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Abstract

A phylogeny is a tree that relates taxonomic units, based on their similarity over a set of characters. The
phylogeny problem consists in finding a phylogeny with the minimum number of evolutionary steps. We
propose a new neighborhood structure for the phylogeny problem. A greedy randomized adaptive search
procedure heuristic based on this neighborhood structure and using variable neighborhood descent for
local search is described. Computational results on randomly generated and benchmark instances are
reported, showing that the new heuristic is quite robust and outperforms the other algorithms in the
literature in terms of solution quality and time-to-target value.
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1 The phylogeny problem

A phylogenetic tree (or a phylogeny) relates groups of species, populations of distinct species,
populations of the same species, or homologous genes in populations of distinct species,
indistinctly denoted by taxons (Ayala, 1995; Swofford and Olsen, 1990; Wiley et al., 1991). These
relations are based on the similarity over a set of characters. Leaves represent the taxons. Interior
nodes represent hypothetical ancestors.
Characters are independent attributes used to compare taxons. Each character takes values on a

finite set of possible states. Each taxon is defined by its character states. Binary characters are
those who have only two possible states, which represent the presence or the absence of some
attribute. Instances of the phylogeny problem with binary characters are characterized by 0–1
matrices, in which each element (i, j) corresponds to the state of character j within taxon i.
Figure 1 illustrates an example extracted from Kitching et al. (1998) defined by a set of four

taxons and six binary characters: (a) paired fins, (b) jaws, (c) large dermal bones, (d) fin rays, (e)
lungs, and (f ) rasping tongue. For each pair (i, j), an entry equal to one means that character
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j appears in taxon i. We also show in this figure a possible phylogeny for these taxons, assuming
that all of them have a common ancestor represented by the root of the tree, in which all
characters do not appear. We also indicate the branches of this tree in which one or more
characters change their states.
An evolutionary step is associated with each change of state along a branch of a phylogenetic

tree. The evaluation of a phylogenetic tree can be done using different optimization criteria. Some
criteria are based on stochastic models, on the comparison of distances in a metric space (which is
often used in genome studies, see e.g. Araújo and Almeida, 2002; Gallut et al., 2000; Wang and
Warnow, 2001), on the compatibility of the data or, most often, using the parsimony criterion
(Swofford and Olsen, 1990). The latter states that the best (i.e., the most parsimonious) phylogeny
is that explained by the minimum number of evolutionary steps (Edwards and Cavalli-Sforza,
1964; Hennig, 1966). It is often said that the parsimony criterion can be legitimated as the best one
in the construction of phylogenetic trees, provided that the probability of the occurrence of
evolutionary changes is small (Penny et al., 1982; Sober, 1987). The parsimony criterion is used in
this work.
Figure 2 shows a phylogenetic tree for the above example. There are three hypothetical

intermediary taxons (000000, 100000, 111000) used to explain the evolutionary changes
represented in Fig. 1. A total of eight evolutionary steps are marked in the branches. The
phylogenetic tree in Fig. 3 has more appropriate hypothetical intermediary taxons (000000,
110100, 111100) associated with the internal nodes, corresponding to a smaller parsimony value
with only seven evolutionary steps.
Farris and Fitch (Farris, 1970; Fitch, 1971; Fitch and Farris, 1974) proposed polynomial

algorithms running in time O(mn) for computing the best parsimony value for a given phylogeny,
where n is the number of operational characters and m is the number of binary characters. Given a
set of taxons and a set of characters, the phylogeny problem studied in this work is that of finding a
phylogenetic tree with the minimum number of evolutionary steps. It is NP-hard in general and in
common restricted cases (Bodlaender et al., 1992; Day et al., 1986; Foulds and Graham, 1982a,
1982b).
Bader et al. (2001) surveyed industrial applications of high-performance computing for

phylogeny reconstruction. According to them, ‘‘simple identification via phylogenetic classifica-
tion of organisms has yielded more patent filings than any other applications of phylogeny in
industry’’. They notice that phylogenetic analysis has also been used in vaccine development.
Another application of phylogenetic analysis to a practical problem is its use in studying the
dynamics of microbial communities (Engelen et al., 1998). Because many microbes in such
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Fig. 1. Example with four taxons and six characters.
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population studies are novel, their gene sequences are studied phylogenetically in order to
understand the composition of the community throughout the experiment. The phylogenetic
distribution of biochemical pathways (Overbeek et al., 2000) is studied in the development of
antibacterials and herbicides. In the pharmaceutical industry, the phylogenetic distribution of a
pathway is often studied before a drug is developed in order to understand the effective range of
an antimicrobial targeted at that pathway (Brown and Warren, 1998). Phylogenetic analysis is
also used in the pharmaceutical industry for predicting the natural ligands for cell surface
receptors which are potential drug targets (Chambers et al., 2000; Szekeres et al., 2000).
Let E be the set of all possible taxons and W ¼ fxð1Þ; . . . ;xðnÞg � E be the set of operational

taxons under analysis. A phylogenetic tree s for the operational taxons W belongs to the set S of
all unrooted trees with n leaves (each leaf is in one-to-one correspondence with an operational
taxon xðiÞ 2 W ; i ¼ 1; . . . ; n) and all internal nodes with degree three. Let f : S ! R be a function
which associates each phylogeny sAS to its parsimony value. The phylogeny problem under
parsimony may then be formulated as that of finding a phylogeny s�AS such that f (s�)5minsAS

f (s).
Heuristics for the computation of phylogenetic trees are dispersed through the scientific

literature (see e.g. Dress and Krüger, 1987; Luckow and Pimentel, 1985; Platnick, 1987, 1989).
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Fig. 2. Phylogenetic tree with eight evolutionary steps.

000001 110100 111100 111010

000000

1

111100

110100

3

0

0 2

1

lamprey lizardshark salmon

Fig. 3. A more parsimonious phylogeny with seven evolutionary steps.
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Andreatta and Ribeiro (2002) reported and compared the computational results obtained by a
variety of heuristics on a set of eight benchmark problems. They reported that the best-known
solutions are not always found by the same heuristic. In Section 2, we propose a new
neighborhood structure for the phylogeny problem and two local search procedures based on this
neighborhood structure. A greedy randomized adaptive search procedure (GRASP) heuristic
using a variable neighborhood descent (VND) strategy for local search is described in Section 3.
Computational results obtained for randomly generated and benchmark instances are presented
and discussed in detail in Section 4. In particular, we show that the GRASP heuristic using the
new neighborhood structure is quite robust and outperforms the other heuristics in terms of
solution quality and time-to-target value. Concluding remarks are drawn in the final section.

2 Neighborhood structure

Local search methods are based on the investigation of the solution space, by successively
exploring the neighborhood of the current solution and moving to one of its neighbors.
Andreatta and Ribeiro (2002) reported and described three neighborhood relations for the

phylogeny problem: nearest neighborhood interchanges (NNI: subtrees pending from two internal
branches are swapped), single step (STEP: a neighbor is obtained by removing a taxon from the
current solution and putting it back into another branch of the tree), and subtree pruning and
regrafting (SPR or 1-SPR: a subtree of the current tree is disconnected and reconnected in a
different position). This work is based on the SPR neighborhood.
Figure 4 illustrates an example of a move within neighborhood SPR. Neighbor solutions are

obtained from the current solution as follows. First, an edge u5 (c, f ) of the current tree is
selected and eliminated (step 1, pruning). The subtree containing node c is called the base subtree,
while that containing node f is the pending subtree. Node c is collapsed (since it has degree two in
the base subtree) and an edge v of the base subtree is selected for the reconnection of the pending
subtree (step 2). Edge v is eliminated and a new node h is created and joined to the two extremities
of v originally in the base subtree (step 3). Finally, the pending subtree is connected to the base
subtree using the newly created node h (step 4, regrafting). Any solution has O(n2) neighbors
within this neighborhood.
Figure 5 gives the pseudo-code of procedure LS1 applied in the search for an improving

neighbor of the current solution s within neighborhood SPR. The loop in lines 1–13 searches
through this neighborhood by investigating the elimination of each branch of the current solution.
Each branch u is temporarily eliminated from s in line 2, creating subtrees s1 (base) and s2
(pending). The partial costs of subtrees s1 and s2 are computed in line 3 in time O(mn). The
reconnection of the pending subtree using each edge of the base subtree is investigated in lines 4–8.
Variable f 0 initialized in line 4 stores the minimum incremental cost over all neighbors of s
obtained by the elimination of edge u. The loop in lines 5–8 searches through all edges v of the
base subtree. The incremental cost �f of reconnecting the pending subtree s2 to the base subtree s1
using edge v is computed in line 6 in time O(m). If the incremental cost �f improves the currently
best incremental cost, then the latter is updated in line 7 and the best edge to be used for
reconnection is stored in vbest. The best neighbor s0 of the current solution s is built in line 9 and
its cost f (s0) is computed in line 10. If f (s0) is smaller than the cost of the current solution s, then s0
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Fig. 4. Illustration of a move within neighborhood SPR.

Fig. 5. Pseudo-code of local search procedure LS1 using neighborhood SPR.
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is returned in line 11. Otherwise, edge u is reinserted and the current solution s is restored in line
12. If no improving neighbor is found, the current solution itself is returned in line 14 at the end of
the neighborhood search. Thus, the investigation of each neighborhood SPR can be implemented
in time O(mn2), which is one order of magnitude faster than the implementation originally
proposed in Andreatta and Ribeiro (2002).
The Multiple Subtree Pruning and Regrafting (‘-SPR) neighborhood is defined by the

composition of ‘ successive SPR moves applied to the current solution. The case ‘5 1
corresponds to neighborhood SPR described above. Figure 6 gives the pseudo-code of procedure
LS2 used in the search for an improving neighbor of the current solution s within neighborhood
2-SPR, in which each neighbor solution is obtained through a move involving two steps. Lines
1–11 correspond to the first step, in which intermediary solutions within neighborhood SPR are
investigated. Lines 12–22 correspond to the second step, in which one additional SPR move
is applied to the intermediary solution. Similarly to LS1, the investigation of each neighborhood
2-SPR can be implemented in time O(mn3).

Fig. 6. Pseudo-code of local search procedure LS2 using neighborhood 2-SPR.
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3 A GRASP/VND heuristic

GRASP (Feo and Resende, 1995; Resende and Ribeiro, 2003) is a multi-start metaheuristic, in
which each iteration consists of two phases: construction and local search. The construction phase
builds a feasible solution using a greedy randomized algorithm, whose neighborhood is
investigated until a local minimum is found during the local search phase. The best overall
solution is kept as the result.

3.1 Greedy randomized construction

A phylogeny sAS relating the taxons in W can be built in n5 |W| iterations, as outlined in the
pseudo-code in Fig. 7. In the k-th iteration, a partial phylogeny sðkÞ (defined on a subset U � W of
operational taxons) is modified by the introduction of a new taxon tAW \U. The algorithm stops
when U5W. Variants of this algorithm differ by the criteria they use to select a new taxon to be
inserted and by the way in which sðkÞ is modified to obtain sðkþ1Þ. The set of modifications applied
to sðkÞ to reach sðkþ1Þ is called an increment. The increase in the cost function f(.) because of the
increment leading from sðkÞ to sðkþ1Þ can be computed in time O(mk), where m is the number of
binary characters and k the number of taxons in the current partial phylogeny.
Increments are defined by the insertion of a new taxon into a branch of the current partial

solution, as illustrated in Fig. 8. In this case, there are three possible alternatives for the insertion
of taxon D into a partial solution formed by three taxons A, B, and C.
Andreatta and Ribeiro (2002) conducted a detailed evaluation study of construction algorithms

for the phylogeny problem, in which they tested and compared several variants of the basic
construction algorithm described in Fig. 7. We used algorithm Gstep_wR (greedy step with
randomness) in the construction phase of our GRASP heuristic, since in general it found the best
solutions (although at the cost of computation times one order of magnitude higher than the other
algorithms). A pair taxon-branch is randomly selected from among all those with cost 10% higher
than the most parsimonious increment value. Since there are still n� (k� 1) unselected taxons in
iteration k and 2k� 5 possible branches for each insertion, the overall complexity of each
construction using algorithm Gstep_wR is Oðmn4Þ.

Fig. 7. Basic construction algorithm.
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3.2 Local search using VND

Let ‘-SPR, ‘5 1,. . . , ‘max, be a neighborhood structure for the phylogeny problem. We use a
local search procedure based on variable neighborhoods with ‘max5 2, which essentially is a
variant of the VND strategy proposed by Hansen and Mladenović (Hansen and Mladenović,
1999, 2002, 2003; Mladenović and Hansen, 1997). Successful applications of VND within GRASP
are reported e.g. in Festa et al., 2002; Martins et al., 2000; Ribeiro and Souza, 2002; Ribeiro et al.,
2002.
Figure 9 gives the algorithmic description of procedure VND_Phylogeny which implements the

VND local search starting from the solution s built in the construction phase. The initial
neighborhood 1-SPR is set in line 1. The loop in lines 2–7 investigates one neighborhood at a time,
until a local optimum with respect to neighborhoods 1-SPR and 2-SPR is found. The best solution
sneighbor within neighborhood ‘-SPR is obtained by the application of procedure LS‘ to the
current solution s in line three. In case an improving move is found, the current solution is
updated in line 4 and the search resumes from the latter using neighborhood 1-SPR. Otherwise,
the order of the neighborhood is increased by one in line 5, so as that the search will resume from
neighborhood (‘11)-SPR. The current solution s that is now locally optimal with respect to all
neighborhoods is returned in line 8.

3.3 Heuristic GRASP1VND

The pseudo-code in Fig. 10 based on the template described by Resende and Ribeiro (2003)
illustrates the main blocks of a GRASP heuristic for the phylogeny problem. The algorithm takes
as parameters the number MaxIterations of iterations and the value Seed used as the initial seed
for the pseudo-random number generator. The loop in lines 1–5 performs MaxIterations
iterations. Algorithm Gstep_wR proposed in Andreatta and Ribeiro (2002) and described in
Section 3.1 is used in the construction phase in line 2 with the GRASP parameter set at a5 0.1.
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Fig. 8. Alternatives for the insertion of a new taxon into a phylogeny with three taxons.
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The VND local search strategy using ‘max5 2 and neighborhoods 1-SPR and 2-SPR is
implemented in line 3, as described in Section 3.2. The best solution found is updated in line 4
at each iteration and returned in line 6.

4 Numerical results

All computational experiments have been performed on a 2GHz Pentium IV processor with
512Mbytes of RAM memory. The GRASP1VND heuristic was implemented in C using version
6.0 of the Microsoft Visual C11 compiler. We used an implementation in C of the random
number generator described in Schrage (1979).
The characters of each solution are represented as integer-valued vectors, in which each

position uses 32 bits. Since each character needs two bits to be represented (possible states are 0,
1, and ?, the latter standing for ‘‘undefined’’), each position of this vector is able to store up to 16
characters. Thus, binary operations may handle 16 characters simultaneously. This single
modification accounted for reductions of up to approximately 50% in the computation times,
with respect to the original implementation using the Searcher framework described in Andreatta
and Ribeiro (2002).
In the first part of the computational experiments, we built 20 randomly generated instances.

Our generator takes as parameters the number of taxons, the number of characters, and the ratio

Fig. 9. Variable neighborhood descent (VND) procedure for local search.

Fig. 10. Pseudo-code of the greedy randomized adaptive search procedure (GRASP)1variable neighborhood descent

(VND) heuristic.

C.C. Ribeiro and D.S. Vianna / Intl. Trans. in Op. Res. 12 (2005) 325–338 333



of indefinition, which corresponds to the fraction of undefined characters in each taxon. Instances
with larger ratios of indefinition are harder. The number of taxons in these instances ranges from
45 to 75, the number of characters from 61 to 159, and the ratio of indefinition from 20% to 50%.
For each instance, we first report in Table 1 its identification, the number of taxons (n), the
number of characters (m), and the percentage ratio of indefinition in the characters of each taxon.
For both the GRASP algorithm described in Andreatta and Ribeiro (2002) and the
GRASP1VND heuristic proposed in this work (with the number of GRASP iterations fixed at
MaxIterations5 50 for both algorithms), we report the computation times and the best solutions
found. The new heuristic found the best solution among the two algorithms for all but only one
instance (TST06). The average improvement in the solution value is approximately 1%.
Moreover, the computation times observed with the new heuristic are significantly smaller for all
test instances.
In the second part of the computational experiments, we used the same eight benchmark real-

life test instances (Luckow and Pimentel, 1985; Platnick, 1987, 1989) already used in Andreatta
and Ribeiro (2002). All benchmark instances but GOLO were obtained from the editors of the
journal Cladistics, while the latter was provided by P.A. Goloboff. All test instances are posted at
http://www.inf.puc-rio.br/ � celso/grupo_de_pesquisa.htm. Each instance was run ten times with
different seeds. For each test problem, we first report in Table 2 its identification, the number of
taxons (n), the number of characters (m), the parsimony value of the currently best-known
solution, the value of the best solution found by the GRASP1VND heuristic over the ten runs,

Table 1

Comparative results on randomly generated problems

GRASP GRASP1VND

Instance n m Indefinition (%) Time (s) Value Time (s) Value

TST01 45 61 20 530.30 558 526.86 551

TST02 47 151 30 1560.00 1377 663.47 1364

TST03 49 111 40 1731.44 851 687.69 845

TST04 50 97 50 1614.34 605 779.39 598

TST05 52 75 20 1129.05 807 736.72 797

TST06 54 65 30 1357.53 608 960.48 609

TST07 56 143 40 3746.81 1304 1040.93 1291

TST08 57 119 50 3082.61 881 1164.59 870

TST09 59 93 20 2700.21 1167 1344.66 1152

TST10 60 71 30 2550.61 734 1454.67 733

TST11 62 63 40 2649.65 557 1520.33 553

TST12 64 147 50 6715.86 1250 2055.82 1243

TST13 65 113 20 4975.89 1545 2499.95 1532

TST14 67 99 30 5528.49 1186 2820.38 1177

TST15 69 77 40 4946.88 782 2974.00 774

TST16 70 69 50 4885.68 556 3309.26 551

TST17 71 159 20 8002.02 2481 3886.32 2468

TST18 73 117 30 8125.33 1568 3774.29 1554

TST19 74 95 40 7331.50 1042 3558.12 1036

TST20 75 79 50 6884.55 694 3884.26 682
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and the average computation time in seconds taken by algorithm GRASP1VND. The number of
GRASP iterations was set at MaxIterations5 500. These results show that the GRASP1VND
heuristic is quite robust. It not only improved the best-known solution for three out of the eight
test instances (ROPA, GOLO, SCHU), but also matched the best-known solutions for all other
instances. We recall that the best-known solutions previously reported in the literature for each
test problem were not found by the same algorithm.
To effectively compare the new GRASP1VND heuristic with the original GRASP algorithm in

Andreatta and Ribeiro (2002), we compared the behavior of both algorithms on instances ROPA
and GOLO using the methodology proposed by Aiex et al. (2002) and recently reviewed by
Resende and Ribeiro (2003). One hundred independent runs for each heuristic were done for each
instance. Each run was terminated when a solution of value less than or equal to a certain target
value was found. The target values were set at the previously best-known solution values for each
of these two instances, i.e., 326 for instance ROPA and 497 for instance GOLO. Although each of
these sub-optimal values was chosen such that the slowest heuristic could terminate in a
reasonable amount of computation time, the relative behavior of the two heuristics is not affected
by this choice. Empirical probability distributions for the time-to-target value are plotted in
Figs 11 and 12. To plot the empirical distribution for each algorithm, we follow the procedure
described in Aiex et al. (2002). We associate with the i-th smallest running time ti a probability
pi ¼ ði � 1

2
Þ=100, and plot the points zi5 (ti, pi), for i5 1, . . . , 100.

The plots in these figures show that the GRASP1VND heuristic is approximately two times of
magnitude faster than the GRASP implementation in Andreatta and Ribeiro (2002), clearly
showing the improvement because of the use of the VND local search strategy. The new heuristic
clearly outperformed that in Andreatta and Ribeiro (2002): for a given computation time, the
probability of finding a solution at least as good as the target value is much higher for the
GRASP1VND heuristic.

5. Final remarks

The phylogeny problem is one of the most important problems in comparative biology. Approximate
and exact (for small problems) algorithms for the computation of phylogenetic trees are dispersed
through the scientific literature. We proposed in this paper a new heuristic for the phylogeny

Table 2

Results obtained by the GRASP1VND heuristic

Instance n m Current Best Time (s)

ANGI 49 59 216 216 5099.33

GRIS 47 93 172 172 3505.43

TENU 56 179 682 682 7497.60

ETHE 58 86 372 372 10 042.73

ROPA 75 82 326 (�) 325 15 764.93

GOLO 77 97 497 (�) 496 32 836.65

SCHU 113 146 760 (�) 759 113 391.30

CARP 117 110 548 548 82 176.60
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problem. This algorithm combines the GRASP metaheuristic with a VND local search strategy
based on a new neighborhood structure called multiple subtree pruning and regrafting (‘-SPR).
Computational experiments on randomly generated and real-life problems are reported. The

new heuristic outperformed the best algorithm in a recent survey (Andreatta and Ribeiro, 2002),
finding better solutions for 19 out of 20 realistic randomly generated instances in much smaller
computation times. The new heuristic is very robust. It improved the best-known solutions for
three out of eight benchmark real-life instances, and matched the best results for the others.
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