages 106–121. American Institute of Physics,2007.

67. M. J. Hirsch, C. N. Meneses, P. M. Pardalos, and M. G. C. Resende. Global optimization by
continuous GRASP.Optimization Letters, 1(2):201–212, 2007.

68. M. J. Hirsch and H. Ortiz-Pena. UAV cooperative control for multiple target tracking. In
D.-Z. Du and P.M. Pardalos, editors,DIMACS/DyDAn Workshop on Approximation Algo-
rithms in Wireless Ad Hoc and Sensor Networks, DIMACS Center, CoRE Building, Rutgers
University, Piscataway, NJ, 2009.

69. M. J. Hirsch, H. Ortiz-Pena, N. Sapankevych, and R. Neese. Efficient flight formation for
tracking of a ground target. InProceedings of the National Fire Control Symposium, San
Diego, CA., 2007.

70. M. J. Hirsch, P. M. Pardalos, and M. G. C. Resende. Sensor registration in a sensor net-
work by continuous GRASP. InProceedings of the Military Communications Conference
(MILCOM 2006), Washington, D.C., October 2006.

71. M. J. Hirsch, P. M. Pardalos, and M. G. C. Resende. Solvingsystems of nonlinear equations
using continuous GRASP.Nonlinear Analysis: Real World Applications, 10(4):2000–2006,
2009.

72. M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende. Speeding up continuous GRASP.Euro-
pean J. of Operational Research, 205:507–521, 2010.

73. K. Holmqvist, A. Migdalas, and P.M. Pardalos. Greedy randomized adaptive search for a
location problem with economies of scale. In I.M. Bomze et al., editor,Developments in
global optimization, pages 301–313. Kluwer Academic Publishers, 1997.

74. K. Holmqvist, A. Migdalas, and P.M. Pardalos. A GRASP algorithm for the single source
uncapacitated minimum concave-cost network flow problem. In P.M. Pardalos and D.-Z.
Du, editors,Network design: Connectivity and facilities location, volume 40 ofDIMACS Se-
ries on Discrete Mathematics and Theoretical Computer Science, pages 131–142. American
Mathematical Society, 1998.
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