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Abstract

The traveling salesman problem (TSP) is one of the most studied problems in combinatorial optimization.
Given a set of nodes and the distances between them, it consists in finding the shortest route that visits each
node exactly once and returns to the first. Nevertheless, more flexible and applicable formulations of this
problem exist and can be considered. The Steiner TSP (STSP) is a variant of the TSP that assumes that only
a given subset of nodes must be visited by the shortest route, eventually visiting some nodes and edges more
than once. In this paper, we adapt some classical TSP constructive heuristics and neighborhood structures to
the STSP variant. In particular, we propose a reduced 2-opt neighborhood and we show that it leads to better
results in smaller computation times. Computational results with an implementation of a GRASP heuristic
using path-relinking and restarts are reported. In addition, ten large test instances are generated. All instances
and their best-known solutions are made available for download and benchmarking purposes.

Keywords: Steiner traveling salesman problem; traveling salesman problem; GRASP; path-relinking; restarts

1. Introduction

The traveling salesman problem (TSP) is one of the fundamental combinatorial optimization prob-
lems (Garey and Johnson, 1979; Zhang et al., 2015) and has numerous real-life applications in
transportation, logistics, vehicle routing, genome sequencing, and other areas. In its undirected
version it consists in, given a set of nodes and the distances between them, find the shortest route
that visits each node exactly once and returns to the first city. Mathematically, the TSP can be
defined as follows (Cornuéjols et al., 1985). Given a graph G = (V, E ) and a function w : E → R

that associates a weight w(e) to each edge e ∈ E , the goal is to find a Hamiltonian cycle of minimum
total weight (or cost). The TSP is NP-hard, since its decision version is proven to be NP-complete
by a simple reduction from the Hamiltonian cycle problem (Garey and Johnson, 1979).

However, in many practical applications it is more frequent to find the following variant of the
TSP. A set VR ⊆ V of required nodes is given. Instead of searching for a Hamiltonian cycle visiting
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Fig. 1. Instance of Steiner TSP with nine nodes: the six required nodes are darkened.

all nodes, a minimum-weight closed walk is requested that visits only the required nodes. Since
only a walk is sought, nodes can be visited more than once and edges may be traversed more than
once. The so-called Steiner TSP (STSP, for short) was first proposed in Cornuéjols et al. (1985) and
Fleischmann (1985), where its NP-hardness is also proved. The Steiner TSP is specially suitable to
model network design (Borne et al., 2013), package delivery (Zhang et al., 2015, 2016), and routing
(Letchford et al., 2013) problems. All of them are typically modeled using sparse graphs. Figure 1
illustrates an instance of the Steiner TSP with nine nodes, six of which are required.

Most studies on the Steiner TSP focus on integer programming formulations and valid inequal-
ities. The STSP is solved efficiently (in linear time) for series-parallel graphs in Cornuéjols et al.
(1985). Compact, polynomial size integer programming formulations of the TSP are extended to
the STSP in Letchford et al. (2013). An extension of the Steiner TSP that adds penalties to the
nodes not visited by the cycle is proposed in Salazar-González (2003). A network design problem
consisting of multiple Steiner TSPs with order constraints is studied in Borne et al. (2013), using an
integer linear programming formulation and a branch-and-cut algorithm. An extension of the STSP
in which the edge traversal costs are stochastic and correlated is studied in Letchford and Nasiri
(2015). An online algorithm is proposed in Zhang et al. (2015, 2016) to solve another extension of
the STSP considering real-time edge blockages.

This paper is organized as follows. In the next section, adaptive greedy constructive heuristics
for the Steiner TSP are presented. Section 3 reports local search strategies that are explored by
the GRASP with path-relinking heuristic presented in Section 4. Computational experiments are
reported in Section 5 and extended in Section 6, where an improved strategy exploring periodical
restarts is developed. In addition, ten large test instances are generated and their best-known
solutions are made available for download and benchmarking purposes in Section 7. Concluding
remarks are drawn in the last section.

2. Greedy algorithms for the Steiner TSP

The following strategy can be applied as a heuristic for the Steiner TSP (Letchford et al., 2013).
First, the instance of the STSP is reduced to a TSP instance in a complete graph defined by the
set of required nodes, in which the new distances correspond to the shortest paths between every
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pair of required nodes in the original graph. Next, any exact or heuristic algorithm is used to solve
the TSP in this new, complete graph. Finally, the solution of the TSP is converted into an STSP
solution by expanding every edge by the corresponding shortest path between the two consecutive
required nodes. However, if the original STSP instance is a sparse graph, the conversion to a
standard TSP instance significantly increases the number of edges, some of which may never be
used.

Therefore, instead of using a complete graph formed by the required nodes, we will use the original
graph for searching a minimum-weight closed walk. We use a straightforward adaptation of the
nearest neighbor TSP adaptive greedy heuristic (see, e.g., Resende and Ribeiro, 2016, Chapter 3) to
the STSP described in Algorithm 1, which builds the solution greedily by choosing at each iteration
the closest required node to the last node added to the walk.

The algorithm starts in line 1 by arbitrarily selecting any initial node i ∈ VR to start the walk.
The set of required nodes N already visited by the walk is initialized in line 2. The partially built
walk P is initialized in line 3. The currently visited required node current is set in line 4. The loop in
lines 5–11 is performed until all required nodes have been visited. At each iteration, the node next
to be visited is set to the closest among all yet unvisited required nodes. The shortest path P ′ from
current to next is computed in line 7. The partially built walk P is updated in line 8 by appending the
shortest path P ′ to it. The set of already visited required nodes N and the current node are updated
in lines 9 and 10, respectively. Finally, after completing the loop, the shortest path from current to
the initial node i is appended to the walk in lines 12 and 13. The result is returned in line 14.

Algorithm 1. Nearest neighbor adaptive greedy heuristic for STSP

1: Select initial required node i ∈ VR;
2: N ← {i};
3: P ← {i};
4: current ← i;
5: while N �= VR do
6: next ← closest node to current among all those in VR \ N ;
7: P ′ ← shortest path from current to next;
8: P ← P ⊕ P ′;
9: N ← N ∪ {next};

10: current ← next;
11: end while;
12: P ′ ← shortest path from current to initial node i;
13: P ← P ⊕ P ′;
14: return P .

In the case of the Steiner TSP, the greedy criterion is the choice of the nearest required node
to be visited. Algorithms that add randomization to a greedy or adaptive greedy algorithm are
called semigreedy or randomized greedy algorithms. Randomization is an important feature in the
implementation of effective heuristics. Semigreedy algorithms act by replacing the deterministic
greedy choice of the next element to be incorporated into the solution under construction by the
random selection of an element from a restricted set of best candidate elements, called the restricted
candidate list (RCL).
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Fig. 2. 2-Opt move for STSP.

A simple quality-based scheme is used to define an RCL. Let gmin = min{gi : i ∈ VR \ N and gi
is the shortest path from current to node i} and gmax = max{gi : i ∈ VR \ N and gi is the shortest
path from current to node i}. Furthermore, let α be such that 0 ≤ α ≤ 1. The RCL is formed by all
yet unselected required nodes i ∈ VR \ N satisfying gmin ≤ gi ≤ gmin + α(gmax − gmin).

3. Local search

Local search procedures are used to iteratively improve the quality of an initial solution, usually
obtained by a constructive heuristic. First-improving (FI) and best-improving (BI) strategies are
proposed and compared in terms of their performance. Efficient objective function updates are
used, without the need of recalculating the objective function values from scratch: the previous
walk weight is used in order to find the weight of the walk obtained after the changes performed
during each local search iteration.

3.1. Neighborhood structure

The 2-opt neighborhood is the most commonly used neighborhood structure for the TSP problem
and consists in replacing any pair of nonadjacent edges of the current solution by the unique pair
of new edges that recreates a cycle.

The following property holds: Let W = (v1, . . . , vi, . . . , v j, . . . , vm) be any optimal solution of
the Steiner TSP. Then, the subpath (vi, . . . , v j ) is also a shortest path between the required nodes
vi and v j . This is true because if this subpath was not the shortest, then W would not be optimal.
Therefore, it is not necessary to investigate moves that involve changes in the order in which the
nonrequired nodes are visited. Then, the problem amounts to determining the order in which the
required nodes should be visited and then finding the shortest path between any pair of consecutive
required nodes in the walk.

In consequence, we explore a 2-opt neighborhood for the STSP that is formed by all moves that
replace the paths between two pairs of consecutive required nodes in the walk by the two unique
pairs of shortest paths that reconnect a closed walk, as illustrated in Figure 2.
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3.2. Reduced 2-opt neighborhood

A reduced 2-opt neighborhood can be defined in order to take advantage of the problem structure.
In fact, convergence can be faster if only a few, promising moves in the neighborhood are considered.

We implement this idea in the following way. For each required node v, let I(v) be the set formed
by all required nodes that are reachable from v by a shortest path that does not visit any other
required node. In other words, I(v) represents the set of required nodes that are closer to v, in the
sense that they necessarily belong to paths to farther nodes.

Using this auxiliary data structure, we restrict the 2-opt moves to pairs of consecutive required
nodes (v1, v2) and (w1, w2) satisfying the condition that w1 ∈ I(v1); see Figure 2.

3.3. First-improving versus best-improving local search

In a first-improving local search strategy, the algorithm moves from the current solution to any
neighbor with a better value for the objective function. In contrast, in a best-improving local search
strategy, the algorithm always moves from the current solution to the best of its neighbors. This
implies that the time consumed by each iteration will be longer, but also that a better solution will
result at the end of the iteration. Both strategies will be considered and compared using the 2-opt
and restricted 2-opt neighborhoods.

4. GRASP with path-relinking heuristic

GRASP (which stands for greedy randomized adaptive search procedures) is a multistart metaheuristic
in which each iteration consists of two main phases: construction and local search. The first phase
is the construction of a feasible solution, usually by a greedy randomized algorithm. Once a
feasible solution is obtained, its neighborhood is investigated until a local minimum is found
during the second phase of local search. The best overall solution is kept as the result. The reader is
referred to Resende and Ribeiro (2016) for a complete account of GRASP. Annotated bibliographies
of GRASP appeared in Festa and Resende (2009a, 2009b). A recent application of GRASP appeared
in Ferone et al. (2016).

We used the adaptive greedy randomized heuristic presented in Section 2 and the local search
strategies described in Section 3 to customize a GRASP with path-relinking heuristic for the Steiner
TSP.

Path-relinking is an intensification strategy that explores trajectories connecting elite solutions
produced by metaheuristics. Path-relinking is usually carried out between two solutions: one is the
initial solution Si, while the other is the guiding solution Sg. A path that connects these solutions is
constructed in the search for better solutions. Local search may be applied to the best solution in
the path, since there is no guarantee that this solution is locally optimal. In the context of GRASP,
path-relinking may be used to connect solutions obtained after the local search step with elite
solutions produced during previous iterations, providing a sort of memory mechanism.

More specifically, in the context of the STSP, path-relinking attempts to preserve common char-
acteristics of good walks, that is, common subpaths. As explained below, path-relinking matches
the positions of the largest common subpath to the initial and guiding solutions and then swaps the
positions of nodes that do not belong to this common subpath.
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We first observe that any solution of the STSP has no unique representation as a sequence
of the visited required nodes, since any closed walk can start from different nodes and can be
traversed in two directions (forward and backward). Therefore, the representation of the initial and
guiding solutions must be adjusted to facilitate the operation of relinking them. With this purpose,
before applying path-relinking, we adjust the representations of the initial and guiding solutions by
detecting the largest common subpath wl = (vi . . . v j ) between them.

In our implementation, we choose to detect the largest (or longest) common subpath, instead
of the longest common subsequence, in order to prioritize consecutive sequences of nodes in both
solutions. This problem is known as the largest (or longest) common substring problem and can be
solved in O(n) time and space (Hui, 1992).

The guiding solution Sg and the initial solution Si are oriented in the same direction according
with wl . Next, the initial nodes of the walks associated with Sg and Si are made to coincide with the
initial node vi of wl .

To move from the initial to the guiding solution, path-relinking considers a restricted neighbor-
hood. Each move in this restricted neighborhood involves the swap of two required nodes in the
walk corresponding to the current solution that are not in the same positions as they are visited
in the guiding solution. In addition, each move should place at least one of the two involved nodes
in the appropriate position corresponding to the order in which it will be visited in the guiding
solution. After two required nodes are swapped, the shortest paths from their predecessors and
to their successors are updated. Since at least one node is placed in the appropriate position of
the guiding solution at each iteration, path-relinking will take at most as many iterations as the
number of required nodes that were misplaced in the initial solution with respect to the guiding
solution.

Algorithm 2 presents the pseudocode of path-relinking from the initial solution Si to the guiding
solution Sg. The current solution S and the best solution S∗ are initialized in line 1. The cost f ∗ of
the best solution found by path-relinking is initialized in line 2. The loop in lines 3–10 is performed
until the current solution reaches the guiding solution. S′ is set to the best solution in the restricted
neighborhood of the current solution S in line 4. The best solution S∗ found by path-relinking and
its cost f ∗ are updated in lines 6 and 7, respectively, if the new solution S′ improved the previous
best. The current solution is updated in line 9 and a new path-relinking iteration resumes. The best
solution found by path-relinking is returned in line 11.

Algorithm 2. Path-relinking algorithm for STSP

1: S, S∗ ← Si;
2: f ∗ ← cost(Si);
3: while S �= Sg do
4: S′ ← best solution in the restricted neighborhood of S;
5: if cost(S′) < f ∗ then
6: S∗ ← S′;
7: f ∗ ← cost(S′);
8: end if;
9: S ← S′;

10: end while;
11: return S∗.
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Fig. 3. Three iterations of path-relinking applied to initial and guiding solutions of the Steiner TSP instance in Figure 1:
the six required nodes are darkened.

Figure 3 illustrates the application of path-relinking to the Steiner TSP instance described in
Figure 1. The graph has six required nodes and three nonrequired nodes. The cost of the initial
solution is 14, while that of the guiding solution is 19. The guiding solution is reached after three
path-relinking iterations and the cost of the best solution found along them is 13.

The pseudocode in Algorithm 3 summarizes the main steps of the proposed GRASP with path-
relinking (GRASP + PR) heuristic, following the same structure proposed in (Resende and Ribeiro,
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2016, Section 9.3). The set of elite solutions is initialized in line 1. The loop in lines 2–12 is performed
until some stopping criterion is satisfied. An initial solution is built in line 3 by the greedy randomized
constructive heuristic described in Section 2. A local search procedure is used in line 4 to improve
the solution obtained at the end of the construction phase. Except for the first iteration, when the
elite set is still empty, lines 6–9 amount to the application of path-relinking. Line 6 randomly selects
an elite solution S′ from the elite set E . The representation of solution S is adjusted considering the
selected elite solution S′. Backward path-relinking is applied from the initial solution Si = S′ to the
guiding solution Sg = S. Local search is applied in line 9 to the solution obtained by path-relinking.
The elite set E is updated with the new solution S in line 11. The best elite solution is returned in
line 13.

Algorithm 3. GRASP+PR algorithm for STSP

1: E ← ∅;
2: while stopping criterion not satisfied do
3: S ← RandomizedGreedy;
4: S ← LocalSearch(S);
5: if |E | > 0 then
6: Select solution S′ at random from E ;
7: S ← AdjustRepresentation(S, S′)
8: S ← PathRelinking(S, S′);
9: S ← LocalSearch(S);

10: end if;
11: UpdateEliteSet(S, E );
12: end while;
13: Return the best solution S in E .

5. Computational experiments

Several experiments were performed to assess the performance of the algorithms presented above
and their variants. The algorithms were implemented in C# programming language and compiled
by Roslyn, a reference C# compiler, in an Intel Core i5 machine with a 2.9 GHz processor and 8
GB of random-access memory, running under the Windows 10 operating system.

We considered the same test problems used by Letchford et al. (2013), as well as Letchford and
Nasiri (2015) and Zhang et al. (2015, 2016), created by a random generator described in Letchford
et al. (2013). This generator was designed to create graphs that resemble real-life road networks.
It creates connected sparse graphs and a fraction of required nodes is specified for each instance.
In addition to graphs from Letchford et al. (2013), we considered some larger instances with up
to 300 nodes. Altogether, ten sparse weighted graphs with 50 to 300 nodes were used to assess the
performance of the heuristics. Each graph generated two instances: one with �N

3 � required nodes
and another with � 2·N

3 � required nodes, where N is the total number of nodes, corresponding to 20
different instances. We observe that individual optimal values for each of these instances have not
been previously reported in Letchford et al. (2013).
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Table 1
Greedy randomized heuristic: average and best value over 100 runs

1/3 of required nodes 2/3 of required nodes

α = 0.10 α = 0.05 α = 0.10 α = 0.05

Nodes Average Best Average Best Average Best Average Best

50 944.63 813 947.48 814 1207.51 979 1213.34 1031
75 1068.80 848 1055.51 848 1308.21 1125 1309.49 1094
100 1070.02 959 1070.26 947 1607.99 1375 1599.44 1299
125 1436.82 1275 1425.84 1228 1929.31 1627 1911.41 1623
150 1410.76 1151 1403.36 1230 2110.56 1875 2102.40 1899
175 1642.85 1379 1615.89 1411 2248.23 1970 2265.40 1913
200 1759.45 1512 1765.95 1445 2615.95 2369 2614.78 2354
225 1826.48 1610 1845.74 1604 2817.25 2524 2844.12 2522
250 2045.90 1769 2041.03 1804 3022.70 2748 2988.79 2723
300 2186.87 1907 2226.41 1991 3242.32 2952 3264.87 2977

5.1. Selecting the quality measure for the RCL

In order to compare the effect of the value of α in the quality-based scheme used to define an
RCL, we ran the randomized nearest neighbor constructive heuristic with α = 0.1 and α = 0.05.
The greedy randomized algorithm was applied to all instances. Average and best values over 100
runs are presented in Table 1. As for all tables that follow, the best solution values found for each
instance are depicted in boldface.

Although for the instances with one-third of required nodes quality-based constructive heuristic
with α = 0.10 found slightly more better solutions, the randomized heuristic with α = 0.05 found
significantly more better solutions for the instances with two-thirds of required nodes. We observe
that the use of a better constructive method for building the initial solutions is likely to improve the
quality of the solutions produced by the GRASP heuristic.

5.2. Comparing the local search variants

The solutions obtained by the greedy randomized construction algorithm can be refined either
by first-improving (FI) or by best-improving (BI) local search strategies. In this experiment, we
considered 100 iterations of the pure GRASP (without path-relinking) heuristic using the 2-opt
neighborhood structure. The results can be seen in Table 2.

GRASP with best-improving LS clearly outperformed GRASP with the first-improving LS strat-
egy, since substantially better solution values were reached.

5.3. Reduced 2-opt neighborhood

We now address the benefits of using the reduced 2-opt neighborhood, designed specifically for
this problem. Preliminary computational experiments have shown that the use of this reduced
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Table 2
First-improving versus best-improving local search, 100 GRASP iterations

1/3 of required nodes 2/3 of required nodes

Nodes FI BI FI BI

50 789 789 979 978
75 830 830 1049 1035
100 931 934 1280 1239
125 1188 1171 1489 1496
150 1152 1110 1699 1643
175 1325 1286 1759 1743
200 1375 1338 2051 1976
225 1470 1442 2202 2094
250 1589 1515 2313 2224
300 1798 1717 2603 2409

FI, first-improving; BI, best-improving.

Table 3
2-opt versus reduced 2-opt neighborhoods, 100 GRASP iterations

1/3 of required nodes 2/3 of required nodes

2-Opt neighborhood Reduced 2-opt 2-Opt neighborhood Reduced 2-opt

Nodes Value Seconds Value Seconds Value Seconds Value Seconds

50 789 0.204 789 0.171 978 0.484 978 0.36
75 830 0.469 830 0.375 1035 1.078 1045 0.985
100 934 0.766 919 0.672 1239 2.359 1208 1.610
125 1171 1.313 1166 1.093 1496 4.454 1469 2.921
150 1110 2.015 1121 1.703 1643 7.468 1615 4.703
175 1286 3.016 1272 2.281 1743 11.313 1719 6.687
200 1338 4.343 1304 3.235 1976 17.469 1925 9.187
225 1442 5.610 1415 4.140 2094 24.891 2047 12.828
250 1515 7.656 1539 5.578 2224 32.546 2170 15.297
300 1717 11.531 1687 7.328 2409 55.718 2285 26.578

neighborhood led to some target objective function values much faster than the use of the entire
2-opt neighborhood. These empirical observations were explored by the implementation of an
alternative VND (variable neighborhood descent) local search procedure. First, only moves in the
reduced 2-opt neighborhood are applied. The full neighborhood is explored only after a local
minimum is obtained in the reduced 2-opt neighborhood.

Table 3 illustrates the efficiency of the VND approach when compared with the classic use of
the full 2-opt neighborhood. It presents the solution values and computation times in seconds
for 100 iterations of the pure GRASP (without path-relinking) heuristic using both pure 2-opt
neighborhood and VND approach for local search. In both cases, local search was implemented
following a best improvement strategy.

The VND local search strategy starting by the reduced 2-opt neighborhood led to the best
solutions for 17 out of the 20 test problems. In addition, its computation times have been significantly
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Table 4
GRASP versus GRASP+PR, 200 pure GRASP iterations, instances with one-third of required nodes

Greedy (α = 0) GRASP (200 iterations) GRASP + PR (same running time)

Nodes Value Value Seconds Value Seconds Iterations

50 906 789 0.359 789 0.359 207
75 1181 830 0.782 830 0.797 191
100 1030 919 1.406 919 1.406 191
125 1306 1145 2.343 1148 2.344 188
150 1429 1121 3.469 1108 3.469 191
175 1606 1272 4.828 1272 4.828 193
200 1595 1295 6.500 1295 6.500 187
225 1625 1416 8.594 1401 8.609 195
250 1956 1531 10.859 1491 10.860 186
300 2030 1693 15.750 1657 15.797 191

smaller for all instances. As an example, in the case of the largest instance with two-thirds of required
nodes, the time taken by 100 GRASP iterations using the VND local search strategy amounted
to only 47.8% of the time taken when exclusively the complete 2-opt neighborhood was used. The
GRASP heuristic using the VND local search strategy performed better both in terms of solution
quality and computation times.

5.4. Probabilistic choice of α

We have already shown in Section 5.1 that although choosing α = 0.05 most often leads to better
results than α = 0.10 for the greedy randomized heuristic proposed for the STSP, for some instances
the latter was a better choice than the former. Different probabilistic strategies were considered in
Prais and Ribeiro (2000) for the choice of the RCL parameter α, in contrast with the commonly used
choice of fixing its value (see also Resende and Ribeiro, 2016). It was shown that a randomly chosen
α from a decreasing nonuniform discrete probability distribution offers a good compromise between
the running time of the algorithm and the quality of the solutions produced by the randomized
heuristic. We relied on this work to sustain that it could be a good choice, in addition to the
previously used appropriate value α = 0.05, to consider also other higher values for this parameter
with smaller probabilities of being chosen at each iteration. Therefore, in the following experiments,
we used α = 0.05 with a probability 70% and the values α = 0.10 and α = 0.20 with probabilities
20% and 10%, respectively.

5.5. Path-relinking

In this section, we address the impact of path-relinking in the search process. Tables 4 and 5 show
the lengths of the solutions produced by the nearest neighbor adaptive greedy heuristic for the pure
GRASP heuristic running for 200 iterations (together with its running time in seconds), and by
the GRASP with backward path-relinking running by the same time taken by 200 pure GRASP
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Table 5
GRASP versus GRASP + PR, 200 pure GRASP iterations, instances with two-thirds of required nodes

Greedy (α = 0) GRASP (200 iterations) GRASP + PR (same running time)

Nodes Value Value Seconds Value Seconds Iterations

50 1356 978 0.750 978 0.750 179
75 1204 1031 1.781 1029 1.782 183
100 1290 1211 3.484 1193 3.485 182
125 1915 1450 6.297 1427 6.313 196
150 1847 1615 9.812 1567 9.844 184
175 2085 1704 14.640 1667 14.641 191
200 2484 1952 19.828 1895 19.828 177
225 2549 2024 27.266 1973 27.281 191
250 2523 2165 35.078 2080 35.172 182
300 2759 2308 62.328 2219 62.609 193

Fig. 4. Time-to-target plot for 200-node instance with one-third of required nodes and target value set to 1330.

iterations. The randomized heuristic used in the construction phase of both pure GRASP and
GRASP with path-relinking algorithms uses the probabilistic criterion for the choice of α discussed
in Section 5.4. The local search phase of both pure GRASP and GRASP with path-relinking
algorithms was implemented using the best improvement VND strategy starting by the reduced
2-opt neighborhood. Path-relinking used elite sets formed by at most ten elements.

Path-relinking considerably improved GRASP performance, leading to better solutions for all
but one instance in the same running time and fewer iterations than the pure GRASP heuristic.
Time-to-target plots for GRASP and GRASP with path-relinking (GRASP+PR) algorithms for
200-node instances are shown in Figures 4 and 5. The target values are 1330 and 2000 for the
instances with one-third and two-thirds of required nodes, respectively. Each algorithm was run
200 times. The plots in these figures provide empirical evidence that algorithm GRASP + PR
outperforms GRASP for these instances and target values.
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Fig. 5. Time-to-target plot for 200-node instance with two-thirds of required nodes, and target value set to 2000.

Table 6
Restart strategies for 1000 iterations, instances with one-third of required nodes

No restarts Restart(100) Restart(200)

Nodes Value Seconds Value Seconds Value Seconds

50 789 1.75 789 1.71 789 1.70
75 830 4.03 830 4.06 830 4.04
100 919 7.23 919 7.20 919 7.18
125 1143 12.37 1143 12.26 1143 12.20
150 1105 19.07 1105 18.51 1105 18.32
175 1272 26.73 1272 27.01 1272 27.78
200 1295 36.28 1295 35.62 1295 35.59
225 1377 47.03 1384 48.95 1389 47.71
250 1489 62.23 1487 59.00 1498 60.50
300 1648 88.51 1629 85.95 1645 86.46

6. Restart strategies for GRASP with path-relinking

Resende and Ribeiro (2011) have shown that restart strategies are able to reduce the running time
to reach a target solution value for many problems. We apply the same type of restart(κ) strategy in
which the elite set is emptied and the heuristic restarted from scratch after κ consecutive iterations
have been performed without improvement in the best solution found. We evaluate the performance
of the restart strategies for the Steiner TSP for κ = 100 and κ = 200. Computational results for
the restart strategies for STSP are displayed in Tables 6 and 7, showing that they contribute to find
better solutions in the same number of iterations, mainly when the problem size increases.

Figure 6 depicts time-to-target plots for the restart(200) strategy, compared to the original strategy
without restarts, for the 200-node instance with two-thirds of required nodes and the target value
set to 1900.

As previously observed in Resende and Ribeiro (2011, 2016), the effect of restart strategies can
be mainly noted in the longest runs. Considering the 200 runs for the 200-node instance with the
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Table 7
Restart strategies for 1000 iterations, instances with two-thirds of required nodes

No restarts Restart(100) Restart(200)

Nodes Value Seconds Value Seconds Value Seconds

50 978 4.03 978 3.96 978 3.95
75 1029 9.46 1029 9.45 1029 9.26
100 1193 18.95 1193 18.73 1193 18.43
125 1421 33.04 1417 33.93 1420 33.09
150 1565 53.39 1564 53.04 1562 52.23
175 1657 77.25 1665 76.84 1652 76.23
200 1883 105.53 1885 105.68 1867 105.20
225 1941 148.96 1953 144.68 1928 142.26
250 2054 173.68 2073 175.01 2035 176.04
300 2203 304.40 2192 310.03 2205 296.76

Fig. 6. Time-to-target plot for 200-node instance with two-thirds of required nodes and target value set to 1900.

target value set to 1900, they are associated with the column corresponding to the fourth quartile of
Table 8. Entries in this quartile correspond to those in the heavy tails of the runtime distributions.
The restart strategies in general do not affect too much the other quartiles of the distributions,
which is a desirable characteristic. Compared to the no restart strategy, the restart(200) strategy
was able to reduce not only the average running time in the fourth quartile, but also in the third and
second quartiles. Consequently, strategy restart(200) performed the best among those tested, with
the smallest average running times over the 200 runs.
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Table 8
Summary of computational results for each restart strategy for the 200-node instance: 200 independent runs were executed
for each strategy. Each run was made to stop when a solution as good as the target solution value 1900 was found. For
each strategy, the table shows the distribution of the running times by quartile. For each quartile, the table gives the
average running times in seconds over all runs in that quartile. The average running times over the 200 runs are also given
for each strategy.

Average running times in quartile (seconds)

Strategy 1st 2nd 3rd 4th Average

Without restarts 3.648 9.915 17.952 37.355 17.218
Restart(100) 2.933 8.466 17.067 37.509 16.494
Restart(200) 2.955 8.093 15.410 34.878 15.334

Table 9
Larger instances: description and numerical results for 1000 iterations of the GRASP heuristic using restarts and path-
relinking

Instance name Nodes Edges Required nodes Solution value Time (seconds)

euroroad05 1174 1417 58 31,571 147.5
euroroad10 1174 1417 117 49,975 354.9
euroroad15 1174 1417 176 58,016 684.6
euroroad20 1174 1417 234 71,967 1162.0
isprouters05 2113 6632 105 20,258 1030.5
isprouters10 2113 6632 211 37,486 3360.7
isprouters15 2113 6632 316 51,571 6850.6
rome05 3353 8870 167 481,048 1893.5
rome10 3353 8870 335 622,491 5196.2
rome15 3353 8870 502 795,535 8494.4

7. Results for larger instances

We have also created a set of ten substantially larger test instances for future benchmarking purposes.
These instances were created from tree sparse graphs:

� street network of the city of Rome (Storchi et al., 1999);
� main roads between European cities (Rossi and Ahmed, 2015); and
� network of main Internet service providers at global level (Spring et al., 2002).

For each of the above graphs, we created several different instances with different number of
required nodes, randomly chosen from the set of vertices of the graph. The number of nodes, edges,
and required nodes, together with the walk lengths and the running times in seconds obtained by the
GRASP heuristic using restarts and path-relinking, are presented in Table 9. All data are available
from http://www2.ic.uff.br/∼rinterian/instances/allinstances.html.
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8. Concluding remarks

In the STSP, one seeks a minimum-weight closed walk that visits a subset of required nodes. Since
only a walk is sought, nodes can be visited more than once and edges may be traversed more than
once.

In this paper, we developed a GRASP with path-relinking and restarts for solving the STSP.
The algorithm used in the construction phase is a randomized extension of the nearest neighbor
heuristic for the TSP. A VND strategy exploring a reduced 2-opt neighborhood is used to optimize
a best-improving local search scheme. Path-relinking and restart strategies are used to improve the
efficiency of the GRASP algorithm.

Extensive computational results for a set of instances previously used in the literature are reported.
In addition, we also considered a set of larger test instances derived from real-life graphs. Since
neither optimal values nor even upper bounds have been previously reported for these instances, the
solutions obtained by the GRASP with path-relinking and restarts heuristic proposed in this work
cannot be directly compared to other solutions.

As a step toward avoiding this difficulty and facilitating the research on this problem, we made
all test instances considered in this paper available at the URL http://www2.ic.uff.br/�rinterian/
instances/allinstances.html together with their best-known solution values. This website will be
updated with information provided by other researchers working on this problem with optimal
values, lower and upper bounds for these and other benchmarking instances.
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