Chapter 11

GRASP: Greedy Randomized Adaptive Search
Procedures

Mauricio G.C. Resende and Celso C. Ribeiro

11.1 Introduction

Metaheuristicaare general high-level procedures that coordinate simeieistics
and rules to find good quality solutions to computationalffiailt combinatorial
optimization problems. Among them, we find simulated aninggkee Chapter 10),
tabu search (see Chapter 9), genetic algorithms (see Chgpseatter search (see
Chapter 5), VNS (see Chapter 12), ant colonies (see Chaptan8 others. The
method described in this chapter represents another exaofiguch a technique.
Metaheuristics are based on distinct paradigms and offfardnt mechanisms to
escape from locally optimal solutions. They are among thetraffective solution
strategies for solving combinatorial optimization prabkein practice and they have
been applied to a wide array of academic and real-world prabl The customiza-
tion (or instantiation) of a metaheuristic to a given prablgields aheuristicfor
that problem.

In this chapter, we consider the combinatorial optimizafiooblem of minimiz-
ing f(S) over all solutionsS € X, which is defined by a finite s& = {ey,...,en}
(called the ground set), by a set of feasible soluti®ns 25, and by an objective
function f : 28 — R. The ground seE, the objective functiorf, and the constraints
defining the set of feasible solutioXsare defined and specific for each problem.
We seek an optimal solutio®’ € X such thatf (S") < f(S), VSe X.

GRASP, which stands f@reedy Randomized Adaptive Search Procedj4r@s
47], is a multi-start, or iterative metaheuristic, in whiehch iteration consists of
two phases: construction and local search. The construptiase builds a solution.
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If this solution is not feasible, a repair procedure showdapplied to attempt to
achieve feasibility. If feasibility cannot be reachedsitliscarded and a new solution
is created. Once a feasible solution is obtained, its neigidnd is investigated until
a local minimum is found during the local search phase. Tis¢ deerall solution is
kept as the result.

Principles and building blocks of GRASP, which are also canito other meta-
heuristics, are reviewed in Section 11.2. A template forthgic GRASP algorithm
is described in Section 11.3. The GRASP with path-relinkiegristic is consid-
ered in Section 11.4, where different strategies for theiefiit implementation of
path-relinking are discussed. Hybridizations of GRASFhwdiata mining and other
metaheuristics are reviewed in Section 11.5. Recommemntagind good problem-
solving practices leading to more efficient implementadiane presented in Sec-
tion 11.6. Finally, the last section provides several sesiaf additional information,
with references and links to literature surveys, annotatbliographies and source
codes, tools and software for algorithm evaluation and amspn, and accounts of
applications and parallel implementations of GRASP.

11.2 Principles and building blocks

Several principles and building blocks appear as compsnasmon to GRASP
and other metaheuristics. They are often blended usingrdifit strategies and ad-
ditional features that distinguish one metaheuristic feomother.

11.2.1 Greedy algorithms

In a greedy algorithm, solutions are progressively budnirscratch. At each itera-
tion, a new element from the ground $eis incorporated into the partial solution
under construction, until a complete feasible solutiontitamed. The selection of
the next element to be incorporated is determined by theiatiah of all candidate
elements according to greedy evaluation functiorhis greedy function usually
represents the incremental increase in the cost functientalthe incorporation of
this element into the partial solution under constructibhe greediness criterion
establishes that an element with the smallest incrememtedase is selected, with
ties being arbitrarily broken. Figure 11.1 provides a teagfor a greedy algorithm
for a minimization problem.

The solutions obtained by greedy algorithms are not nedgseptimal. Greedy
algorithms are often used to build initial solutions to belexed by local search or
metaheuristics.
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procedure GreedyAlgorithm
S« 0;
Initialize the candidate sef:— E;
Evaluate the incremental cage) for all e€ C;
whileC # 0 do
Select an elemeste C with the smallest incremental cos(s);
Incorporates into the current solutionS« SU {s};
Update the candidate s&t
Reevaluate the incremental coge) for all e € C;

CoNOU~WDE

. end;
10. return S
end.

Fig. 11.1 Greedy algorithm for minimization.

11.2.2 Randomization and greedy randomized algorithms

Randomization plays a very important role in algorithm dasMetaheuristics such
as simulated annealing, GRASP, and genetic algorithmsorlsandomization to
sample the search space. Randomization can also be useéatottas, enabling
different trajectories to be followed from the same iniSalution in multistart meth-
ods, or sampling different parts of large neighborhoods @articularly important
use of randomization appears in the context of greedy alyos.

Greedy randomized algorithms are based on the same pengipting pure
greedy algorithms. However, they make use of randomizatidwild different so-
lutions at different runs. Figure 11.2 illustrates the ph®gode of a greedy random-
ized algorithm for minimization. At each iteration, the sétcandidate elements is
formed by all elements that can be incorporated into thagdawlution under con-
struction without destroying feasibility. As before, tredecction of the next element
is determined by the evaluation of all candidate elemerdsraing to a greedy eval-
uation function. The evaluation of the elements by this fiomdeads to the creation
of a restricted candidate list (RCL) formed by the best eletsig.e. those whose in-
corporationinto the current partial solution results ia #mallest incremental costs.
The element to be incorporated into the partial solutioraisdomly selected from
those in the RCL. Once the selected element has been inateplanto the par-
tial solution, the set of candidate elements is updated lamihtremental costs are
reevaluated.

Greedy randomized algorithms are used for a variety of pggpoFor example,
they are used in the construction phase of GRASP heuristits oreate initial
solutions for population-based metaheuristics such astgealgorithms or scatter
search. Randomization is also a major component of metetiesr such as sim-
ulated annealing and VNS, in which a solution in the neighbod of the current
solution is randomly generated at each iteration.
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procedure GreedyRandomizedAlgorithm(Seed)

1. S0

2. Initialize the candidate sef.— E;

3. Evaluate the incremental cage) for all e C;

4. whileC#0do

5. Build a list with the candidate elements having the smsallecremental costs)
6. Select an elemestfrom the restricted candidate list at random;
7. Incorporatesinto the solutionS« SuU {s};

8. Update the candidate &t

9. Reevaluate the incremental cog) for all e € C;

10. end;

11. return §

end.

Fig. 11.2 Greedy randomized algorithm for minimization.

11.2.3 Neighborhoods

A neighborhooaf a solutionSis a selN(S) C X. Each solutior8 € N(S) is reached
from Sbhy an operation called move Normally, two neighbor solutionSandS e
N(S) differ by only a few elements. Neighborhoods may also ewahticontain
infeasible solutions not iX.

A solution S* is a local optimum with respect to a given neighborhdbdf
f(S") < 1(S),VSe N(S"). Local search methods are based on the exploration of
solution neighborhoods, searching for improving solusiontil a local optimum is
found.

The definition of a neighborhood is not unique. Some implegt@ns of meta-
heuristics make use of multiple neighborhood structuresmeaheuristic may also
modify the neighborhood, by excluding some of the possiliees and introducing
others. Such modifications might also require changes indlt@re of solution eval-
uation. The strategic oscillation approach [59] illustsathis intimate relationship
between changes in neighborhood and changes in evaluation.

11.2.4 Local search

Solutions generated by greedy algorithms are not necéssgutimal, even with
respect to simple neighborhoods. A local search technitigenats to improve so-
lutions in an iterative fashion, by successively repladimg current solution by a
better solution in a neighborhood of the current solutibtedminates when no bet-
ter solution is found in the neighborhood. The pseudo-cddelasic local search
algorithm for a minimization problem is given in Figure 11lBstarts from a solu-
tion Sand makes use of a neighborhood structire
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procedure LocalSearch(S)

1. whileSis not locally optimaldo

2. FindS € N(S) with f(S) < f(S);
3. S+ S;

4. end;

5. returnS

end.

Fig. 11.3 Local search algorithm for minimization.

The effectiveness of a local search procedure depends eresegpects, such as
the neighborhood structure, the neighborhood search igabythe speed of evalua-
tion of the cost function, and the starting solution. Theghborhood search may be
implemented using either a best-improving or a first-imng\strategy. In the case
of abest-improvingstrategy, all neighbors are investigated and the currdatiea
is replaced by the best neighbor. In the casefak&improvingstrategy, the current
solution moves to the first neighbor whose cost function &atusmaller than that
of the current solution.

11.2.5 Restricted neighborhoods and candidate lists

Glover and Laguna [60] point out that the use of strategiesstrict neighborhoods
and to create candidate lists is essential to restrict thebew of solutions examined
in a given iteration in situations where the neighborhoa@s\eery large or their
elements are expensive to evaluate.

Their goal consists of attempting to isolate regions of teighborhood contain-
ing desirable features and inserting them into a list of adetés for close exam-
ination. The efficiency of candidate list strategies can hlea@ced by the use of
memory structures for efficient updates of move evaluatfom® one iteration to
another. The effectiveness of a candidate list strategyldtoe evaluated in terms of
the quality of the best solution found in some specified arhoficomputation time.
Strategies such as aspiration plus, elite candidatelistessive filtering, sequential
fan candidate list, and bounded change candidate list gieed in [60].

Ribeiro and Souza [130] used a candidate list strategy,dbasequickly com-
puted estimates of move values, to significantly speedugsélaech for the best
neighbor in their tabu search heuristic for the Steiner [mobin graphs. Moves
with bad estimates were discarded. Restricted neighbahbased on filtering out
unpromising solutions with high evaluations are discussegl, in [87, 119].
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11.2.6 Intensification and diversification

Two important components of metaheuristics are intensifinaand diversification.
Intensificatiorstrategies encourage move combinations and solutionréssatistor-
ically found to be good or to return to explore attractiveiog of the solution space
more thoroughly. The implementation of intensificatioratggies enforces the in-
vestigation of neighborhoods of elite solutions and malsesaf explicit memory
to do so. Intensification is often implemented in GRASP rsties by using path-
relinking, as described below.

Diversificationstrategies encourage the search to examine unvisitednegio
the solution space or to generate solutions that signifigdifter from those previ-
ously visited. Penalty and incentive functions are oftegrlia this context. Diversi-
fication is often implemented by means of perturbations tvidiestroy the structure
of the current solution. In the context of GRASP, they aradyusar example, within
hybridizations with the iterated local search (ILS) metatstic, as described in
Section 11.5.

11.2.7 Path-relinking

Path-relinking was originally proposed by Glover [59] as@tensification strategy
exploring trajectories connecting elite solutions obegirby tabu search or scatter
search [61]. Starting from one or more elite solutions, paththe solution space
leading toward other elite solutions are generated andoesglin the search for
better solutions. To generate paths, moves are selectattedice attributes in the
current solution that are present in the elite guiding sotutPath-relinking may be
viewed as a strategy that seeks to incorporate attributegbfquality solutions, by
favoring these attributes in the selected moves.

The algorithm in Figure 11.4 illustrates the pseudo-codéhefpath-relinking
procedure applied to a pair of solutio8s(starting solution) an&; (target solution).
The procedure starts by computing the symmetric differeh(®,S ) between the
two solutions, i.e. the set of elements of the groundestitat appear in one of them
but not in the other. The symmetric difference also defines#t of moves that have
to be successively applied & until § is reached. At each step, the procedure ex-
amines all moveme A(S,S) from the current solutioSand selects the one which
results in the least cost solution, i.e. the one which min@sf (S® m), whereS®m
is the solution resulting from applying moweto solutionS. The best moven* is
made, producing solutio8& m*. The set of available moves is updated. If neces-
sary, the best solutio8 is updated. The procedure terminates wigeis reached,
i.e. whenA(S §) = 0. A path of solutions is thus generated linkiggo S andSis
the best solution in this path. Since there is no guarantgestis a local minimum,
local search can be applied to it and the resulting local mmirm is returned by the
algorithm.
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procedure PathRelinking(S;, §)
Compute the symmetric differene¥S;, S );
f e min{f(S). f(S)}:
S argmin{ {(S), 1(S)};
S—&
whileA(S S) # 0do
m* — argmin{ f (S&m) : me A(S,9)};
ASHM.S) —A(SS)\{m};
S— Sem’;
if f(S)< fthen
10. f— f(S);
11. S—S
12. end.if;
13. end_while; _
14. S« LocalSearch(S);
15. return S

©CoNoOMLONE

Fig. 11.4 Path-relinking procedure for minimization.

Path-relinking may also be viewed as a constrained locatkesdrategy applied
to the initial solutionS;, in which only a limited set of moves can be performed and
uphill moves are allowed. Several alternatives have beasidered and combined
in successful implementations of path-relinking in comjtion with GRASP and
other metaheuristics. They are reviewed in Section 11.4.

11.3 A template for GRASP

Each iteration of the original GRASP metaheuristic projplaag¢46] may be divided
in two main phases: construction and local search (see dlgo1/10, 118, 119,
120, 122] for other surveys on GRASP and its extensions)s& k&eps are repeated
many times, characterizing a multistart metaheuristi@ @tnstruction phase builds
a solution. If this solution is not feasible, it is eitherchsded or a repair heuristic is
applied to achieve feasibility (examples of repair progedican be foundin [39, 40,
92, 96]). Once a feasible solution is obtained, its neighbod is investigated until
a local minimum is found during the local search phase. Ttst galution found
over all iterations is returned.

The pseudo-code in Figure 11.5 illustrates the main blo€ks @RASP proce-
dure for minimization, in whichMaxIterations iterations are performed arséed
is used as the initial seed for the pseudo-random numberagene

An especially appealing characteristic of GRASP is the e@#ewhich it can
be implemented. Few parameters need to be set and tunedhexefbte develop-
ment can focus on implementing efficient data structuressor® quick iterations.
Basic implementations of GRASP rely exclusively on two paegers: the num-
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procedure GRASP(MaxIterations,Seed)
Setf* « oo;
for k=1,...,Maxl terati ons do
S« GreedyRandomizedAlgorithm(Seed);
if Sis not feasiblethen
S« RepairSolution(S);
end;
S« LocalSearch(S);
if f(S) < f*then
. S S
10. f*— £(S);
11. end;
12. end;
13. return S°;
end.

CoNOU~WDE

Fig. 11.5 Template of a GRASP heuristic for minimization.

berMaxIterations oOf iterations and the parameter used to limit the size of the
restricted candidate list within the greedy randomizedatgm used by the con-
struction phase. In spite of its simplicity and ease of impatation, GRASP is a
very effective metaheuristic and produces the best knowartisas for many prob-
lems, see [55, 56, 57] for extensive surveys of applicat@rGRASP.

For the construction of the RCL used in the first phase we densivithout loss
of generality, a minimization problem such as the one foatad in Section 11.1.
As before, we denote by(e) the incremental cost associated with the incorporation
of elemente € E into the solution under construction. At any GRASP itenatiet
c™in andc™@* e, respectively, the smallest and the largest incremensas.

The restricted candidate list is made up of the elemerdsE with the best
(i.e., the smallest) incremental cost&). This list can be limited either by the
number of elements (cardinality-based) or by their quaitslue-based). In the
first case, it is made up of the elements with the best incremental costs, where
p is a parameter. In this chapter, the RCL is associated witlresiold param-
etera € [0,1]. The restricted candidate list is formed by all “feasiblééraents
e € E which can be inserted into the partial solution under carcsiton without
destroying feasibility and whose quality is superior to theeshold value, i.e.,
c(e) € [c™N ¢MN 4 g(cM— ¢MM)], The casexr = 0 corresponds to a pure greedy
algorithm, whilea = 1 is equivalent to a random construction. The pseudo code in
Figure 11.6 is a refinement of the greedy randomized cortstrualgorithm, whose
pseudo-code appears in Figure 11.2.

GRASP may be viewed as a repetitive sampling technique. Eation pro-
duces a sample solution from an unknown distribution, whmnean value and vari-
ance are functions of the restrictive nature of the RCL. Theugo code in Fig-
ure 11.6 shows that the parameteicontrols the amounts of greediness and ran-
domness in the algorithm. Resende and Ribeiro [119, 122 Bhewn that what
often leads to good solutions are relatively low averagatsm values (i.e., close
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procedure GreedyRandomizedConstruction (d,Seed)
S« 0;
Initialize the candidate sef:— E;
Evaluate the incremental cage) for all e€ C;
whileC # 0 do
c™n . min{c(e) | ec C};
c".— max{c(e) |ec C};
Build the restricted candidate list: RGE {e € C | c(e) < c™" 4 a (c™®™— ™M) };
Chooses at random from RCL,;
Incorporates into solution:S« SU {s};
10. Update the candidate €&t
11. Reevaluate the incremental cog) for all e € C;
12. end;
13. return §

©CoNOOMWNE

Fig. 11.6 Refined pseudo-code of the construction phase using pseamétr defining a quality
threshold.

to the value of the purely greedy solution obtained waitk- 0) in the presence of a
relatively large variance (i.e., solutions obtained witar@er degree of randomness
asa increases), such as is often the casedfer 0.2.

Prais and Ribeiro [105] showed that using a single fixed védu¢he value of
the RCL parameten often hinders finding a high-quality solution, which eventu
ally could be found if another value was used. An alternaisvi® use a different
value ofa, chosen uniformly at random in the intenjal 1], at each GRASP iter-
ation. Prais and Ribeiro [105] proposed another altereative ReactiveGRASP
extension of the basic procedure, in which the paramet& self-tuned and its
value is periodically modified according with the qualitytbé solutions previously
obtained. Applications to other problems (see e.g. [56])122ve shown that Re-
active GRASP outperforms the basic algorithm. These resutitivated the study
of the behavior of GRASP for different strategies for theiation of the value of
the RCL parameten. The experiments reported in [105] show that implementatio
strategies based on the variationoore likely to be more affective than one using
a single fixed value for this parameter.

Two other randomized greedy approaches, with smaller wearsé complexities
than that depicted in the pseudo-code of Figure 11.6 wegosed in [123]. Instead
of combining greediness and randomness at each step ofrisgection procedure,
therandom plus greedgcheme applies randomness during the firsbnstruction
steps to produce a random partial solution. Next, the algorcompletes the solu-
tion with one or more pure greedy construction steps. By ghanthe value of the
parametep, one can control the balance between greediness and raredstimthe
construction: larger values @f correspond to solutions that are more random, with
smaller values corresponding to greedier solutions. Sdrapled greedgonstruc-
tion provides a different way to combine randomness anddjness. This proce-
dure is also controlled by a paramepeit each step of the construction process, the
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procedure builds a restricted candidate list by sampling{mi|C|} elements of the
candidate se€. Each of the sampled elements is evaluated by the greedyidanc
and an element with the smallest greedy function value iedda the partial solu-
tion. These steps are repeated until there are no more atadittments. As before,
the balance between greediness and randomness can bdledriyochanging the
value of the parametgq, i.e. the number of candidate elements that are sampled.
Small sample sizes lead to more random solutions, whileelaggnple sizes lead to
more greedy solutions.

11.4 GRASP with path-relinking

GRASP, as originally proposed, is a memoryless procedundioh each iteration
does not make use of information gathered in previous itarat Path-relinking is a
major enhancement used for search intensification with GRB$ adding memory
structures to the basic procedure described above, phtikirg leads to significant
improvements in solution time and quality.

The basic principles of path-relinking were described iotlea 11.2.7. The use
of path-relinking within a GRASP procedure was propose®i pnd followed by
extensions, improvements, and successful applicati@es$ection 11.7). Surveys
of GRASP with path-relinking can be found in [118, 120, 1Different schemes
have been proposed for the implementation of path-relgpkimessence, it has been
applied as a post-optimization phase (between every pasfitef solutions in the
pool of elite solutions) and as an intensification stratdagtWeen every local op-
timum obtained after the local search phase and one or mibeeselutions in the
pool of elite solutions).

In this last context, path-relinking is applied to pairs oftgions, one of which is
a locally optimal solution and the other is randomly chosemfa pool with a lim-
ited numbeMaxElite oOf elite solutions found along the search. A simple strategy
is to assign equal probabilities of being selected to edthsslution. Another strat-
egy assigns probabilities proportional to the cardinadityhe symmetric difference
between the elite solution and the locally optimal solutibinis strategy favors elite
solutions that result in longer paths. One of these solstisialled thenitial solu-
tion, while the other is thguiding solution One or more paths in the solution space
graph connecting these solutions may be explored in thelséar better solutions.
The pool of elite solutions is originally empty. Since we wie maintain a pool of
good but diverse solutions, each locally optimal solutibtamed by local search
is considered as a candidate to be inserted into the podkikitfficiently different
from every other solution currently in the pool. If the podlemdy haslaxElite
solutions and the candidate is better than the worst of thieam a simple strategy
is to have the candidate replace the worst elite solutiors Jinategy improves the
quality of the elite set. Another strategy is to have the ddet@ replace an elite
solution with worse objective function value that is mostir to it. This strategy
improves the diversity of the elite set as well as its quality
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The pseudo-code in Figure 11.7 illustrates the main stepsS3RASP procedure
using path-relinking to implement a memory-based intecesifdbn strategy.

procedure GRASPwithPathRelinking(MaxIterations,Seed)
1. Setf* «— oo

2. SetPool «— 0;

3. fork=1,...,MaxIterations do

4. S« GreedyRandomizedAlgorithm(Seed);
5. if Sis infeasiblethen

6. S« RepairSolution(S);

7. endif;

8. S« LocalSearch(S);

9. if kK> 1then

10. Randomly select a soluti@ € Pool;
11. S« PathRelinking(S,S);

12. endif;

13. if £(S) < f*then

14. S5

15. f*—f(S);

16. end.if;

17. UpdatePool with Sif it satisfies the membership conditions;
18. end_for;

19. return S°;

end.

Fig. 11.7 Template of a GRASP with path-relinking heuristic for minzation.

Several alternatives for applying path-relinking to a pafisolutionsS and S
have been considered and combined in the literature. Thekede forward, back-
ward, back and forward, mixed, truncated, greedy randodhadaptive, and evo-
lutionary path-relinking. All these alternatives involirade-offs between computa-
tion time and solution quality.

In forward path-relinking, the GRASP local optimu8is designated as the ini-
tial solution and the pool solutio is made the guiding solution. The roles of
SandS are interchanged ibackwardpath-relinking. This scheme was originally
proposed in Aiex et al. [7], Ribeiro et al. [131], and Reseadd Ribeiro [118].
The main advantage of this approach over forward pathkiglghcomes from the
fact that, in general, there are more high-quality soluioear pool elements than
near GRASP local optima. Backward path-relinking explonese thoroughly the
neighborhood around the pool solution, whereas forwarti-pelinking explores
more thoroughly the neighborhood around the GRASP locataph. Experiments
in [7, 118] have confirmed that backward path-relinking disuautperforms for-
ward path-relinkingBack and forwardpath-relinking combines forward and back-
ward path-relinking, exploring two different paths. It fmdolutions at least as good
as forward path-relinking or backward path-relinking, btithe expense of taking
about twice as long to ruixed path-relinking shares the benefits of back and for-
ward path-relinking, in about the same time as forward okiecd path-relinking
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alone. This is achieved by interchanging the roles of thiainand guiding solu-
tions at each step of the path-relinking procedure. Ribaird Rosseti [128] have
shown experimentally that it outperforms forward, backiyand back and forward
path-relinking (see also [122]).

Other strategies have been proposed more recdmtlgcatedpath-relinking can
be applied to either forward, backward, back and forwaranbed path-relinking.
Instead of exploring the entire path, it takes only a frattid those steps and con-
sequently takes a fraction of the time to run. Since highlitusolutions tend to be
near the initial or guiding solutions, exploring part of thath near the extremities
may produce solutions about as good as those found by emgltite entire path.
Indeed, Resende et al. [113] showed experimentally thaitglihe case for instances
of the max-min diversity problenGreedy randomized adaptiyath-relinking, in-
troduced by Binato et al. [42], is a semi-greedy version dghgealinking. Instead
of taking the best move in the symmetric difference still petformed, a restricted
candidate list of good moves still not performed is set up amandomly selected
move from the RCL is applied. By applying this strategy saléimes between
the initial and guiding solutions, several alternativehgatan be explored. Resende
and Werneck [123, 124] described awolutionarypath-relinking scheme applied
to pairs of elite solutions and used as a post-optimizattwasp, in which the pool
resulting from the GRASP with path-relinking iteration®gressively evolves as a
population. Similar schemes were also used in [7, 113].

11.5 Extensions

Hybridizations of GRASP with metaheuristics such as talargde simulated an-
nealing, variable neighborhood search, iterated locatéeand genetic algorithms
have been reported in the literature.

Almost all the randomization effort in GRASP involves thenstruction phase,
since the local search always stops at the first local optinuM® (Variable Neigh-
borhood Search, see Chapter 12) relies almost entirely@nratidomization of the
local search to escape from local optima. Thus, GRASP andivillfsbe considered
as complementary and potentially capable of leading tcctfie hybrid methods.
Festa et al. [54] studied different variants and combimestiof GRASP and VNS for
the MAX-CUT problem, finding and improving the best knownwg@ns for some
open instances in the literature. Other examples of hylmfdSRASP with VNS
include [24, 31].

GRASP has also been used in conjunction with genetic algost Basically, the
greedy randomized strategy used in the construction pHas&BASP is applied to
generate the initial population for a genetic algorithm. My cite, e.g., the genetic
algorithm of Ahuja et al. [5] for the quadratic assignmerglgem, which makes use
of the GRASP proposed by Li et al. [83] to create the initighplation of solutions.
A similar approach was used by Armony et al. [19], with théi&ipopulation made
up of both randomly generated solutions and those built blRAEP.
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The hybridization of GRASP with tabu search was first studigd.aguna and
Gonzalez-Velarde [80]. Delmaire et al. [37] considerea tapproaches. In the
first, GRASP is applied as a powerful diversification strgtegthe context of a
tabu search procedure. The second approach is an implainertéthe Reactive
GRASP algorithm, in which the local search phase is stresrggtl by tabu search.
Two two-stage heuristics are proposed in [1] for solvingrindgti-floor facility lay-
out problem. GRASP/TS applies a GRASP to find the initial l&yand tabu search
to refine it. Souza et al. [139] used a short-term tabu seawmtedure as a substitute
for the standard local search in a GRASP heuristic for theaciggted minimum
spanning tree problem.

Iterated local search (ILS) iteratively builds a sequerfctutions generated by
the repeated application of local search and perturbafitmedocal optimum found
by local search [84, 86]. Ribeiro and Urrutia [132] presendeGRASP with ILS
heuristic for the mirrored traveling tournament problem this case, the GRASP
construction produces a solution which is passed on to tBephocedure.

The hybridization of GRASP with data mining techniques waioiduced in [133].
This scheme uses a data mining algorithm to search for solyatterns that oc-
cur in high-quality elite solutions produced by the basicAZR algorithm. These
mined patterns are used as initial building blocks that gtineé construction of new
solutions that are submitted to local search. A survey ofieations of DM-GRASP
can be found in [137].

11.6 Tricksof thetrade

1. An especially appealing characteristic of GRASP is thse=egith which it can
be implemented. Few parameters need to be set and tune@fdiegralgorithm
development and coding can focus on implementing efficiatd dtructures to
ensure quick GRASP iterations.

2. Most metaheuristics benefit from good initial solutioBtever low-complexity
algorithms leading to good feasible solutions can oftenédaésgd by examina-
tion of the problem structure. Good initial solutions leadtetter final solutions
and significantly reduce the time taken by local search.

3. Using a single, fixed value for the restricted candidatedarameteo very of-
ten hinders finding a high-quality solution, which eventyiabuld be found if
another value was used. The use of strategies such as Re@&RikSP which
vary the value ofr may lead to better and more diverse solutions. The reactive
approach leads to improvements over the basic GRASP in tefmabustness
and solution quality, due to greater diversification and kediance on parameter
tuning. In addition to the original applications reported105, 106], it has also
been applied in [13, 25, 26, 30, 37, 138]. Another simplesgis to uniformly
select at random a value farat each GRASP iteration from the interyal 1].

4. Local search procedures may be implemented using af@stving or a first-
improving strategy, as well as any combination of them. Bdhse of the best-
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improving strategy, all neighbors are investigated andctiveent solution is re-
placed by the best neighbor. In the case of a first-improvirageqyy, the current
solution moves to the first neighbor whose cost functione&@smaller than that
of the current solution. Both strategies quite often leasktme quality solutions,
but in smaller computation times when the first-improvingggy is used. Pre-
mature convergence to a non-global local minimum is morgyiko occur with
a best-improving strategy.

. The definition of a neighborhood is not unique. Some imgletations of meta-

heuristics make use of multiple neighborhood structuresmprove solution
quality and to speed up the search. Variable neighborhoedet¢ (VND) al-
lows the systematic exploration of multiple neighborhof@#. It is based on
the facts that a local minimum with respect to one neighbodis not necessar-
ily a local minimum with respect to another and that a globalimum is a local
minimum with respect to all neighborhoods. Furthermore PViN also based on
the empirical observation that, for many problems, locatimia with respect to
one or more neighborhoods are relatively close to each §@dgrSince a global
minimum is a local minimum with respect to all neighborhogtishould be eas-
ier to find a global minimum if more neighborhoods are expiora the case
of nested neighborhoods, the search is first confined to smadiighborhoods.
A larger neighborhood is explored only after a local minimigriound in the
current, smaller neighborhood. Neighborhoods are notsssgdy nested. Non-
nested neighborhoods have been successfully used, eAjgisg et al. [10]).

. Local search can be considerably accelerated with theiuappropriate data

structures and efficient algorithms. All possible attengbtsuld be made to im-
prove the neighborhood search procedure. Algorithms shbelcoded to have
minimum complexity. The use of circular lists to represemd aearch the neigh-
borhood is very helpful. Candidate lists storing the move®s may be easy to
update or may be used as quick approximations to avoid theualuation at ev-
ery iteration. We have seen several implementations in lwtiie time taken by
the first local search code dropped from several minutes évarilliseconds in
the final version.

. Path-relinking is a very effective strategy to improvéusion quality and to re-

duce computation times, leading to more robust implem@&mst Any available
knowledge about the problem structure should be used in ¢helodpment of
efficient algorithms to explore the most attractive strgtiey path-relinking.

. Different metaheuristics make use of a number of commaenpaments, such

as greedy constructions, local search, randomizatiorgidate lists, multiple
neighborhoods, path-relinking, etc. Borrowing and in@vgting principles from
other metaheuristics lead to efficient hybridizations of AR, which often re-
sults in the best algorithm for some problem class.

. Thereis no universal, general purpose metaheuristigthes the best results for

every problem [142] (see Chapter 16). The structure of eashlem should be
explored to bring additional intelligence into the solutistrategy. Knowledge,
experience, and information available in the literaturedionilar problems are
very helpful. However, one should not be obsessed with a fokea or bounded
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by strategies that worked for other problems but might naiyeropriate for the
one on hand. The best algorithm is always the one that mokiiexhe structure
of your problem and gives the best results.

11.7 Sources of additional infor mation

Surveys on GRASP [47, 119, 122], path-relinking [120], atsdaipplications [55,
56, 57] can be found in the literature, to where the intecestader is referred for
more details and references.

The web page alntt p: / / ww. resear ch. att. conm’ ~ngcr contains an
always-updated on-line version of the annotated biblipgyaon GRASP which
appeared in [55, 56, 57]. Source codes for GRASP heuristicsdveral prob-
lems are also available at t p: / / www. r esear ch. att. com ~ngcr/ src/

i ndex. ht m . The Twitter pagdtt p: //twi tter. com graspheuristic
posts links to recently published papers on GRASP and itkcapions.

Time-to-target (TTT) plots display on the ordinate axis grebability that an
algorithm will find a solution at least as good as a given tavgiie within a given
running time, shown on the abscissa axis. TTT plots were bgefeeo, Resende,
and Smith [48] and have been advocated also by Hoos andesSfd®] as a way
to characterize the running times of stochastic algoritfionscombinatorial opti-
mization. Aiex et al. [8] advocate and largely explored tee of TTT plots to eval-
uate and compare different randomized algorithms runnimghe same problem.
The use of TTT plots has been growing ever since and they hese bxtensively
applied in computational studies of sequential and pdiatiplementations of ran-
domized algorithms (see, e.g., [119, 122, 128]. The fouadatof the construction
of time-to-target plots, together with their interpretatiand applications, were sur-
veyed by Aiex et al. [9]. This reference also describes a Raguage program to
create time-to-target plots for measured CPU times thatbeadownloaded from
http://ww. research.att.conf ~ngcr/tttplots.

The first application of GRASP described in the literaturea@ned the set cov-
ering problem [46]. GRASP has been applied to many problendsfierent areas,
such as routing [18, 34, 78, 107]; logic [38, 52, 100, 111,, 111%]; covering and
partitioning [12, 17, 46, 62]; location [1, 32, 35, 63, 73, B, 141]; minimum
Steiner tree [31, 87, 88, 91, 131]; optimization in graphs324, 20, 48, 53, 54,
74,79, 82, 85, 88,102, 109, 112, 117, 126, 131, 139]; assigh(B, 7, 45, 58, 83,
93, 94, 95, 97, 99, 101, 104, 106, 114, 136]; timetablingeddting, and manufac-
turing [6, 13, 11, 15, 21, 22, 23, 25, 30, 33, 43, 44, 49, 50,807,132, 134, 135,
143, 144]; transportation [18, 43, 45, 138]; power systeg& R7, 42]; telecom-
munications [2, 14, 15, 76, 103, 106, 108, 109, 118, 127, ;1d@ph and map
drawing [35, 51, 81, 85, 98, 117, 126]; biology [16, 41]; andS¥ [17], among
others.

GRASP is a metaheuristic very well suited for parallel inmpéntation, due to the
independence of its iterations. Parallel cooperativeigassof GRASP with path-

15
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relinking may also be implemented in parallel if a centradipool of elite solutions
is kept by one of the processors. Surveys and accounts digdangplementations
of GRASP in networks of workstations, clusters, and gridy tmafound in [36, 89,
90, 121, 125,127, 128].

11.8 Some promising areas for future applications

We conclude this chapter with two promising areas for futapplications of
GRASP.

11.8.1 Continuous GRASP

Hirsch et al. [67] (see also [65]) proposed an adaptationRAGP for derivative-
free continuous global optimization. Continuous GRASRs{omply C-GRASP) was
shown to perform well on a set of multimodal test functiorsyeell as on difficult
real-world applications [67]. It was applied to the regasion of sensors in a sen-
sor network [70], to compute solutions for systems of nagdinequations [71], to
determine which drugs are responsible for adverse reactiopatients [66], and
for dynamic, decentralized path planning of unmanned besiaicles [68, 69]. Im-
provements to the original C-GRASP [67] are presented if}. [TBese improve-
ments are aimed at making implementations of the algorithonenefficient and
increasing robustness, while at the same time keeping thealbalgorithm simple
to implement.

The local improvement procedures in the derivative-fre6&GRASP sample
points around the solution produced by the global greedgaanzed procedure.
Since they only make function evaluations and do not usegmahformation, they
can be used for local optimization of any type of functiorgliding ones that are
not smooth. Birgin et al. [28] adapt C-GRASP for global optiation of functions
for which gradients can be computed. This is accomplisheddigg GENCAN
[29], an active-set method for bound-constrained localimization.

11.8.2 Probabilistic-based stopping rules

The absence of effective stopping criteria is one of the namawbacks of most
metaheuristics. Implementations of such algorithms gsédp after performing a
given maximum number of iterations or a given maximum nundjeronsecutive
iterations without improvement in the best known solutiatue, or after the stabi-
lization of a set of elite solutions found along the seardheRo, Rosseti, and Souza
[129] proposed effective probabilistic stopping rulesrf@andomized metaheuristics
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such as GRASP, VNS, simulated annealing, and genetic #igwsj based on the
estimation of the probability of finding better solutionsiththe incumbent. Such
probabilities may be computed and used on-line to estinfegerade-off between
solution improvement and the time needed to achieve it. €kalts described in
[129] are being extended to encompass memory-based metotisas GRASP
with path-relinking and tabu search.
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