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Structural approaches for pattern recognition frequently make use of graphs to represent objects.
The concept of object similarity is of great importance in pattern recognition. The graph edit distance is
often used to measure the similarity between two graphs. It basically consists in the amount of distortion
needed to transform one graph into the other. The median graph of a set S of graphs is a graph of S that
minimizes the sum of its distances to all other graphs in S. The generalized median graph of S is any
graph that minimizes the sum of the distances to all graphs in S. It is the graph that best captures the
information contained in S and may be regarded as the best representative of the set. Exact methods for
solving the generalized median graph problem are capable to handle only a few number of small graphs.
We propose two new heuristics for solving the generalized median graph problem: a greedy adaptive
algorithm and a GRASP heuristic. Numerical results indicate that both heuristics can be used to obtain
good approximate solutions for the generalized median graph problem, significantly improving the initial
solutions and the median graphs. Therefore, the generalized median graph can be effectively computed
and used as a better representation than the median graph in a number of relevant pattern recognition
applications. This conclusion is supported by experiments with a classification problem, illustrating that
the approach based on the generalized median graph is competitive with the k-NN classifier.

1 Introduction and motivation

Two approaches are often used in pattern recognition problems. In the case of statistical approaches,
objects are represented by vectors in Rn representing a set of measures. Structural approaches for pattern
recognition frequently make use of graphs to represent objects. They make it possible to represent
relationships between different parts of the same object or pattern. The use of graphs also allows the
representation of objects with a different number of items or parts by graphs with different numbers of
vertices and edges. One important step towards the combination of these two approaches consists in
using graphs to represent objects and associating attributes (i.e., feature vectors) to their vertices and
edges. Conte et al. (2004) have noticed that graph matching techniques have been successfully applied
to many areas, such as biology and bio-medicine. As an example, Fischer et al. (2002) applied a graph
matching identification approach for the retrieval of diatoms, a unicellular algae found in water and other
places. The retrieval is based on the matching of labeled grid graphs (a regular, rectangular arrangement
of nodes overlayed on an image) carrying texture information of the underlying diatom. Each node of the
graph is labeled with texture features describing a rectangular sub-region of the object. Based on the grid
graph representation, the problem of diatom identification can be formulated as a labeled graph matching
task, where the goal is to find an optimal one-to-one correspondence between the nodes of an input graph
and the nodes of a graph stored in an image database. Other examples of graph matching applications
include 2D and 3D image analysis (Torsello and Hancock, 2003), document processing (Suganthan and
Yan, 1998), biometric identification (Fan et al., 1998; Hong et al., 2000; Lades et al., 1993), image
databases (Berretti et al., 2001), and video analysis (Shearer et al., 2001).

Definition 1 (Labeled graph) Given a finite attribute set L, a labeled graph G=(V,E,µ,υ) is a quadru-
ple defined by a set V of vertices, a set E ⊆ V ×V of edges, a function µ : V → L that associates an
attribute value in L to each vertex, and a function υ : E → L that associates an attribute value in L to
each edge.

Unless otherwise stated, we refer to a labeled graph in the remainder of this text simply by a graph.
There is no restriction on the nature of set L. In most cases, L = Rn or L is a discrete set of labels. If
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necessary, L may also include a special label ε to indicate that no specific label is assigned to a node or
edge. If all elements of the graph are labeled with ε, the graph is called unlabeled. A weighted graph is
a special case of a labeled graph, where all nodes are labeled with ε and each edge is labeled with a real
number. The concept of object similarity is of great importance in pattern recognition. The graph edit
distance is often used to measure the similarity between two (labeled) graphs. Basically, the graph edit
distance d(G1,G2) between two graphs G1 and G2 takes into account the costs of the edit operations that
are necessary to transform G1 into G2.

Given a set of objects, their median is frequently used to indicate the element that best represents
the set, i.e., the object that best captures the information presented in all elements. Jiang et al. (2001)
introduced the concepts of median and generalized median graphs, which have a great potential for
applications, e.g. in clustering or classification (Mukherjee et al., 2007, 2009), chemistry, molecular
biology, and handwriting recognition.

Definition 2 (Median graph) Given a set S = {G1, . . . ,Gn} of labeled graphs defined over an alphabet
L, its median graph is any graph Ĝ = argmin{∑n

i=1 d(G,Gi) : G ∈ S} that minimizes the sum of its
distances to all graphs in S.

The median graph Ĝ of S is necessarily one of its elements. If one seeks a representative graph that
is not restricted to belonging to S, the following definition applies:

Definition 3 (Generalized median graph) Given a set S = {G1, . . . ,Gn} of labeled graphs defined over
an alphabet L, its generalized median graph is any graph G = argmin{∑n

i=1 d(G,Gi) : G ∈ U} that
minimizes the sum of its distances to all graphs in S, where U is the set of all labeled graphs defined over
the alphabet L.

Therefore, the generalized median graph G of S is any graph that minimizes the sum of its distances
to the graphs in S, regardless of belonging to S or not.

The median graph can be computed in O(n2δ), where n is the number of graphs in S and δ is the
complexity of the computation of the distance function d(.). Since the computation of the graph edit
distance between two graphs is NP-hard (Voigt, 2010; Zeng et al., 2009), the median graph problem
considering the graph edit distance cannot be solved in polynomial time, unless P=NP. Finding the
median graph is NP-complete even for strings (de la Higuera and Casacuberta, 2000).

The computation of the generalized median graph is even more time consuming, because it does not
depend only on the complexity of the distance function d(.), but also on the size of the search space U .
Exact algorithms cannot deal with large graphs, with their application being restricted to small problems
involving sets of graphs with no more than 25 vertices altogether. Earlier approximate approaches to find
the generalized median graph include greedy (Hlaoui and Wang, 2003) and genetic (Jiang et al., 2001)
algorithms. Ferrer (2008) proposed a new genetic algorithm (Ferrer et al., 2009) and a heuristic based on
graph embedding (Ferrer et al., 2008, 2010). Other approaches use the relationship between common-
labeling and the median graph to compute and find bounds on the cost of the median graph (Rebagliati
et al., 2012).

In this work, we propose two new heuristics for solving the generalized median graph problem: a
greedy adaptive algorithm and a GRASP heuristic. In the next section, we present the preliminaries for
the new heuristics, including the definitions of the graph edit instance, of the maximum common sub-
graph, and of the minimum common supergraph of a set of graphs. An adaptive greedy algorithm is
presented in Section 3, while a GRASP heuristic is described in Section 4. Computational experiments
reporting experimental results indicating that the proposed heuristics can be used to obtain good approx-
imate solutions for the generalized median graph problem in reasonable computation times are presented
in Section 5. These results show that good approximations to the generalized median graph can be ef-
fectively computed by the heuristics proposed in this paper, making it a better representation than the
median graph to be used in a number of relevant pattern recognition applications. Concluding remarks
are drawn in the last section, where we also comment on additional computational experiments showing
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that not only the generalized median graph is a good representative for graph sets, but also that classi-
fication approaches based on the generalized median graph are competitive with the k-NN classifier, in
which an object to be classified is assigned to the most common class among its k nearest neighbors.

2 Preliminaries

Definition 4 (Subgraph) Let G1 = (V1,E1,µ1,υ1) and G2 = (V2,E2,µ2,υ2) be two labeled graphs. G1
is said to be a subgraph of G2 if and only if V1 ⊆V2, E1 ⊆ E2, µ1(u) = µ2(u), ∀u∈V1, and υ1(e) = υ2(e),
∀e ∈ E1. In this case, we say that G1 ⊆ G2.

Definition 5 (Induced subgraph) Let G1 = (V1,E1,µ1,υ1) and G2 = (V2,E2,µ2,υ2) be two labeled
graphs such that G1 ⊆ G2. G1 is the subgraph induced in G2 by V1 if and only if E1 = E2∩ (V1×V1).

Definition 6 (Graph isomorphism) Let G1 = (V1,E1,µ1,υ1) and G2 = (V2,E2,µ2,υ2) be two labeled
graphs. G1 and G2 are said to be isomorphic if there is a bijection f : V1 → V2 such that: (i) µ1(u) =
µ2( f (u)), ∀u ∈ V1; (ii) for each edge e1 = (u,v) ∈ E1, there exists an edge e2 = ( f (u), f (v)) ∈ E2 with
υ1(e1) = υ2(e2); and (iii) for each edge e2 = (u,v)∈ E2, there exists an edge e1 = ( f−1(u), f−1(v))∈ E1
with υ1(e1) = υ2(e2).

Definition 7 (Subgraph isomorphism) Let G1 = (V1,E1,µ1,υ1) and G2 = (V2,E2,µ2,υ2) be two la-
beled graphs. There exists a subgraph isomorphism from G1 to G2 if there exists an induced subgraph
G⊆ G2 and an injection f : V1→V2 defining a graph isomorphism from G1 to G.

Definition 8 (Common subgraph) Let G1 = (V1,E1,µ1,υ1) and G2 = (V2,E2,µ2,υ2) be two labeled
graphs. A graph G is a common subgraph of G1 and G2 if and only if there is a subgraph isomorphism
from G to G1 and another from G to G2.

In the following, we denote by #(G) the number of vertices of a graph G.

Definition 9 (Maximum common induced subgraph) A common induced subgraph G of G1 and G2 is
maximum if all other common subgraphs of G1 and G2 have at most #(G) vertices.

The decision version of the problem of finding a maximum common subgraph is NP-complete (Garey
and Johnson, 1979). The maximum common subgraph of two graphs may be computed by a backtrack
strategy (McGregor, 1982). Alternatively, one may seek a maximum clique in an auxiliary graph built
from G1 and G2, which is then transformed into the maximum common subgraph (Balas and Yu, 1986;
Durand et al., 1999). These three exact algorithms have the same time complexity O((|V2|+1)!/(|V2|−
|V1|+ 1)!). They have been compared in (Bunke et al., 2002; Conte et al., 2007), with the numerical
results indicating no clear advantage of one algorithm over the others.

In the following, we use the algorithm of Durand-Pasari (Durand et al., 1999) to compute the maxi-
mum common subgraph of two graphs G1 and G2 and we denote its output by MaxSub(G1,G2). Given
the two graphs G1 and G2, the first step of the Durand-Pasari algorithm is the construction of an auxiliary
(undirected) graph whose nodes correspond to pairs (n1,n2) of nodes of the two original graphs, where
n1 ∈V1, n2 ∈V2, and µ1(n1) = µ2(n2). Edges of the auxiliary graph represent the compatibility between
pairs of nodes: the node corresponding to the pair (n1,n2) is connected to the node corresponding to the
pair (m1,m2) if and only if edge (n1,m1) of G1 has the same label of edge (n2,m2) of G2. Each clique
in the auxiliary graph corresponds to a common subgraph of G1 and G2 and vice versa. Therefore, the
maximum common subgraph of G1 and G2 can be obtained by finding the maximum clique in the aux-
iliary graph. A common subgraph of a set S = {G1, . . . ,Gn} of graphs may be obtained by the pairwise
repeated application of the algorithm of Durand-Pasari to the graphs in S. In this case, we denote by
MaxSub(S) the common subgraph so obtained.
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Definition 10 (Common supergraph) Let G1 = (V1,E1,µ1,υ1) and G2 = (V2,E2,µ2,υ2) be two labeled
graphs. A graph G is a common supergraph of G1 and G2 if and only if there is a subgraph isomorphism
from G1 to G and another from G2 to G.

Definition 11 (Minimum common supergraph) A common supergraph G of G1 and G2 is minimum if
all other common supergraphs of G1 and G2 have at least #(G) vertices.

Bunke et al. (2000) proposed an exact algorithm to compute the minimum common supergraph of
two graphs G1 and G2, whose output is denoted by MinSup(G1,G2). In fact, they showed that the
minimum common supergraph problem can be solved by maximum common subgraph computations. A
common (but not necessarily minimum) supergraph of a set S = {G1, . . . ,Gn} of graphs may be obtained
by the pairwise repeated application of the algorithm of Bunke to the graphs in S. In this case, we denote
by MinSup(S) the common supergraph so obtained.

In this work, we use the graph edit distance to measure the similarity between two graphs, as pro-
posed by Bunke (1997) and used by Ferrer (2008). Vertex insertions or deletions have a unit cost, while
edge insertions or deletions have a null cost. The substitution of a vertex by another has a null cost if
both have the same attribute, otherwise the substitution cost is assumed to be arbitrarily large. The same
applies to the substitution cost of an edge by another. Bunke et al. (2000) have shown that, under this
cost function, there is always an optimal path between two given graphs that involves only vertex and
edge deletions, insertions, or substitutions with identical attributes.

Ferrer (2008) showed that the graph edit distance between two graphs G1 and G2 under the above
operation costs can be computed as

d(G1,G2) = #(G1)+#(G2)−2 ·#(MaxSub(G1,G2)),

where #(MaxSub(G1,G2)) denotes the number of vertices in the maximum common subgraph of G1 and
G2 obtained by the algorithm of Durand-Pasari.

Let S = {G1, . . . ,Gn} be a set of labeled graphs defined over an alphabet L. The sum of distances
from a graph G to S is given by

SOD(G,S) =
n

∑
i=1

d(G,Gi),

where d(G,Gi) is the graph edit distance between G and Gi, for i = 1, . . . ,n. Therefore, a generalized
median graph of S is given by

G = argmin{SOD(G,S) : G ∈U},

where U is the set of all labeled graphs defined over the alphabet L. The generalized median graph G of
S satisfies

#(MaxSub(S))≤ #(G)≤ #(MinSup(S)).

Furthermore, let G′ be the graph induced in MinSup(S) by a subset V ′ of its vertices. Let G′′ be
any subgraph of G′ with the same vertex set V ′. Ferrer (2008) showed that SOD(G′,S) ≤ SOD(G′′,S).
This result naturally suggests to consider the search space for the generalized median graph of S to be
formed by all subgraphs that can be induced in MinSup(S) having no fewer vertices than MaxSub(S).
Both the adaptive greedy algorithm and the GRASP heuristic proposed in the next sections will begin
by computing MinSup(S) as their initial solution, followed by the evaluation of candidate solutions that
will be subgraphs that can be induced in MinSup(S).

3 Greedy adaptive algorithm

The computation of the edit distance d(G,H) = #(G)+#(H)−2 ·#(MaxSub(G,H)) between two graphs
G and H is expensive, since it depends on the computation of their maximum common subgraph. There-
fore, in the computation of the generalized median graph one is interested in avoiding maximum common
subgraph computations whenever possible.
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For the sake of explaining the evaluation of neighbors in the heuristics to be presented, we assume
that the distance d(G,H) = #(G)+#(H)−2 ·#(MaxSub(G,H)) between two graphs G and H has been
already computed. Let G(−v) be the graph obtained from G by removing any of its vertices v. Musmanno
(2013) has shown that if v is not a vertex of MaxSub(G,H), then d(G(−v),H) = d(G,H)−1. Otherwise,
d(G(−v),H) = d(G,H)± 1. In the last case, d(G(−v),H) = d(G,H)− 1 if and only if G and H have
another maximum common subgraph with the same number of vertices of MaxSub(G,H) that does not
contain v.

Let MinSup(S) be the minimum common supergraph of the set of graphs S = {G1, . . . ,Gn}. Since
MinSup(S) is a supergraph of each Gi, then

MaxSub(MinSup(S),Gi) = Gi

for each i = 1, . . . ,n. Furthermore,

SOD(MinSup(S),S) =
n

∑
i=1

d(MinSup(S),Gi).

Let MinSup(S)(−v) be the graph obtained by removing a vertex v from MinSup(S) and Lv = {i =
1, . . . ,n : v∈MaxSub(Gi,MinSup(S))}. Assuming that the removal of vertex v increases the edit distance
by 1 for each Gi : i ∈ Lv, we obtain the following estimate for SOD(MinSup(S)(−v),S):

SOD(MinSup(S)(−v),S) =

= SOD(MinSup(S),S)− (n−|Lv|)+ |Lv|=

= SOD(MinSup(S),S)−n+2 · |Lv|.

A greedy algorithm for the generalized median graph problem is obtained by removing the vertices
v of MinSup(S) one by one in the decreasing order of the estimates SOD(MinSup(S)(−v),S). The best
solution is updated whenever the removal of a vertex improves the incumbent.

A greedy adaptive algorithm can be derived from this greedy algorithm. In this case, every time
a vertex is removed from the current solution, all estimates are recomputed from the new solution and
the next vertex to be removed will be the one with the smallest updated estimate. The algorithm stops
when all candidate vertices have been considered and examined for elimination. The pseudo-code for
this algorithm is presented in Figure 1.

4 GRASP heuristic

GRASP (Greedy Randomized Adaptive Search Procedure) (Feo and Resende, 1989, 1995) is a multi-
start metaheuristic, in which each iteration consists of two phases: construction and local search. The
construction phase builds a solution. We assume that if this solution is not feasible, then either a repair
procedure is applied to achieve feasibility or a new attempt to build a feasible solution is made. Once
a feasible solution is obtained, its neighborhood is investigated until a local minimum is found during
the local search phase. The best overall solution is kept as the result. Literature surveys are presented
by Festa and Resende (2009a); Resende and Ribeiro (2002, 2005, 2010, 2014). Extensive accounts of
successful applications of GRASP are reported by Festa and Resende (2002, 2009b).

The greedy randomized adaptive algorithm used in the construction phase of the GRASP heuristic
is an extension of the greedy adaptive algorithm in Figure 1, in which the node selected for elimination
at each iteration is randomly chosen among those with the best SOD estimates, but not necessarily the
best one. Let RCL be a restricted candidate list formed by all vertices v in the current solution for which
SOD(CurrentSolution(−v),S) ∈ [Smin,Smin +α · (Smax−Smin)], where

Smin = min{SOD(CurrentSolution(−v),S) : v ∈ Candidates},
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begin GREEDY-ADAPTIVE
1 Set CurrentSolution←MinSup(S);
2 Set CurrentSOD← SOD(MinSup(S),S);
3 Let Candidates be the vertex set of CurrentSolution;
4 Compute the estimate SOD(MinSup(S)(−v),S) for each vertex v of MinSup(S);
5 while Candidates 6= /0 do;
6 u← argmin{SOD(CurrentSolution(−v),S) : v ∈ Candidates};
7 Let Solution be the graph obtained by removing vertex u from CurrentSolution;
8 if SOD(Solution,S)< SOD(CurrentSolution,S) then
9 CurrentSOD← SOD(Solution,S);
10 CurrentSolution← Solution;
11 end-if;
12 Candidates← Candidates\{u};
13 Update SOD(CurrentSolution(−v),S) for each vertex v of CurrentSolution;
14 end-while;
15 return CurrentSolution;
end GREEDY-ADAPTIVE.

Figure 1: Pseudo-code of the greedy adaptive algorithm.

Smax = max{SOD(CurrentSolution(−v),S) : v ∈ Candidates},

and α ∈ [0,1] is a threshold parameter that controls the amounts of greediness and randomness in the
algorithm. The case α = 0 corresponds to a pure greedy algorithm, while α = 1 is equivalent to a random
construction. Experiments for tuning parameter α have been performed, using different values α = 0.05,
0.1, 0.2, 0.3, 0.4, and 0.5. Since no significant difference was observed in the numerical results, in the
next section we report numerical experiments performed with α = 0.1.

The local search phase acts to iteratively improve the constructed solution, by considering the inser-
tion of nodes belonging to MinSup(S) but not to the solution constructed in the first phase.

5 Experimental results

The greedy adaptive algorithm and the GRASP heuristic have been implemented in C++ and compiled
with the compiler gcc (TDM-2 mingw31) 4.1.1. All computational experiments have been carried out on
an Intel i5 2.8 GHz quadcore processor with 4 GB of RAM memory running under Windows 7 Home.

Test problems have been extracted from the AIDS group of graphs from the IAM Graph Database
Repository (Bunke, 2011; Research Group on Computer Vision and Artificial Intelligence, 2011). The
algorithms were tested on 100 randomly chosen instances, divided into ten test sets. Each test set contains
ten instances of the same size, where the size of an instance is characterized by the total number of
vertices in the graphs within its input graph set S. We considered test sizes of 20, 40, 60, 80, 100, 120,
140, 160, 180 and 200 vertices all together.

The GRASP heuristic was run for 100 iterations for each instance. The solutions obtained by GRASP
were at least as good as those found by the adaptive greedy algorithm for all test problems. Furthermore,
GRASP found strictly better solutions than the adaptive greedy algorithm for 57 instances over all 100
test problems. The advantage of GRASP in terms of solution quality increases with the problem size:
GRASP found strictly better solutions than the adaptive greedy algorithm for 35 out of the largest 50
instances with 120 to 200 vertices.

Table 1 displays, for each test set (formed by ten instances each), the average reductions between the
solution values SOD(G,S) obtained by the adaptive greedy algorithm and by the GRASP heuristic with
respect to the sum of distances SOD(MinSup(S),S) from MinSup(S) to S and to the sum of distances
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SOD(Ĝ,S) from the median graph Ĝ to S, showing by how much the proposed heuristics are able to
improve, respectively, the initial solution and the upper bound given by the median graph.

Table 1: Average improvement in the sum of distances of the best solution found by each algorithm, with
respect to the sum of distances from MinSup(S) and from the median graph Ĝ to S.

Adaptive greedy GRASP
Vertices SOD(G,S)/ SOD(G,S)/ SOD(G,S)/ SOD(G,S)/
(total) SOD(MinSup(S),S) SOD(Ĝ,S) SOD(MinSup(S),S) SOD(Ĝ,S)

(%) (%) (%) (%)
20 55.02 8.15 55.02 8.15
40 66.39 10.82 67.22 12.99
60 73.18 11.31 73.77 13.25
80 77.04 11.29 78.48 13.65

100 79.63 13.60 80.13 15.66
120 80.71 12.43 81.03 13.88
140 84.36 11.73 84.80 14.09
160 83.24 13.93 83.62 15.39
180 85.20 13.16 85.61 15.50
200 85.19 15.36 85.70 18.31

Average 77.00 12.18 77.54 14.09

Figure 2 depicts the evolution of the best solution found along 100 GRASP iterations for instance
i05.140 with a total of 140 vertices. It also illustrates by how much the local search is able to improve
the solution built by the greedy adaptive algorithm in the GRASP construction phase at each iteration.
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Figure 2: Evolution of the best solution found along 100 GRASP iterations for instance i05.140 with a
total of 140 vertices.

6 Concluding remarks

Structural approaches for pattern recognition frequently make use of graphs to represent objects. The
graph edit distance is often used to measure the similarity between two graphs. The generalized median
graph is a good representative of a set of labeled graphs under the graph edit distance.

We proposed two heuristics for computing generalized median graphs: an adaptive greedy algorithm
and its extension to a GRASP heuristic. The GRASP heuristic obtained generalized median graphs that
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significantly improved the initial solutions and those provided by the median graphs. On average, the
GRASP heuristic improved the sum of distances from the minimum common supergraph by 77.54% and
the sum of distances from the median graph by 14.09%.

Nearest-neighbor classifiers are supervised learning tasks based on a training set of patterns. In this
training set, every pattern has a category label assigned to it. Given a test set composed of all patterns
to be classified, each of its patterns is compared to all elements of the training set and labeled with the
class of the most similar element. The 1-nearest-neighbor classifier (1-NN) is defined by assigning a test
pattern to the class of its most similar training pattern. The 1-NN classifier can be extended to consider
not only the most similar pattern in the training set but, instead, the k closest patterns: in a k-NN classifier,
the test pattern is assigned to the class that occurs most frequently among its k nearest or closest training
patterns (Ferrer, 2008; Fukunaga, 1990).

We performed classification experiments classifying some queries using two approaches: the k-NN
classifier and generalized median graphs. The latter amounts to computing an approximate generalized
median graph of each class and comparing each query to these approximate generalized median graphs.
The median graph approach presents the advantage that the number of comparisons is greatly reduced,
since each query is compared only to a small number of graphs, while with k-NN the query is compared
with every element of all classes. The instances used in this experiment were taken from the IAM
Graph Database Repository (Research Group on Computer Vision and Artificial Intelligence, 2011).
Numerical results that will be reported in the final version of this paper show that the approach based
on the generalized median graph is competitive with the k-NN classifier, leading to smaller computation
times (in particular, when the size of the training set increases) and similar accuracy levels.

These results lead to the main conclusions of this work. Good approximations to the generalized
median graph can be effectively computed by the heuristics proposed in this paper, making it a better
representation than the median graph to be used in a number of relevant pattern recognition or machine
learning applications.
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