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Abstract. The problem of Routing and Wavelength Assignment in
Wavelength Division Multiplexing (WDM) optical networks consists in
routing a set of lightpaths and assigning a wavelength to each of them,
such that lightpaths whose routes share a common fiber are assigned to
different wavelengths. When the objective is to minimize the total num-
ber of wavelengths used, this problem is NP-hard. The current state-of-
the-art heuristics were proposed in 2007 by Skorin-Kapov. The solutions
provided by these heuristics were near-optimal. However, the associated
running times reported were high. In this paper, we propose efficient im-
plementations of these heuristics and reevaluate them on a broader set
of testbed instances.

1 Introduction

Information in optical networks is transmitted through optical fibers as optical
signals. Each link operates at a speed of the order of terabits per second, which
is much faster than the currently available electronic devices for signal reception
and transmission. Wavelength Division Multiplexing (WDM) technology allows
more efficient use of the huge capacity of optical fibers, as far as it permits
the simultaneous transmission of different channels along the same fiber, each
of them using a different wavelength. An all-optical point-to-point connection
between two nodes is called a lightpath. It is characterized by its route and
the wavelength in which it is multiplexed. Two lightpaths may use the same
wavelength, provided they do not share any common fiber. Such networks require
a large number of available wavelengths, especially when wavelength conversion
is not available.

Given an optical network and a set of lightpath requests, the problem of
Routing and Wavelength Assignment (RWA) in WDM optical networks consists
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in routing the set of lightpaths and assigning a wavelength to each of them,
such that lightpaths whose routes share a common fiber are assigned to different
wavelengths. Variants of RWA are characterized by different optimization criteria
and traffic patterns, see e.g. [3,13]. We consider the min-RWA offline variant, in
which all lightpath requests are known beforehand. No wavelength conversion is
available, i.e. a lightpath must be assigned the same wavelength on all fibers in its
route. The objective is to minimize the total number of wavelengths used. This
problem is also known as the Path Coloring Problem. Erlebach and Jansen [4]
showed that min-RWA is NP-hard.

State-of-the-art heuristics for min-RWA are discussed in the next section. Im-
plementation issues are discussed and new heuristics are proposed in Section 3.
Computational experiments illustrating the efficiency of the new implementa-
tions on a broad set of test instances are reported in Section 4. Concluding
remarks are drawn in the last section.

2 Related Work

Different heuristics have been proposed for solving min-RWA. Some approaches
decompose the problem into two subproblems: the routing subproblem and the
wavelength assignment subproblem [2,5,7,9], while others tackle the two sub-
problems simultaneously [8,12]. A functional classification of RWA heuristics
can be found in [3].

The current state-of-art heuristics for min-RWA were proposed by Skorin-
Kapov [12]. Each wavelength is represented by a different copy of a bidirected
graph G = (V, A) that represents the physical topology of the optical network.
Vertices in V and arcs in A represent network nodes and fibers, respectively.
Lightpaths arc-disjointly routed in the same copy of G are assigned the same
wavelength. The copies of G are associated with the bins and the lightpaths with
the items of a bin packing problem [1]. Problem min-RWA is reformulated as
that of packing the lightpaths using a minimum number of bins.

The size of a lightpath is defined as the hop-count shortest path between its
endnodes in G. We notice that lightpaths are not necessarily routed on shortest
paths. Whenever a lightpath is placed in a bin (i.e., a copy of G), all arcs in its
route are deleted from the corresponding copy of G to avoid that other lightpaths
use them. Therefore, the next lightpaths packed in that bin might not be able
to be routed on a shortest path.

Four min-RWA heuristics were developed based on classical bin packing
heuristics: (i) FF-RWA, based on the First Fit heuristic, (ii) BF-RWA, based
on the Best Fit heuristic, (iii) FFD-RWA, based on the First Fit Decreasing
heuristic, and (iv) BFD-RWA, based on the Best Fit Decreasing heuristic. The
first is equivalent to the Greedy-EDP-RWA [8] heuristic, except for the order in
which some steps are executed [12].

The pseudo-codes of FF-RWA, BF-RWA, FFD-RWA, BFD-RWA are simi-
lar. They are summarized in Figure 1. The inputs are the graph G, the set τ of
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begin heuristic(G, τ, d)
1. Let t be a permutation of the lightpaths in τ ;
2. Set Ω ← ∅ and S ← ∅;
3. for i = 1, . . . , |t| do
4. Find the bin ω ∈ Ω where the shortest path of ti in ω has less than d arcs;
5. if no such a bin exists then do
7. ω ← new copy of G;
8. Ω ← Ω ∪ {ω};
9. end if
10. Let pi be the shortest path between the endnodes of ti in ω;
11. S ← S ∪ (pi, ω);
12. Delete edges in path pi from ω;
13. end-for;
14. return S;
end

Fig. 1. Pseudo-code of heuristics FF-RWA, BF-RWA, FFD-RWA, and BFD-RWA

lightpath requests, and the value d of the maximum number of links in each
route. As suggested in [12], d is set to be the maximum of the square root of the
number of links in the network and the diameter of G (i.e., the maximum value of
a shortest path between two nodes in the network). The output is a set S of tuples
(pi, ωi), for i = 1, . . . , |τ |, where pi is the route followed by lightpath ti and ωi is
the wavelength with which it is multiplexed. A permutation t of lightpaths in τ
is built in line 1. In FF-RWA and BF-RWA, lightpaths are randomly distributed
in t, while in FFD-RWA and BFD-RWA, they are sorted in non-increasing order
of their sizes. In line 2, the set S and the set Ω of copies of G are initialized.
The lightpaths are routed and assigned a wavelength in lines 3 to 13, one at a
time, according to their order in t. A bin ω ∈ Ω in which lightpath ti can be
routed with less than d arcs is sought in line 4. FF-RWA and FFD-RWA stop at
the first bin found, while BF-RWA and BFD-RWA scan all bins in Ω and select
that in which ti fits with the smallest number of arcs (since the arcs in each
copy of G are not necessarily the same). Let pi be the shortest path between the
endnodes of ti in ω. If there is no bin in Ω where pi fits with less than d arcs,
then ti is routed on a new copy of G that is created in line 7 and added to set Ω
in line 8. The tuple (pi, ω) is added to the solution in line 11, and all arcs in pi

are deleted from ω in line 12 to avoid that other lightpaths are routed on those
arcs in this copy of G.

Numerical results in [12] showed that FFD-RWA and BFD-RWA outper-
formed Greedy-EDP-RWA [8], one of the best heuristic in the literature for
min-RWA. However, the running times reported in [12] were very high. On the
largest instances, running times of up to 8 minutes (Pentium IV 2.8 GHz) were
reported. In the next section, we propose five different implementation strate-
gies for FF-RWA, BF-RWA, FFD-RWA, and BFD-RWA and evaluate them in a
broad set of test instances in Section 4.
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3 Implementation Issues

Let n = |V |, m = |A|, and l = |τ |. Furthermore, let csp(m, n) be the compu-
tational complexity of a one-to-all shortest path algorithm applied to G, and
cdel(m, n) be the complexity of deleting an arc from G. The worst case complex-
ity T (n, m, l) of FF-RWA, BF-RWA, FFD-RWA, and BFD-RWA is calculated as
follows. For sake of simplicity, we assume that n < l, which holds for all real and
artificial networks in the literature. First, all-to-all shortest paths are calculated
in time O(n·csp(m, n)) in line 1, and sets Ω and S are initialized in constant time
in line 2. Next, lines 3 to 13 are repeated for each lightpath ti, with i = 1, . . . , l.
In line 4, a bin where ti fits with less than d arcs is found in time O(l ·csp(m, n)).
A new copy of G is created in time O(m) in line 7 and added to set Ω in constant
time in line 8. Finally, the set S is updated in constant time in line 11, while the
arcs in pi are deleted from w in time O(d · cdel) in line 12. Therefore, the worst
case complexity of these heuristics is

T (n, m, l) =O(n · csp(m, n))+O(1)+O(l·(l · csp(m, n)+m+1+d · cdel(m, n)))
= O(n · csp(m, n) + l2 · csp(m, n) + l · m + l · d · cdel(m, n)).

The efficiency of the heuristics depends on how fast a shortest path (SP, for
short) query is performed and how fast an arc is removed from G. The traditional
implementations using Dijkstra’s algorithm and single linked lists to represent
the adjacency matrix of G lead to csp(m, n) = O(n · log n + m) and cdel(m, n) =
O(n). Therefore,

T (n, m, l) = O(n · (n · log n + m) + l2 · (n · log n + m) + l · m + l · d · n)
= O(l2 · (n · log n + m)).

However, the hop-count shortest paths can be calculated using Breadth First
Search (BFS) in time O(m). In addition, any arc can be deleted in time O(1)
using the representation of G by adjacency lists M as follows. For each node
i ∈ V , we keep a doubly linked list whose cells correspond to the arcs having
i as their origin. Furthermore, we keep an array P pointing to the address of
each cell in M . Whenever an arc (i, j) is to be removed, we use P to obtain
the address of its corresponding cell in constant time. Since the adjacency list
of node i is doubly linked, the cell corresponding to arc (i, j) can be deleted in
time O(1). This data structure and the BFS algorithm were used in our standard
implementation STD of the four heuristics. Therefore, the complexity of the min-
RWA heuristics using STD is

T (n, m, l) = O(n · m + l2 · m + l · m + l · d) = O(l2 · m).

The most expensive operation of the min-RWA heuristics appears in line 4
of Figure 1, where a SP query is performed in at most l bins for each of the l
lightpaths in τ . At this point, only the value of the shortest path is required.
Therefore, we propose another implementation based on an n×n distance matrix
in which each entry is the value of the shortest path between the two correspond-
ing nodes in G. It is initialized in O(n · m) in line 1 and instantiated for each
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new bin created in O(n2) in line 7. As long as arcs are deleted from a bin, the
shortest paths on that bin may change and the corresponding distance matrix
must be updated.

The new data structure allows SP queries to be performed in constant time.
However, the efficiency of the heuristics depends on how fast the updates are
performed. Given the graph G = (V, A) and a node v ∈ V , the shortest path
(SP, for short) graph of v is a subgraph Gv = (V, Av) of G, with Av ⊆ A,
such that the path from any vertex i to v in Gv corresponds to the shortest
path from i to v in G. If the graph is acyclic, it is called a shortest path tree.
We experimented with four algorithms for updating the distance matrix: RRg,
RRt, NRRg, and NRRt. The first two are based on the work of Ramalingam and
Reps [10] for dynamically updating SP graphs and SP trees, respectively, while
the last two are adaptations of the former two algorithms.

Given a node v ∈ V and the SP graph Gv, the algorithm of Ramalingam and
Reps [10] for dynamically updating SP graphs is based on the observation that
when the weight of an arc a ∈ A increases, the shortest paths from v to many
vertices in V might not change and do not need to be recalculated. Arcs are
deleted by increasing their weights to infinity. If a /∈ Av, no update is necessary;
otherwise a is removed from Gv. Next, if Gv remains connected, the algorithm
stops. Otherwise, the set U of vertices whose shortest paths to v have changed
is identified and removed from Gv. Then, each vertex u ∈ U is inserted into a
priority queue Q with a key equal to the weight of the least cost arc from u to
one of the vertices that remained in Gv. Finally, the algorithm proceeds in a
Dijkstra-like fashion.

A variant of this algorithm is that of Ramalingam and Reps [10] for dynam-
ically updating SP trees. The algorithm is similar to the one described above.
However, the identification of the vertices in U and the shortest path updates are
performed more efficiently in SP trees. Every time an arc a ∈ Av is deleted, the
data structure has to be updated. Using a Fibonacci heap to implement Q, the
worst case time complexity of both algorithms is O(n · log n+m). However, since
only deletions are performed and the arcs have unit cost, it can be implemented
in time O(m) by using a bucket to implement Q.

Algorithm RRg keeps one SP graph for each vertex in V . The SP graphs are
initialized in O(n · m) in line 1 of Figure 1 and instantiated for each new bin
created in O(n ·m) in line 7. After each arc in pi is deleted from ω in line 12, RRg
checks if any SP graph of ω must be updated. If so, the algorithm of Ramalingam
and Reps [10] for SP graphs is used, and the distance matrix is updated. In
the worst case scenario, n SP graphs are updated in O(n · m). Therefore, the
complexity of the min-RWA heuristics using RRg is

T (n, m, l) = O(n · m + l2 + l · n · m + l · d · (n · m)) = O(l2 + l · d · n · m).

Algorithm RRt keeps one SP tree for each vertex in V . The SP trees are
initialized in O(n · m) in line 1 of Figure 1 and instantiated for each new bin
created in time O(n2) in line 7. As before, after each arc deletion, RRt checks
if any SP tree of ω must be updated. If so, the algorithm of Ramalingam and
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Reps [10] for trees of shortest paths is used, and the distance matrix is updated.
Therefore, the complexity of the min-RWA heuristics using RRt is

T (n, m, l) = O(n · m + l2 + l · n2 + l · d · (n · m)) = O(l2 + l · d · n · m).

Algorithm RRg (resp. RRt) might not be efficient, since the number of SP
graphs (resp. SP trees) to be updated after each lightpath is assigned a bin
may be very high. To remedy this, we propose a compromise implementation.
Algorithm NRRg (resp. NRRt) uses the same data structure as algorithm RRg (resp.
NRRt), but without updating the latter as soon as an arc is deleted. Therefore, the
distance matrix gives a lower bound to the shortest path between any two nodes
in time O(1), since the shortest paths can only increase after an arc deletion. If
the lower bound is larger than d, the correct distance is not needed. Otherwise,
it can be calculated in time O(d) by retrieving the shortest path in the SP graph
(resp. SP tree) of the sink node of the lightpath. If no arc along the shortest path
has been deleted, the value stored in the distance matrix is exact. Otherwise,
algorithm NRRg (resp. NRRt) updates only the corresponding SP graph (resp.
SP tree) from scratch and the entries of the distance matrix that have changed.
Therefore, the worst case complexity of an SP query is O(m). However, no SP
graph (resp. SP tree) update is necessary in line 12 of Figure 1 and the arc
deletion can be done in O(d) for each lightpath. Therefore, the complexity of
the min-RWA heuristics using algorithm NRRg is

T (n, m, l) = O(n · m + l2 · m + l · n · m + l · d) = O(l2 · m),

while using algorithm NRRt it is

T (n, m, l) = O(n · m + l2 · m + l · n2 + l · d) = O(l2 · m).

4 Computational Experiments

Four sets of testbed instances were used in the computational experiments. Set
X was randomly generated as in [12]. Sets Y and Z are proposed in this paper.
Finally, set W is a collection of the most studied realistic instances in the lit-
erature, together with two new instances introduced in this paper. All network
topologies are connected and each link corresponds to a pair of bidirected fibers.
The traffic matrices are asymmetric, i.e. there might be a lightpath request from
a node i to a node j and not from j to i. A description of each set is presented
below.

The set X of instances was randomly generated exactly as in [12]. The in-
stances have 100 nodes, the probability Pe that there is a link between a pair
of nodes is equal to 0.03, 0.04, and 0.05, and the probability Pl that there is a
connection between a pair of nodes is equal to 0.2, 0.4, 0.6, 0.8, and 1.0. The net-
works were randomly generated and only connected networks were considered.
Fifteen groups of five instances each were created, combining each possible pair
of values for Pe and Pl.
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We observed that set X is mostly made up of easy instances. This is due to two
structural characteristics that are present in most of its instances. First, there
are nodes incident to only one link whose connections are all routed through the
same link. Second, there are weakly connected components, i.e. disjoint subsets
of nodes that are connected by only one link. Therefore, all connections whose
endnodes are in different weakly connected components must be routed through
the same link. These characteristics may imply high lower bounds on the number
of wavelengths necessary to establish the set of lightpath requests. For most of
the instances in set X , a solution with this number of wavelengths can be easily
found.

Fig. 2. Example of a 3× 4 grid topology

Table 1. Description of test set W

Instance Nodes Links Lightpaths Maximum

Finland 31 51 930 1
EON 20 39 374 2
ATT 90 137 359 5
ATT2 71 175 4456 34
NSF.1 14 21 284 3
NSF.3 14 21 258 3
NSF.12 14 21 551 6
NSF.48 14 21 547 6
NSF2.1 14 22 284 3
NSF2.3 14 22 258 3
NSF2.12 14 22 551 6
NSF2.48 14 22 547 6

As an attempt to generate harder random instances, we propose the set Y .
Networks in this set were randomly generated with the same number of nodes
and the same values of Pe and Pl used for the instances in set X . However, we
considered only networks whose node degrees are greater than or equal to 2 when
Pe is equal to 0.04 and 0.05, and we restricted the diameter of the networks to
5, 6, and 7 for instances with Pe equal to 0.05, 0.04, and 0.03, respectively. As
before, fifteen groups of five instances each were randomly generated, combining
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Table 2. Average gaps and CPU times for implementations FF-RWASTD, BF-RWASTD,
FFD-RWASTD, and BFD-RWASTD for sets X, Y , Z, and W

FF-RWA FFD-RWA BF-RWA BFD-RWA
Set Gap T(s) Gap T(s) Gap T(s) Gap T(s)

X 4.7% 0.60 1.9% 0.71 3.0% 1.33 1.2% 2.10
Y 23.1% 0.52 17.0% 0.58 13.9% 0.76 8.4% 1.07
Z 13.3% 0.89 9.7% 1.12 10.8% 1.10 7.0% 1.41
W 7.3% 0.10 6.3% 0.10 7.5% 0.11 7.1% 0.12
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Fig. 3. (a) Average gaps and (b) CPU times for implementations FF-RWASTD, BF-
RWASTD, FFD-RWASTD, and BFD-RWASTD over all the 187 instances

each possible pair of values for Pe and Pl. The traffic matrices are the same used
for the instances in set X .

Instances in test set Z are built on n×m grids embedded on the torus. Each
node is connected only to its nearest four nodes. Figure 2 gives an example of a
3 × 4 grid. Five grid networks with approximately 100 nodes (10 × 10, 8 × 13,
6× 17, 5× 20, 4× 25) were generated. For each of them, five traffic matrices are
randomly generated with the probability Pl that there is a connection between
a pair of nodes being equal to 0.2, 0.4, 0.6, 0.8, and 1.0.

Finally, set W is a collection of the most studied realistic instances in the
literature, together with two new instances ATT and ATT2 whose topologies
and traffic matrices resemble those of real telecommunication networks. The
topology of the Finland network was obtained from [5] and its traffic matrix was
the same used in [9]. Networks EON, NSF, and NSF2 and their respective traffic
matrices were downloaded from [6]. The first three columns of Table 1 display
the name, the number of nodes, and the number of links in each instance of set
W , respectively. The total number of lightpaths and the maximum number of
lightpaths starting from the same node are given in the fourth and fifth columns,
respectively.

We denote by FF-RWASTD, FF-RWARRg, FF-RWARRt, FF-RWANRRg, and FF-
RWANRRt the implementations of the heuristic FF-RWA using algorithms STD,
RRg, RRt, NRRg, and NRRt, respectively. The same notation is extended to the



Efficient Implementations of Heuristics for RWA 177

Table 3. Average CPU times for each heuristic using NRRt, NRRg, RRt, and RRg. Times
are displayed as a percent deviation of the times using STD.

Heuristic Set NRRt (%) NRRg (%) RRt (%) RRg (%)

FF-RWA X 88.3 115.6 671.8 817.4
Y 83.9 107.6 699.9 824.9
Z 73.4 95.8 745.7 884.4
W 98.4 119.0 423.8 497.6

FFD-RWA X 84.8 112.4 562.2 690.1
Y 81.1 103.9 626.0 739.1
Z 62.0 79.7 595.2 699.1
W 93.4 111.8 406.6 471.3

BF-RWA X 50.3 67.5 254.2 333.2
Y 67.8 88.1 400.7 496.2
Z 63.4 83.4 568.1 685.7
W 91.8 114.4 363.7 431.5

BFD-RWA X 37.1 50.0 163.8 209.2
Y 52.8 70.4 277.3 349.0
Z 53.2 67.9 440.4 528.8
W 88.7 107.5 344.0 407.5

other heuristics. The algorithms were coded in C++ and compiled with the GNU
GCC version 4.0.3 with no compiler code optimization. The experiments were
performed on a 2.8 GHz Pentium IV with 1 Gb of RAM memory using Linux
Ubuntu 6.10. CPU times are reported in seconds. The quality of the heuristics
is displayed as the gap (ub-lb)/lb between the cost ub of the solution provided
by the heuristic and a lower bound lb for the cost of the optimal solution, which
is calculated as suggested in [2].

The first experiments evaluate and compare the performance of FF-RWASTD,
FFD-RWASTD, BF-RWASTD, and BFD-RWASTD for the 187 instances in sets X ,
Y , Z, and W . Each heuristic was run five times with different seeds for the
random number generator algorithm [11]. For each instance set, Table 2 displays
the average gaps and CPU times for implementations FF-RWASTD, FFD-RWASTD,
BF-RWASTD, and BFD-RWASTD, respectively. The average gaps for each heuristic
over all instances are plotted in Figure 3a, while the average CPU times are
plotted in Figure 3b.

The best of the five runs of BFD-RWASTD was optimal for 62 out of the 75
instances in set X and the average gap was 1.2%, which confirms the hypothesis
that this set is mostly made up of easy instances. The average solution gaps for
the instances in sets Y and Z proposed in this paper were greater than or equal
to those in the other sets for all the heuristics, which indicates that the instances
in sets Y and Z are harder than those in the literature.

Algorithm BFD-RWASTD found on average better results than the other heuris-
tics for most of the instances tested. We notice in Figure 3a that the average
gap observed for FFD-RWA (8.7%) is almost 50% larger than that correspond-
ing to BFD-RWA (6.0%). The average gap observed for algorithm FFD-RWASTD

was smaller than that for BFD-RWASTD exclusively for set W . However, this
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Fig. 4. Average CPU times of (a) FF-RWANRRt, (b) FFD-RWANRRt, (c) BF-RWANRRt,
and (d) BFD-RWANRRt for instance sets X, Y , Z, and W . Times are displayed as a
percent deviation of the times using STD.

occurs because of the huge difference observed for instance ATT, where the
FFD-RWASTD gap was 20.0% and the BFD-RWASTD gap was 32.0%. If we ex-
clude this instance from set W , the average gap of FF-RWASTD would be 5.0%
and that of BFD-RWASTD would be 4.9%.

As expected, CPU times of the best fit heuristics were greater than those of
the first fit heuristics, because each iteration of FF-RWASTD and FFD-RWASTD

stops at the first bin in which the lightpath can be routed with less than d arcs,
while each iteration of BF-RWASTD and BFD-RWASTD scans all the bins looking
for bins where the lightpath fits with the smallest number of arcs. Although
solution gaps of BFD-RWASTD were on average smaller than those of the other
heuristics, its running times were the longest. However, the maximum CPU times
of BFD-RWASTD in set X was 10 seconds, which is much less than the 8 minutes
reported for the implementation of [12] in the same set of instances and the same
machine. The CPU times of BFD-RWASTD were always less than five seconds for
instances in sets Y and Z and never greater than one second for those in set W .

The next experiments evaluate the performance of the heuristics FF-RWA,
FFD-RWA, BF-RWA, and BFD-RWA using NRRt, NRRg, RRt, and RRg. The run-
ning times are compared with those using the respective standard implemen-
tation (STD). For each heuristic and each set of instances, Table 3 displays the
average CPU times using NRRt, NRRg, RRt, and RRg as a percent deviation of the
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times using STD (i.e. the times of NRRt, NRRg, RRt, and RRg are divided by the
times of STD). Each version of each heuristic was run five times with different
seeds for the random number generator algorithm [11]. For all heuristics and
instance sets, the implementations using RRt and NRRt were faster than those
using RRg and NRRg, respectively. This is due to the fact that updating of SP
graphs is more expensive than updating SP trees, and the SP graphs were not
dense enough to compensate the trade off. Due to the number of SP graphs
that must be updated after an arc deletion, the implementations of FF-RWA,
FFD-RWA, BF-RWA, and BFD-RWA using RRt and RRg were slower than their
respective implementations using STD.

NRRt was the best algorithm for updating the distance matrix. The numeri-
cal results for heuristics FF-RWANRRt, FFD-RWANRRt, BF-RWANRRt, and BFD-
RWANRRt displayed in the third column of Table 3 are also plotted in Figure 4.
The improvements observed in BF-RWANRRt and BFD-RWANRRt are greater than
those observed in FF-RWANRRt and FFD-RWANRRt, when compared with their
respective standard implementations. This is due to the fact that the number of
SP queries in BF-RWA and BFD-RWA is greater than in FF-RWA and FFD-
RWA, while the number of updates is approximately the same. The heuristic
that took more advantage of NRRt was BFD-RWA, whose times were shortened,
on average, to almost one half of those of BFD-RWASTD. The maximum running
time of the BFD-RWANRRt over all the 187 instances tested (including set X)
was only 2.2 seconds, which is one quarter of the maximum running time of
BFD-RWASTD.

5 Concluding Remarks

This paper tackled the problem of routing and wavelength assignment in WDM
optical networks. We proposed five different implementations of the best heuris-
tics in the literature, as well as new testbed instances that allowed a precise
comparison of the heuristics.

Computational experiments showed that BFD-RWA was the best heuristic
for the instances tested. The new algorithms proposed in this paper shortened
the average and maximum running times of BFD-RWA by 57% and 25%, re-
spectively, with respect to those of the standard implementation. The maximum
computation times of the best implementation of BFD-RWA was less than three
seconds, while the times reported for the same heuristic in [12] were up to eight
minutes on the same instances and the same Pentium IV 2.8 GHz computer.
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