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Abstract

Metaheuristics are approximation algorithms that find
very good solutions to hard combinatorial optimization
problems at the expense of large computational require-
ments. They do, however, offer a wide range of possibili-
ties for implementations of effective robust parallel algo-
rithms which run in much smaller computation times. We
present four strategies for the parallelization of an extended
GRASP with ILS heuristic for the mirrored traveling tourna-
ment problem. Computational results on widely used bench-
mark instances using various processors illustrate the effec-
tiveness and the scalability of the different parallel strate-
gies. These low communication cost parallel heuristics pro-
duce better quality solutions than the best known sequential
algorithm.

1. Motivation

The organization and management of sporting events and
championships is a worldwide multibillon dollar industry.
Schedules with minimum traveling times and offering sim-
ilar conditions to all teams taking part in a competition are
of major interest for teams, leagues, sponsors, fans, and the
media. In the case of the Brazilian national soccer champi-
onship, a single trip from Porto Alegre to Belém takes al-
most a full day’s journey, with many stops due to the ab-
sence of direct flights, to cover a distance of approximately
4000 kilometers. The total distance traveled becomes an im-
portant variable to be minimized, so as to reduce traveling
costs and to give the players more time to train and time off
along the season that lasts for approximately eight months.

Several authors in different contexts (see e.g. [1, 12,
15, 22, 25, 26]) have tackled the problem of tournament
scheduling in different leagues and sports such as soccer,
basketball, hockey, baseball, rugby and cricket, using dif-
ferent techniques such as integer programming, tabu search,
genetic algorithms, simulated annealing, and constraint pro-
gramming.

The Traveling Tournament Problem is an inter-mural
championship timetabling problem that abstracts certain
characteristics of scheduling problems in sports [4]. It com-
bines tight feasibility constraints with a difficult optimiza-
tion problem. The objective is to minimize the total dis-
tance traveled by the teams, subject to the constraint that no
team can play more than three consecutive games at home
or away. Since the total distance traveled is a major issue
for every team taking part in the tournament, solving a trav-
eling tournament problem may be a starting point for the
solution of real timetabling applications in sports, in gen-
eral.

Metaheuristics are general high-level procedures that co-
ordinate simple heuristics and rules to find good approx-
imate (often optimal) solutions to computationally diffi-
cult combinatorial optimization problems. Among them, we
find simulated annealing, tabu search, Greedy Randomized
Adaptive Search Procedure (GRASP), genetic algorithms,
scatter search, Variable Neighborhood Search, ant colonies,
and others. They are based on distinct paradigms and of-
fer different mechanisms to escape from locally optimal so-
lutions, contrary to greedy algorithms or local search meth-
ods. Metaheuristics are among the most effective strategies
for solving combinatorial optimization problems in practice
and have been applied to a very large variety of areas and
situations. The customization (or instantiation) of a meta-
heuristic to a given problem yields a heuristic for that prob-



lem.
Heuristics derived from metaheuristics are often time

consuming methods that find very good solutions to hard
optimization problems. Metaheuristics offer a wide range
of possibilities for effective parallel algorithms running in
much smaller computation times, but require efficient im-
plementations. Cung et al. [3] noted that parallel imple-
mentations of metaheuristics not only appear quite natu-
rally as an alternative to speed up the search for good ap-
proximate solutions, as also facilitate solving larger prob-
lems and finding improved solutions, with respect to their
sequential counterparts, due to the partitioning of the search
space and to the increased possibilities for search intensi-
fication and diversification. As a consequence, parallelism
improves the effectiveness and robustness of metaheuristic-
based algorithms. The latter are less-dependent on param-
eter tuning and their success is not limited to few or small
classes of problems.

The growing computational power requirements of
large scale applications and the high costs of devel-
oping and maintaining supercomputers has fueled the
drive for cheaper high performance computing environ-
ments. With the considerable increase in commodity com-
puters and network performance, cluster computing and,
more recently, grid computing has emerged as a real al-
ternative to traditional supercomputing environments for
developing parallel applications that harness massive com-
putational resources.

A computational grid [10] is the cooperation of dis-
tributed computer systems where user jobs can be executed
both on local and remote computer systems, creating a vir-
tual environment for solving large-scale applications, such
as problems in combinatorial optimization. The complexity,
however, incurred in writing such parallel grid-aware appli-
cations is higher than in traditional parallel computing envi-
ronments. Therefore, developing and tuning efficient paral-
lel implementations of metaheuristics in grid platforms re-
quires a thorough programming effort.

This paper describes four efficient and simple strategies
for the parallelization in grid environments of the extended
GRASP with ILS (Iterated Local Search) heuristic for the
mirrored traveling tournament problem proposed in [21].
The sequential strategy substitutes the local search phase
of a GRASP heuristic by an ILS procedure, obtaining high-
quality solutions that are among the best known in the liter-
ature for this problem [23].

The remainder of the paper is organized as follows. The
following section reviews the formulation of the mirrored
traveling tournament problem. Section 3 summarizes the
extended GRASP with ILS sequential heuristic. In Sec-
tion 4, some important issues concerning the parallel imple-
mentation of metaheuristics are introduced. Section 5 de-
scribes the four parallel implementations for the mirrored

traveling tournament problem. Section 6 presents some pre-
liminary experimental results obtained with the proposed
strategies. Concluding remarks are presented in the last sec-
tion.

2. The mirrored traveling tournament prob-
lem

Consider a tournament played by n teams, where n is an
even number. In a simple round-robin (SRR) tournament,
each team plays every other exactly once in n−1 presched-
uled rounds. In a double round-robin (DRR) tournament,
each team plays every other twice, once at home and once
away. A mirrored double round-robin (MDRR) tournament
is a simple round-robin tournament in the first n−1 rounds,
followed by the same tournament with reversed venues in
the last n − 1 rounds. Assume that each team in the tour-
nament has a stadium in its home city. The distances be-
tween the home cities are known. Each team is located at its
home city at the beginning of the tournament, to where it re-
turns at the end after playing the last away game. Whenever
a team plays two consecutive away games, it goes directly
from the city of the first opponent to the other, without re-
turning to its own home city.

The Traveling Tournament Problem (TTP) was first es-
tablished by Easton et al. [4]. Given n (even) teams and
the distances between their home cities, the TTP consists
in finding a DRR tournament such that every team does
not play more than three consecutive home or away games,
no repeaters (i.e., two consecutive games between the same
two teams at different venues) occur, and the sum of the dis-
tances traveled by the teams is minimized. Benchmark in-
stances are available in [23]. To date, even small benchmark
instances of the TTP with n = 10 teams cannot be exactly
solved. The largest instance solved exactly to date for n = 8
teams took four days of processing time using twenty pro-
cessors in parallel [5]. We refer to this problem as the non-
mirrored TTP, for which both mirrored and non-mirrored
solutions are feasible.

The mirrored Traveling Tournament Problem (mTTP)
has an additional constraint: the games played in round
k are exactly the same played in round k + (n − 1) for
k = 1, . . . , n− 1, with reversed venues.

3. Extended GRASP with ILS heuristic

The GRASP (Greedy Randomized Adaptive Search Pro-
cedure) metaheuristic [16] is a multi-start or iterative pro-
cess, in which each iteration consists of two phases: con-
struction and local search. The construction phase builds a
feasible solution, whose neighborhood is investigated dur-
ing the local search phase until a local minimum is found.
The best overall solution is kept as the result.



The construction and local search phases are problem-
dependent and should be customized for each problem.
GRASP has experimented continued development and has
been applied in a wide range of areas [8]. Resende and
Ribeiro [16, 17] described successful implementation tech-
niques and parameter tuning strategies, as well as enhance-
ments, extensions, and hybridization of the original algo-
rithms.

The ILS (Iterated Local Search) metaheuristic [13] starts
from a locally optimal feasible solution. A random perturba-
tion is applied to the current solution and followed by local
search. If the local optimum obtained after these steps satis-
fies some acceptance criterion, then it is accepted as the new
current solution, otherwise the latter does not change. The
best solution is, if necessary, updated and the above steps
are repeated until some stopping criterion is met.

A hybridization of the GRASP and ILS metaheuristics
into an effective hybrid heuristic for the mTTP was pro-
posed in [21]. Basically, the authors substitute the local
search phase of GRASP by an ILS procedure. The pseudo-
code in Algorithm 1 summarizes the main steps of the
GRILS-mTTP heuristic for finding approximate solutions for
the mirrored traveling tournament problem.

Procedure GRILS-mTTP();
Result : Solution S∗

while StoppingCriterion do
S ← BuildGreedyRandomizedSolution();
S, S ← LocalSearch(S);
repeat

S′ ← Perturbation(S);
S′ ← LocalSearch(S ′);
S ← AcceptanceCriterion(S, S ′);
S∗ ← UpdateGlobalBestSolution(S, S∗);
S ← UpdateIterationBestSolution(S, S);

until ReinitializationCriterion;
end

Algorithm 1: Pseudo-code of the GRASP with ILS heuris-
tic for the mTTP.

The outer while loop in Algorithm 1 executes a GRASP
construction phase followed by an ILS local search phase,
until a stop criterion is met. During the GRASP phase of
each iteration, an initial solution S is constructed to which a
local search algorithm is then applied, returning a new cur-
rent solution S. This solution is also used to initialize the
best solution S in the current iteration.

The ILS phase of the iteration is the inner repeat loop
which applies a perturbation to the current solution S ob-
taining a new solution S ′. A local search algorithm is ap-
plied to S′, where four neighborhood structures are used.
The first three are simple exchanges in which TS (team
swap), HAS (home-away swap) and PRS (partial round

swap) neighborhoods are explored by local searches. The
GR (game rotation) ejection chain neighborhood, explored
only as a diversification move, is performed less frequently
by the heuristic as a perturbation.

A first-improving strategy similar to the VND (Variable
Neighborhood Descent) procedure [11] was used to im-
plement the local search algorithm. Once a local optimum
with respect to the TS neighborhood is found, a quick lo-
cal search using the HAS neighborhood is performed. Next,
the PRS neighborhood is investigated, followed again by a
local search using the HAS neighborhood. This scheme is
repeated until a local optimum with respect to these three
neighborhoods is found.

In this context, the new solution S ′ is accepted or not as
the new current solution, depending on the result of an ac-
ceptance criterion. The best overall solution S∗ and the best
solution in the current GRASP iteration are updated, if nec-
essary, and a new cycle starts with the perturbation of the
current solution, until a reinitialization criterion is met.

A new GRASP iteration starts if 50 deteriorating moves
have been accepted since the last time S (the best solu-
tion found in this GRASP iteration) was updated. Reinitial-
ization occurs if too many perturbations followed by local
search are performed without improving the best solution in
the current GRASP iteration. It is important to notice that a
GRASP iteration is not interrupted if the current solution S

is still being improved.
The parallelization of this algorithm does not only aim

to reduce the total running time, but also to improve its ef-
fectiveness and robustness. The use of several processors
concurrently to explore different search trajectories, as de-
scribed later, may lead to a more thorough investigation of
the neighborhoods.

4. Parallel implementation of metaheuristics

One of the programming paradigms commonly used
to develop parallel programs on distributed clusters is the
master-slave approach (also often referred to as task farm-
ing) [9]. This approach is specially attractive, since it can
generally be applied to take advantage of all available re-
sources in a grid environment. Cung et al. [3] reviewed
some major issues on parallel implementations of meta-
heuristics, such as the types of parallelism as well as ap-
propriate parallel programming models and parallelization
strategies.

Concerning parallelization strategies [3, 24], two main
approaches are used: single-walk and multiple-walk. Each
iteration of a metaheuristic generally starts with the con-
struction of an initial solution, followed by a search to im-
prove on the solution. The new neighboring solutions are
evaluated by making a series of minor alterations to a given
solution. The sequence of solutions evaluated is known as a



walk or trajectory. In the case of a single-walk paralleliza-
tion, one unique search trajectory is traversed in the solu-
tion space and the search for the best neighbor at each it-
eration is performed in parallel. The neighborhood search
is performed faster in parallel, but the search trajectory is
the same as the one followed in the corresponding sequen-
tial implementation. On the other hand, a multiple-walk par-
allelization strategy is characterized by the investigation in
parallel of multiple trajectories, each of them performed by
a different processor. A search “thread” is a process run-
ning in each processor traversing a walk in the solution
space. These processes can be either independent (where
no information is exchanged among processes) or coopera-
tive (the information collected along a trajectory is dissem-
inated and used by other processes to improve or to speed
up the search).

Cooperative strategies are the most general and promis-
ing, but often incur in additional costs in terms of commu-
nication and storage. However, if cooperation is well ex-
plored and implemented, it can globally lead to better solu-
tions in smaller computation times even if each individual
iteration may take longer, see e.g. [19]. Developing and tun-
ing efficient parallel implementations of metaheuristics re-
quire a thorough programming effort and more implemen-
tation skills. The most difficult aspects to be determined are
the nature of the information to be shared, in order to im-
prove the search without taking too much additional mem-
ory or time to be collected, as well as the frequency at which
this information is exchanged.

5. Parallel strategies for the extended GRASP
with ILS heuristic

This section presents four simple, but efficient strategies,
for the parallelization of the best known algorithm (the hy-
brid metaheuristic GRILS-mTTP [21] summarized in Sec-
tion 3) for solving the mTTP. Besides obtaining speedups
in execution times, an improvement in the quality of the
solutions is also sought. All four versions are based on
the Master-Worker programming paradigm and adopt a
multiple-walk search strategy. This work aims to investi-
gate how degrees of cooperation and increased diversity (in
terms of number of trajectories investigated and the amount
of information being shared) affect the GRILS-mTTP meta-
heuristic.

Initially, the master process generates and distributes dis-
tinct seeds to be used by the pseudo-random number gen-
erator of each worker process. As the number of work-
ers increases, this will foster greater diversity. In order to
reduce the chance that processes search the same neigh-
borhood (i.e. evaluate the same solutions), each process
uses a different sequence of pseudo-random numbers. The
Mersenne Twister random number generator of Matsumoto

and Nishimura [14] was chosen based on the recommenda-
tion in [20].

5.1. Parallel strategy with independent processes

This version, denoted by PAR-I, is representative of exe-
cuting the sequential algorithm simultaneously on multiple
machines (e.g. parameter sweep application). After receiv-
ing their seeds, each worker starts a cycle in which it gener-
ates a new solution during a GRASP construction phase and
then executes an ILS local search phase until the reinitial-
ization criterion is met. This cycle is repeated until a solu-
tion with a cost equal or better than the given target is found,
in which case this solution is sent immediately to the mas-
ter. The master, on receiving a target solution, broadcasts
a halt message to each worker for them to finish their ex-
ecution. Given the fact that no communication occurs be-
tween the master and workers, the master also participates
as a worker process.

5.2. Parallel strategy with one-off cooperation

This version, PAR-O, is identical to PAR-I with the ex-
ception of the first iteration of the main loop. After each
worker executes the GRASP phase, the best initial solution
encountered by each is sent to the master, which in turn se-
lects and broadcasts back to all the workers the best overall
solution. Therefore, all workers will execute the ILS local
search phase of the first iteration using the same initial so-
lution. The following iterations are executed independently.
Again, in this version, the master also continues to partici-
pate as a worker process.

This is called one-off cooperation because this exchange
only occurs during the first iteration. The basis for this
version comes from the fact that research has shown that
searches which begin with good solutions will converge
faster [6] particularly when searching multiple trajectories
in parallel.

5.3. Parallel strategy with one elite solution

One of the possible shortcomings of the previous ver-
sions is the lack of continuous cooperation between work-
ers during their execution, i.e. each worker processes does
not learn from searches carried out in parallel (or solutions
found) in previous iterations by other workers.

In the earlier strategies, the current best solution is not
available to all workers. Information gathered from good so-
lutions should be used to implement more effective strate-
gies [7, 18]. Typically, in these history-based parallel coop-
erative strategies, the master manages the exchange of infor-
mation collected along the trajectories investigated by each
worker.



This version, PAR-1P, adopts the approach typically used
by metaheuristics, where the master keeps the best (or elite)
solution currently encountered by any worker. Each time
the best solution is improved, the master broadcasts the so-
lution’s cost to all workers. The intuition is to use this in-
formation not only to converge faster to a target solution,
but also to find better solutions than the independent search
strategies.

In PAR-1P, there is no one-off cooperation during the
first iteration. Instead, each time a worker completes the ILS
local search phase, it will compare the cost of the solution
found with that of the best solution held by the master. If
it is lower, the worker sends its solution to the master, oth-
erwise the solution is discarded. After this synchronization,
two outcomes are possible. Either, the worker requests the
best solution held by master to repeat the ILS local search
phase with this solution, or the worker continues with the
next iteration (i.e., constructs a new initial solution during
the GRASP phase and proceeds with the next steps of the
sequential heuristic) as in the previous versions. The proba-
bility of each outcome is denoted by Q and 1−Q, respec-
tively. In this way, workers indirectly exchange elite solu-
tions (high-quality solutions) found along their search tra-
jectories.

In this parallel cooperative strategy, synchroniza-
tion points occurs when a worker sends its best solution
to the master and when the worker receives from the mas-
ter an elite solution. Due to the increased communica-
tion in this version, the master does not participate in the
search (i.e., it does not execute the GRILS-mTTP heuris-
tic).

5.4. Parallel strategy with a pool of elite solutions

In this parallel cooperative strategy, PAR-nP, the mas-
ter is dedicated to managing a centralized pool of elite so-
lutions (and their costs), including collecting and distribut-
ing them upon request. As in the previous version, workers
start their search from different initial solutions and can ex-
change and share elite solutions found along their search
trajectories.

The master will update the elite solution pool with a
newly received solution according to given criteria which
are based on the quality of the solutions already in the pool
(as described below). When a worker completes an itera-
tion, it can either request an elite solution from the pool or
construct a new initial solution randomly, again, with prob-
abilities of Q and 1−Q, respectively.

Pool management A very important aspect of this algo-
rithm is managing the pool of elite solutions. Empirically,
previous research (see e.g. [7]) observed that history-based
metaheuristics are less likely to be successful if the recorded
solutions are very similar. Therefore, it is necessary to take

into account not only solution quality, but also diversity
when dealing with pools of elite solutions.

The pool consists of a limited MaxElite number of po-
sitions, which are initialized with null solutions. The pool
manager supports two essential operations: the insertion of
new solutions into their appropriate position in the pool
and the selection of a solution from the pool from which
a worker will initiate a new search.

To guarantee the diversity within the pool, the insertion
of a new solution depends on the state of the pool and how
the solution was generated. When the new candidate solu-
tion has been derived from an elite solution in the pool, the
cost of the new solution must be better than the cost of the
elite solution from which is was generated. If true, the new
solution will obligatorily take the place of that elite solution.
On the other hand, if the solution was derived from a solu-
tion produced by the GRASP construction phase, the solu-
tion can be inserted directly into any vacant position. In the
case where the pool is full, the solution is inserted only if
it is as good as the worst elite solution already in the pool
(thus replacing that solution).

When a worker process requests an elite solution from
the master, a solution is selected at random (using a uni-
form distribution, which has been applied to other problems
with reasonable success [16]) from the pool and sent back
to worker.

6. Experimental results

The four parallel algorithms PAR-I, PAR-O, PAR-1P and
PAR-nP, described in Section 5, were implemented using
C++, the MPI-LAM (version 7.0.4.) implementation of the
message passing interface standard MPI and grid-enabled
with the EasyGrid AMS middleware [2]. Each processor
has a copy of the executable code and the problem data.

Two sets of benchmark instances have been proposed for
traveling tournament problems [4]. The first is made up of
circle instances, artificially generated to represents easier
instances. The name circn is used to denote a circle in-
stance with 4 ≤ n ≤ 20 teams. Each circle instance is
built from a graph, generated as follows. Nodes are placed at
equal unit distances along a circumference and are labeled
0, 1, . . . , n − 1. There are edges only between nodes i and
i+1 mod n, for i = 0, 1, . . . , n−1. In the corresponding cir-
cle instance, the distance between the home cities of teams i

and j (with i > j) is given by the length of the shortest path
between them in the graph and is equal to the minimum of
i−j and j−i+n. The second set are realistic instances gen-
erated using the distance between the home cities of a sub-
set of teams playing in the National League of the MLB
(Major League Baseball) in the United States. These na-
tional league instances are denoted by nln with 4 ≤ n ≤ 16.
As in [21], this work did not consider the smaller instances



with n = 4 and n = 6 for which optimal solutions have al-
ready been found. Furthermore, an additional real-life in-
stance has been created by Ribeiro and Urrutia [21], named
br24. This instance is made up of the home cities of the 24
teams playing in the first division (Série A) of the 2003 edi-
tion of the Brazilian soccer championship. All instances and
their best known solutions are available from [23].

The experiments aim to investigate how parallel com-
puting can be used to harness cooperation and diversity
and thus improve the quality and convergence when exe-
cuting the GRILS-mTTP metaheuristic in distributed com-
puting environments. The parameter MaxElite was set to
P , where P is the number of worker processes used in the
parallel execution, and the probability, Q, of choosing a so-
lution from the pool was fixed at 10%.

Table 1 presents the solutions obtained by the sequential
and the best parallel implementations for the mTTP, when
given at least five days of execution time. For 5 of the 13
benchmark instances, the PAR-nP managed to find better
solutions than the sequential GRILS-mTTP. Note that it is
still unknown which, if any, are optimal solutions.

Instance Seq. Soln. Par. Soln. Improv.(%)
circ8 140 140 -
circ10 276 272 1.45
circ12 456 456 -
circ14 714 714 -
circ16 1004 980 2.39
circ18 1364 1306 2.39
circ20 1882 1882 -
nl8 41928 41928 -
nl10 63832 63832 -
nl12 120655 120655 -
nl14 208086 208086 -
nl16 285614 279618 2.09
br24 506433 503158 0.65

Table 1. Best solution found in parallel.

In the following experiments, the cost of the best solu-
tions found by the sequential version of GRILS-mTTP (Ta-
ble 1) is referred to as the easy targets.

The improved solutions obtained by PAR-I, PAR-O
and PAR-1P parallel implementations for the five in-
stances circ10, circ16, circ18, nl16 and br24, are referred
to as the medium targets (Table 2). PAR-nP improved
three of these instances further (Table 3) which will be re-
ferred to as the hard targets.

The next experiment analyzes the time taken by the par-
allel strategies to achieve the medium target, and verify the
benefits of exchanging information between the workers in-
stead of letting them execute independently. The results, for
a set of P = 10 processors, are reported in Table 2. The
first column in this table presents the instances for which
a new medium target (second column) was found. The fol-
lowing four columns show the overall elapsed time, in sec-

Instance Target PAR-I PAR-O PAR-1P PAR-nP
circ10 272 5590.53 4703.68 8391.18 1802.42
circ16 984 5454.47 1787.18 2490.31 1254.31
circ18 1308 8445.06 27649.50 9952.20 269.23
nl16 280174 1311.47 793.87 8188.81 2205.72
br24 503158 7250.49 7082.72 3082.30 4460.18

Table 2. Computation times in seconds to achieve
the medium targets.

onds, necessary to find the target by the parallel strategies
for each instance. The times reported were the best over five
runs for each instance.

Instance Prev. best New best Impr. (%) Time (s)
circ16 984 980 0.40 783.14
circ18 1308 1306 0.15 25,828.60
nl16 280174 279618 0.20 20,512.50

Table 3. Best solutions found by PAR-nP.

Using a cooperative strategy based on a pool of elite so-
lutions, PAR-nP presents the smallest computation time in
most cases. Although PAR-1P also shares information, it
only records one elite solution. Therefore, the degree of di-
versity tends to be smaller than in PAR-nP, possibly leading
the workers to search the same region and, consequently,
taking longer to converge to the target. In the case of br24, it
is likely that more workers concentrate their search around
the neighborhood of the elite solution and thus converge
faster. Using the same reasoning, with the exception of in-
stance circ18, we see that PAR-O is faster than PAR-I.

Instance 2 × t (s) Target PAR-I PAR-O PAR-1P
circ16 2.000 980 990 984 998
circ18 50.000 1306 1308 1308 1384
nl16 40.000 279618 280174 280174 298357

Table 4. Solutions found by PAR-I, PAR-O, and
PAR-1P when executed for 2 × t seconds.

Algorithm PAR-nP found better solutions than the other
parallel implementations for three of the instances. Table
3 presents in the first column the benchmark instances for
which improvements over the medium targets were ob-
tained by PAR-nP, followed by the values of the previous
and new best known solutions and the relative percentage
improvement. Also, included is the overall elapsed time in
seconds that was required to find the new solutions using 10
processors. Note that the solution obtained for the instance



circ18 is also the best known solution for the non-mirrored
version of the TTP.

The following experiment aims to investigate the robust-
ness of the cooperative strategies, i.e. how often each ver-
sion manages to reach the hard target. Compared to the ex-
ecution times of PAR-nP, which always found the hard tar-
gets, we would like to know if PAR-I, PAR-O, and PAR-1P
can also manage the same feat. Given t, the time taken by
PAR-nP to achieve the best known solution, PAR-I, PAR-O,
and PAR-1P were allowed to execute for approximately 2×t

with 10 processors. The best targets found over five execu-
tions for each instance are presented in Table 4. For the in-
stances improved by PAR-nP, this table reports the elapsed
time allowed to find the given target, the hard target, and the
cost of the solutions found by the other parallel implemen-
tations.

The scalability of the parallel strategies was also evalu-
ated to study the benefits of searching an increasing number
of multiple trajectories. Executing with more processes of-
fers a greater diversity due to the use of multiple distinct
seeds. Table 5 shows the average execution times over ten
runs, for PAR-I and PAR-O and Table 6, for PAR-1P and
PAR-nP. For each instance, both tables show the computa-
tion time in seconds required by the sequential version, and
the parallel strategies to achieve the easy target using five,
ten and twenty processors.

PAR-I PAR-O
Inst. Seq. 5 10 20 5 10 20
circ8 1.4 1.05 0.21 0.21 0.24 0.13 0.15
circ10 276.0 53.42 9.27 9.28 5.31 22.46 1.80
circ12 8.5 0.10 0.10 0.10 2.20 0.90 0.10
circ14 1.1 0.06 0.06 0.06 0.08 0.09 0.13
circ16 115.3 90.34 29.24 25.30 32.25 42.97 42.02
circ18 284.2 23.64 12.87 6.80 13.93 4.08 4.09
circ20 578.3 101.28 101.28 66.89 454.91 119.73 3.16
nl8 0.7 0.03 0.03 0.03 0.55 0.17 0.06
nl10 643.9 3.73 3.72 3.74 137.18 37.08 37.06
nl2 24.0 2.29 0.40 0.39 3.80 0.23 0.16
nl4 69.9 3.12 3.11 3.12 0.56 0.25 1.83
nl6 514.2 29.33 29.28 29.26 137.13 14.28 14.28
br24 742.5 77.58 77.58 77.82 10.62 11.93 62.19

Table 5. Average computational time for PAR-I
and PAR-O on 5, 10 and 20 proc.

For all instances, the parallel versions were faster than
the sequential one. As the number of processors available
increases, each of the algorithms converges faster. When
five processors are used, PAR-I appears to be the best strat-
egy, on average. For 20 processors, PAR-O is better than the
rest, on average, in terms of processing time for the easy tar-
gets. Remember that PAR-I and PAR-0 benefit from the fact
that the master is also involved in the search acting as an ad-
ditional worker. For most of the instances, mainly for the

difficult ones, the cooperative strategies (PAR-O, PAR-1P
and PAR-nP) present smaller computation times and scale
quite reasonably.

PAR-1P PAR-nP
Inst. Seq. 5 10 20 5 10 20
circ8 1.4 1.03 0.21 0.21 0.57 0.04 0.04
circ10 276.0 73.86 13.03 9.61 43.64 14.60 14.56
circ12 8.5 0.10 0.10 0.10 2.04 0.32 0.32
circ14 1.1 0.06 0.06 0.06 0.86 0.13 0.13
circ16 115.3 104.54 76.18 17.98 42.51 34.12 4.83
circ18 284.2 14.00 14.00 10.38 27.47 27.48 16.57
circ20 578.3 36.15 138.80 16.09 110.81 18.19 13.99
nl8 0.7 0.03 0.03 0.04 0.09 0.10 0.09
nl10 643.9 50.60 50.43 4.78 139.70 48.22 35.96
nl12 24.0 4.23 0.39 0.39 0.15 0.16 0.15
nl14 69.9 1.43 1.43 1.35 2.34 2.34 2.34
nl16 514.2 406.24 280.90 269.02 477.70 243.16 113.86
br24 742.5 120.11 12.47 12.45 399.62 45.09 7.10

Table 6. Average computational time for PAR-1P
and PAR-nP on 5, 10 and 20 proc.

A preliminary investigation into the advantage of search-
ing multiple walks without increasing the number of proces-
sors, i.e executing more than one process per processor, re-
vealed that both PAR-O and PAR-nP converge faster when
executing ten processes on five processors, rather than just
five processes on five processors. This implies that diver-
sity of the seeds helps the algorithms to converge (to the
easy targets).

7. Conclusions

Metaheuristics, such as GRASP and ILS, have found
their way into the standard toolkit of combinatorial opti-
mization methods. Parallel implementations of metaheuris-
tics are usually applied in the context of hard combinatorial
optimization problems often allowing reductions in compu-
tational times. Independent strategies can obtain good solu-
tions in terms of solution quality and computation results.
However, the parallelization based on cooperative search
lead to more robust implementations, which are likely to
be the most important contribution of parallelism to meta-
heuristics.

Compared to their sequential counterparts, parallel meta-
heuristics demand significantly more programming and de-
sign effort. The implementations described in this paper il-
lustrate the strategies and programming skills involved in
the development of robust and efficient parallel implemen-
tations of metaheuristics.

The results show that the GRILS-mTTP heuristic ben-
efits from parallel implementations, which are capable
of finding better solutions with respect to their sequen-
tial counterpart. The use of multiple processes and a pool



of elite solutions offers a diversity of high quality solu-
tions from which workers can search for better solutions.
The pool also provides a mean to implement coopera-
tion and faster convergence.

A grid enabled version of strategy PAR-nP capable of
executing efficiently and robustly in computational grids is
currently being evaluated. Results show that this new dy-
namic grid implementation performs equally as well equiv-
alent static version presented in this paper. This grid version
permits the execution for extensive time periods without the
user needing to be concerned with resource or process fail-
ure and resource utilization. Ongoing work is investigating
combinations of heuristic strategies and parameter settings
appropriate for cluster and grid environments.
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