
Intl. Trans. in Op. Res. 00 (2017) 1–17
DOI: 10.1111/itor.12429

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

A biased random-key genetic algorithm for scheduling
heterogeneous multi-round systems

Julliany S. Brandãoa,b, Thiago F. Noronhac, Mauricio G. C. Resended and
Celso C. Ribeiroa

aInstitute of Computing, Universidade Federal Fluminense Niterói, RJ 24210-346, Brazil
bCentro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro, RJ 20271-110, Brazil

cDepartment of Computer Science, Universidade Federal de Minas Gerais Belo Horizonte, MG 24105, Brazil
dAmazon.com, Mathematical Optimization and Planning Seattle, WA 98109, USA

E-mail: dscjbrandao@gmail.com [Brandão]; tfn@dcc.ufmg.br [Noronha]; mresende@gmail.com [Resende];
celso@ic.uff.br [Ribeiro]

Received 30 November 2015; received in revised form 30 April 2016; accepted 31 May 2016

Abstract

A divisible load is an amount W of computational work that can be arbitrarily divided into independent
chunks of load. In many divisible load applications, the load can be parallelized in a master–worker fashion,
where the master distributes the load among a set P of worker processors to be processed in parallel. The
master can only send load to one worker at a time, and the transmission can be done in a single round or in
multiple rounds. The multi-round divisible load scheduling problem consists in (a) selecting the subset A ⊆ P
of workers that will process the load, (b) defining the order in which load will be transmitted to each of them,
(c) defining the number m of transmission rounds that will be used, and (d) deciding the amount of load
that will be transmitted to each worker i ∈ A at each round k ∈ {1, . . . , m}, so as to minimize the makespan.
We propose a heuristic approach that determines the transmission order, the set of the active processors and
the number of rounds by a biased random-key genetic algorithm. The amount of load transmitted to each
worker is computed in polynomial time by closed-form formulas. Computational results showed that the
proposed genetic algorithm outperformed a closed-form state-of-the-art heuristic, obtaining makespans that
are 11.68% smaller on average for a set of benchmark problems.

Keywords: divisible loads; divisible load scheduling; multi-round; biased random-key genetic algorithms; metaheuristics

1. Introduction

A divisible load is an amountW of computational work that can be arbitrarily divided and distributed
among different processors to be computed in parallel. The processors are arranged in a star
topology and the load is stored in a central master processor. The master splits the load into chunks

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148,
USA.

2 J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17

Fig. 1. Example of an optimal single-round scheduling.

of arbitrary sizes and transmits each of them to the worker processors. We assume that the master
can only send load to one worker at a time, and that it does not compute the load itself. In addition,
a worker can only start the computation of a piece of load after its transmission was completed,
i.e., after this worker has entirely received its load.

The workers are heterogeneous in terms of processing power, communication speed, and setup
times. Due to communication and setup times, it might be faster not to use all the available
worker processors to compute the load. Those used in this computation are referred to as active
workers. The order used by the master to send the load to each worker is called the activation order.
Once the latter is set, the transmission can be performed either in a single round or in multiple
rounds.

In single-round systems (Abib and Ribeiro, 2009; Beaumont et al., 2008, 2005, 2003b; Berlińska
et al., 2009; Bharadwaj et al., 1996; Blazewicz and Drozdowski, 1997; Drozdowski, 1997; Droz-
dowski and Wolniewicz, 2003, 2006; Li et al., 2000; Shokripour et al., 2011; Wang et al., 2013, 2014;
Wolniewicz, 2003), each active worker receives its load in a single chunk, and the setup costs are
incurred only once for each worker. However, in this case, the ith worker in the transmission order
remains idle until the master sends the load to all workers that appear earlier in the activation order.
An example of an optimal single-round schedule is shown in Fig. 1. All ten workers are active and
the activation order is < 6, 1, 8, 7, 9, 5, 3, 10, 4, 2 >. Black boxes represent the setup time to start
the communication with the master, dashed boxes correspond to the amount of time needed to
receive the respective load chunk, and gray boxes show the time spent by the worker to process this
load. This example does not show setup times to start processing the load. It can be seen that the
master only starts the communication with a worker after it finishes the communication with the
previous worker in the transmission order. One can also see that each worker receives a single load
chunk and that it only starts processing this chunk after its transmission is finished. Since the load
can be arbitrarily split, all processors stop and finish their work at the same time in the optimal
solution minimizing the makespan (Beaumont et al., 2003b).

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17 3

Fig. 2. Example of an optimal three-round scheduling.

In multi-round systems (Beaumont et al., 2005, 2003a; Berlinska and Drozdowski, 2010; Bharad-
waj et al., 1995; Drozdowski and Lawenda, 2006, 2007; Hsu et al., 2008; Lin et al., 2008; Maciej and
Marcin, 2008; Shokripour et al., 2010, 2012; Wolniewicz, 2003; Yang and Casanova, 2003a, 2003b;
Yang et al., 2007, 2005), the transmission is divided into rounds and every active worker receives
a load chunk at each round. The activation order is the same for all rounds (Yang and Casanova,
2003a, 2003b; Yang et al., 2005). Multi-round systems may reduce the makespan by decreasing the
idle times, at the additional cost of repeated setup times at each round. Figure 2 illustrates an optimal
three-round schedule. The activation order is < 6, 8, 7, 1, 9, 3, 5, 2, 4, 10 >, but only the seven first
workers are active. It can be seen that the master only starts the communication with a worker after
it finishes the communication with the previous worker in the activation order. Idle times in the first
round are smaller, because the load chunks are spread among the three rounds. One can also see
that each worker only starts processing a load chunk after its transmission is finished. Again, as the
load can be arbitrarily split, all processors stop at the same time in the optimal solution minimizing
the makespan (Beaumont et al., 2003b).

We focus on the scheduling of multi-round systems (Beaumont et al., 2003b; Shokripour et al.,
2012). Let W ∈ R+ be the amount of load to be processed, 0 (zero) be the index of the master
processor, and P = {1, . . . , |P|} be the set of indices of the worker processors. Each processor i ∈ P
has (a) a setup time gi ∈ R+ to start the communication with the master, (b) a communication time
Gi ∈ R+ needed to receive each unit of the load from the master, (c) a setup time si ∈ R+ to start
the load computation, and (d) a processing time wi ∈ R+ needed to process each unit of the load.
Therefore, it takes gi + Gi · θ

j
i units of time for the master to transmit a load chunk of size θk

i ≥ 0
to processor i ∈ P in round k. Furthermore, it takes an additional si + wi · θk

i units of time for this
worker to process the chunk of load assigned to it.

The multi-round divisible load scheduling (MR-DLS) problem consists in (a) defining an activa-
tion order π , (b) deciding the number n of active workers, (c) choosing the number m of rounds,
and (d) determining the amount of load θk

i that will be transmitted to each processor i ∈ P at each

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

4 J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17

round k ∈ {1, . . . , m}, with
∑

i∈P
∑

k∈{1,...,m} θ
k
i = W , so as to minimize the makespan. The latter is

defined as the total elapsed time since the master began to send data to the first worker, until the last
worker stops its computation. We assume that processor πi ∈ P is the ith worker to be activated in
the activation order π , for i = 1, . . . , |P|. The first n workers in π are active: A = {π1, . . . , πn} and
θk
πi

= 0, for all i ∈ {n + 1, . . . , |P|} and k ∈ {1, . . . , m}.
In this work, we propose a biased random-key genetic algorithm (BRKGA) (Ericsson et al.,

2002; Gonçalves and Resende, 2011, 2004) for solving MR-DLS. BRKGAs have been successfully
used for solving many permutation based combinatorial optimization problems, see, e.g. (Duarte
et al., 2014; Gonçalves and Resende, 2011, 2013, 2014; Gonçalves et al., 2016; Noronha et al.,
2011), including the single-round divisible load scheduling (DLS) problem (Brandão et al., 2015).
Computational results showed that the proposed genetic algorithm outperformed a closed-form
state-of-the-art heuristic (Shokripour et al., 2012), obtaining makespans that are 11.68% smaller
on average for a set of benchmark problems.

The remainder of this paper is organized as follows. Related work is presented and discussed in
the next section. The proposed heuristic is described in Section 3. Computational experiments are
reported in Section 4. Concluding remarks are drawn in the last section.

2. Related work

There are many variants of the DLS problem. The main differences between them are discussed
below, followed by a literature review of the particular variant considered in this paper.

In the case of homogeneous worker processors, the values of gi, Gi, si, and wi are the same for all
processors i ∈ P (Beaumont et al., 2005; Bharadwaj et al., 1995, 1996; Kim, 2003; Lin et al., 2008;
Maciej and Marcin, 2008; Yang and Casanova, 2003b; Yang et al., 2005). When the workers are
heterogeneous, these values may be different for each worker (Abib and Ribeiro, 2009; Beaumont
et al., 2008, 2003a, 2003b; Berlinska and Drozdowski, 2010; Drozdowski, 1997; Drozdowski and
Lawenda, 2006, 2007; Drozdowski and Wolniewicz, 2003, 2006; Hsu et al., 2008; Li et al., 2000;
Shokripour et al., 2010, 2011, 2012; Wang et al., 2013, 2014; Wolniewicz, 2003; Yang and Casanova,
2003a, 2003b; Yang et al., 2007, 2005). Heterogeneous systems are more common than homogeneous
systems.

When the system is dedicated, it is assumed that all resources (such as processors, memory, and
network) are used to process one single computational load (Abib and Ribeiro, 2009; Beaumont
et al., 2003b; Berlinska and Drozdowski, 2010; Berlińska et al., 2009; Bharadwaj et al., 1996;
Blazewicz and Drozdowski, 1997; Drozdowski, 1997; Drozdowski and Wolniewicz, 2003, 2006;
Shokripour et al., 2010; Wang et al., 2013, 2014; Wolniewicz, 2003; Yang and Casanova, 2003a,
2003b). Nondedicated systems may be used to simultaneously process different computational loads
(Berlinska and Drozdowski, 2010; Berlińska et al., 2009; Shokripour et al., 2011). Most authors
assume that the systems are dedicated.

Variants of the DLS problem that are buffer constrained (Berlinska and Drozdowski, 2010;
Berlińska et al., 2009; Drozdowski and Lawenda, 2006; Drozdowski and Wolniewicz, 2003, 2006;
Li et al., 2000; Maciej and Marcin, 2008; Wolniewicz, 2003; Yang and Casanova, 2003a, 2003b)
assume a limitation to the maximum chunk size that can be received by each worker processor.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17 5

When such a limitation does not exist, the problem is said to be unconstrained (Abib and Ribeiro,
2009; Beaumont et al., 2005, 2003b; Bharadwaj et al., 1995, 1996; Blazewicz and Drozdowski, 1997;
Drozdowski, 1997; Lin et al., 2008; Shokripour et al., 2010, 2011, 2012; Wang et al., 2013, 2014;
Yang et al., 2007). Many authors assume unconstrained systems, because there is usually plenty of
secondary memory to temporarily store the load at the workers.

The variant of the MR-DLS problem considered in this work is unconstrained and assumes
dedicated and heterogeneous worker processors. It was proved to be NP-hard in (Yang et al., 2007).
The main heuristics in the literature are discussed below.

Yang and Casanova (2003b) and Yang et al. (2005) were the first to tackle multi-round scheduling
problems with heterogeneous workers. They proposed the UMR heuristic. The workers are sorted
in nondecreasing order of their Gi values. This order is used as the activation order. Let the round
length of any worker i at any round k be the sum of the setup, communication, and computation
times of i at round k. UMR imposes as an additional constraint that at any given round all active
workers should have the same round length. With this additional constraint, the authors are able
to derive closed-form formulas to compute the number of active workers n and the number of
rounds m, as well as analytical expressions to compute the value of θk

i for all i ∈ {1, . . . , n} and
k ∈ {1, . . . , m}. Computational experiments showed that UMR outperformed the algorithms in
Bharadwaj et al. (1996) and Rosenberg (2001) designed for homogeneous and single-round systems,
respectively.

Hsu et al. (2008) proposed the extended smallest communication ratio (ESCR) heuristic. The
activation order is computed as in Yang and Casanova (2003b) and Yang et al. (2005). However,
differently from Yang and Casanova (2003b) and Yang et al. (2005), all workers in P are activated,
i.e., n = |P|. ESCR calculates the least common multiplier (LCM) of {Gi + wi : i ∈ P} and uses
this value to compute the round length. The number of rounds m is computed using closed-form
formulas based on the LCM. Analytical expressions are used to compute the value of θk

i for all
i ∈ {1, . . . , n} and k ∈ {1, . . . , m}. Computational experiments showed that ESCR outperformed
the algorithm in Beaumont et al. (2003a), although the latter was designed for single-round
systems.

Beaumont et al. (2003b) proposed and evaluated four different heuristics for the MR-DLS
problem. The one that obtained the best results was the linear programming with adaptive period
(LPAP) heuristic. Again, the activation order is computed as in Yang and Casanova (2003b) and
Yang et al. (2005). However, the round length is not the same at each round. Instead, LPAP computes
an upper bound T to the makespan. Based on this estimation, the round length Tk of each round k
is set to Tk = √

T . Once this round length is set, LPAP uses linear programming to find the largest
chunk size θk

i that can be sent to each processor i ∈ P at this round k so that the round length is
not larger than Tk. Since the upper bound T becomes tighter at each iteration of this algorithm, the
round length of any round k + 1 is always smaller than the round length of round k. Computational
experiments showed that LPAP outperforms the algorithm of Bharadwaj et al. (1996).

Shokripour et al. (2012) proposed two heuristics: computational based method and communica-
tion based method (CBM). The best results were obtained by CBM. Let round size be the sum of
the load chunks all the active workers receive at any given round. CBM imposes as an additional
constraint that all rounds have the same round size Q = W/m. The activation order π in which load
is sent to the workers is obtained by sorting the workers by nondecreasing order of their Gi values.
Processor πi is the ith worker in the activation order π , for i = 1, . . . , |P|. The number of active

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

6 J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17

workers (n) in this order and the number of rounds (m) are computed as follows. Let n̄ ∈ {1, . . . , |P|}
be any candidate value for n. First, CBM assumes that the number of rounds is m̄ = q(n̄, π), where

q(n̄, π) =

√√√√√√√√√
W

[(
1 +

n̄∑
i=2

�πi

)
(Gπ1

+ wπ1
) −

(
1 +

n̄∑
i=2

Eπi

) ∑n̄
j=1 �π j

Gπ j

]
(

1 +
n̄∑

i=2
Eπi

) [(
1 +

n̄∑
i=2

�πi

) (
n̄∑

j=2
φπ j

Gπ j
+

n̄∑
j=1

gπ j

)
−

n̄∑
i=2

φπi

n̄∑
j=1

�π j
Gπ j

] .

Then, the amount of load that can be processed using n̄ active workers and m̄ = q(n̄, π) rounds,
following the activation order π , is estimated by

f (n̄, π) = q(n̄, π) ·
⎛
⎝

(
1 + ∑n̄

i=2 �πi

) (∑n̄
j=2 (φπ j

Gπ j
+ gπ j

) − sπ1

)
wπ1

− ∑n̄
j=2 �π j

Gπ j

+
n̄∑

i=2

φπi

⎞
⎠ ,

where �πi
= (Gπ1

+ wπ1
)/(Gπi

+ wπi
) and φπi

= (Gπ1
+ wπ1

)/(Gπi
+ wπi

). Finally, CBM sets the
number of active workers to the smallest value of n̄ such that f (n̄, π) ≥ W , i.e.,

n = argminn̄=1,...,|P|{ f (n̄, π) : f (n̄, π) ≥ W }, (1)

and the number of rounds m = q(n, π).
Once the values of n and m have been computed, the fraction απi

of the load size Q processed by
each worker πi ∈ {1, . . . , n} at every round k = {1, . . . , m − 1} is given by

απi
=

{(
1 − 1

Q

∑n
i=2 φπi

) / (
1 + ∑n

i=2 �πi

)
, if i = 1,

απ1
�πi

+ 1
Qφπi

, if i = 2, . . . , n.

Consequently, the fraction βπi
of the load size Q processed by each worker πi ∈ {1, . . . , n} in the last

round is given by

βπi
=

{(
1 − 1

Q

∑n
i=2 �πi

) / (
1 + ∑n

i=2 Eπi

)
, if i = 1,

βπ1
Eπi

+ 1
Q�πi

, if i = 2, . . . , n,

where δπi
= (sπi

− sπi+1
− gπi+1

)/(wπi+1
+ Gπi+1

), επi
= wπi

/(wπi+1
+ Gπi+1

), Eπi
= ∏i

j=2 επ j
, and �πi

= ∑i
j=2 (δπ j

∏i
l= j+1 επl

).
The pseudo-code of CBM is presented in Fig. 3. It receives as input the value W , the set P, and

the values of gi, Gi, si, and wi for every i ∈ P. The transmission order π is computed in line 1. The
number n of active workers is computed in lines 2 to 5, while the number m of rounds is calculated
in line 6. The round size Q is computed in line 7. The loop from lines 8 to 11 computes the value
of θk

i for every active worker πi ∈ {1, . . . , n}. The size of the load chunk received by each worker πi
at each of the m − 1 first rounds is set in line 9, while that for the last round is set in line 10. The
values of θk

πi
for nonactive workers are set in the loop of lines 12 to 14. The solution, represented

by π, n, m, and θ , is returned in line 15. Computational experiments showed that heuristic CBM

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17 7

procedure CBM(W, P, gi, Gi, si, wi)
1 Let π be a permutation of P with Gπi

≤ Gπi+1 , for i = 1, . . . , |P | − 1;
2 Set n ← 1;
3 while f(n, π) < W and n < |P | do;
4 n ← n + 1;
5 end-while;
6 Setm ← q(n, π);
7 Set Q ← W/m;
8 for i = 1, . . . , n do;
9 Set θk

πi
← Q · απi

, for all k ∈ {1, . . . , m − 1};
10 Set θm

πi
← Q · βπi

;
11 end-for
12 for i = n + 1, . . . , |P | do;
13 Set θk

πi
← 0, for all k ∈ {1, . . . , m};

14 end-for;
15 return < π, n, m, θ >;
end CBM.

Fig. 3. Pseudo-code of the CBM heuristic for MR-DLS.

outperformed heuristics LPAP (Beaumont et al., 2003b) and ESCR (Hsu et al., 2008). To the best
of our knowledge, CBM is the best heuristic for problem MR-DLS at the time of writing.

3. Biased random-key genetic algorithm

Genetic algorithms with random keys, or random-key genetic algorithms (RKGAs), were first intro-
duced by Bean (1994) for combinatorial optimization problems whose solutions may be represented
by permutation vectors. Solutions are represented as vectors of randomly generated real numbers
called keys. A deterministic algorithm, called a decoder, takes as input a solution vector and asso-
ciates with it a feasible solution of the combinatorial optimization problem, for which an objective
value or fitness can be computed. Two parents are selected at random from the entire population to
implement the crossover operation in the implementation of an RKGA. Parents are allowed to be
selected for mating more than once in the same generation.

A BRKGA differs from an RKGA in the way parents are selected for crossover (see Gonçalves
and Resende, 2011, for a review). In a BRKGA, each element is generated combining one element
selected at random from the elite solutions in the current population, while the other is a nonelite
solution. The selection is said to be biased because one parent is always an elite solution, and has a
higher probability of passing its genes to the new generation.

The BRKGA for MR-DLS, called GA-KEY, evolves a population of chromosomes that consists
of vectors of real numbers. Each solution is represented by a vector of |P| + 2 components, in
which each key is a real number in the range [0, 1). Each of the |P| first keys is associated with
a worker processor in P. The (|P| + 1)th key is associated with the number n of active workers,
while the (|P| + 2)th key is associated with the number m of rounds. Each solution represented by

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

8 J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17

Fig. 4. Population evolution between consecutive generations of a BRKGA.

a chromosome is decoded by an algorithm that receives the vector of keys and builds a feasible
solution for MR-DLS, i.e., the decoder returns < π, n, m, θ >.

Given any chromosome c from the population, the decoding algorithm builds a solution as
follows. The activation order π is determined by sorting the worker processors in a nondecreasing
order of their keys. Let x ∈ [0, 1) be the value of the (|P| + 1)th key in chromosome c. The number
of active workers is an integer number uniformly distributed in the interval [1, |P|] obtained from
the value of x by n = ⌊|P| · x + 1

⌋
. Since, in principle, there is no upper bound to the number of

rounds, we use a different approach to compute the number m of rounds. Let y ∈ [0, 1) be the value
of the (|P| + 2)th key in chromosome c. The number of rounds is set as m = ⌊ 1

1−y

⌋
. An advantage

of this approach is that smaller values of m are more likely to be chosen, which is opportune as
the larger is the number of rounds, the larger is the amount of time spent in communication and
computation setup times. The values of θk

i , for all i ∈ P and k ∈ {1, . . . , m}, are calculated as in
CBM (Shokripour et al., 2012), i.e., following lines 7 (we recall that the value of m is now given by
the last random key) to 14 of the pseudo-code in Fig. 3. The makespan of the resulting solution is
used as the fitness of the chromosome.

We use the parametric uniform crossover scheme proposed in Spears and de Jong (1991) to
combine two parent solutions and produce an offspring. In this scheme, the offspring inherits each
of its keys from the best fit of the two parents with probability 0.6 and from the least fit parent
with probability 0.4. This genetic algorithm does not use the standard mutation operator, where
parts of the chromosomes are changed with small probability. Instead, the concept of mutants is
used: mutant solutions are introduced in the population in each generation, randomly generated
in the same way as in the initial population. Mutants play the same role of the mutation operator
in traditional genetic algorithms, diversifying the search and helping the procedure to escape from
locally optimal solutions.

The (|P| + 2) keys in the chromosome are randomly generated in the initial population. At each
generation, the population is partitioned into two sets: TOP and REST . Consequently, the size
of the population is |TOP| + |REST |. Subset TOP contains the best solutions in the population.
Subset REST is formed by two disjoint subsets: MID and BOT , with subset BOT being formed by
the worst elements in the current population. As illustrated in Fig. 4, the chromosomes in TOP are

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17 9

simply copied to the population of the next generation. The elements in BOT are replaced by newly
created mutants. The remaining elements of the new population are obtained by crossover with one
parent randomly chosen from TOP and the other from REST . This distinguishes a BRKGA from
the RKGA of Bean (1994), where both parents are selected at random from the entire population.
Since a parent solution can be chosen for crossover more than once in a given generation, elite
solutions have a higher probability of passing their random keys to the next generation. In this way,
|MID| = |REST − BOT | offspring solutions are created. In our implementation, the population
size was set to γ = |TOP| + |MID| + |BOT | = 5 × |P|, with the sizes of sets TOP, MID, and BOT
set to 0.15 × γ , 0.7 × γ , and 0.15 × γ , respectively, as suggested in Brandão et al. (2015), Buriol
et al. (2005, 2007), Chan et al. (2015), Gonçalves et al. (2009, 2016), Gonçalves and Resende (2011),
Noronha et al. (2011), and Zheng et al. (2014).

4. Computational experiments

In this section, we report computational experiments to assess the performance of the BRKGA
GA-KEY. This algorithm was implemented in C++ and compiled with GNU C++ version 4.6.3.
The experiments were performed on a 3.40 GHz i7-4770 Intel Core CPU with 16 GB of RAM
memory.

Our experiments were carried out on the same set of instances used by Shokripour et al. (2012).
The six instances have 50 workers and the value of W is equal to 50, 250, 450, 650, 850, and 1050.
The values gi, si, and wi, i = 1, . . . , |P|, were randomly generated, with Gi = 20 × wi.

Since Shokripour et al. (2012) reported numerical results showing that heuristic CBM outper-
formed both LPAP (Beaumont et al., 2003b) and ESCR (Hsu et al., 2008), the experiments in
this section will address exclusively the comparison between the newly proposed GA-KEY genetic
algorithm and CBM.

In the first experiment, we investigate if GA-KEY efficiently identifies the relationships between
keys and good solutions, converging to better solutions than those obtained by CBM (Shokripour
et al., 2012). To do so, we compare the performance of GA-KEY with that of a multi-start procedure
(MS-KEY) that uses the same decoding heuristic. Each iteration of MS-KEY applies the decoding
heuristic starting from a randomly generated vector of random keys. Therefore, nothing is learned
from one iteration to the next. GA-KEY and MS-KEY were run ten times for each instance,
with different seeds for the random number generator (Matsumoto et al., 1998). GA-KEY was
made to stop after |P| generations without improvement in the cost of the best solution found,
while MS-KEY after |P| × γ iterations without improvement, where γ is the population size of
GA-KEY.

Table 1 reports the results of this experiment. The first column identifies the load W of each
instance. The two next columns provide the makespan and the running time in seconds obtained by
the CBM heuristic. The three next columns provide average results over ten runs for the makespan
and the running time in seconds obtained by MS-KEY, as well as the relative improvement obtained
in the makespan by MS-KEY with respect to that previously computed by CBM. The three last
columns display average results over ten runs for the makespan and the running time in seconds
obtained by GA-KEY, as well as the relative improvement obtained in the makespan by GA-KEY
with respect to that computed by CBM. The average relative improvement of GA-KEY over CBM

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

10 J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17

Table 1
Results of GA-KEY and MS-KEY compared with those of CBM

CBM MS-KEY GA-KEY

W Makespan
Time
(seconds) Makespan Gap (%)

Time
(seconds) Makespan Gap (%)

Time
(seconds)

50 1367.50 0.01 1183.85 13.43 0.25 1109.77 18.85 0.20
250 4614.69 0.01 4124.45 10.62 0.24 3954.85 14.30 0.21
450 7537.98 0.01 6865.69 8.92 0.24 6599.60 12.45 0.21
650 10,203.79 0.01 9600.56 5.91 0.28 9228.82 9.55 0.21
850 12,887.14 0.01 12,333.86 4.29 0.25 11,861.24 7.96 0.21
1050 15,578.63 0.01 15,065.73 3.29 0.25 14,492.70 6.97 0.22
Average 8698.29 0.01 8195.69 7.74 0.25 7874.50 11.68 0.21

amounted to up to 18.85%, observed for W = 50. The average relative improvements observed for
MS-KEY and GA-KEY were, respectively, 7.74% and 11.68%.

Figures 5 and 6 display six plots exhibiting how the value of the best solution obtained by each of
the genetic algorithms MS-KEY and GA-KEY evolves with the running time and compare them
with that obtained by CBM, for each of the instances considered in the experiment. They show that
GA-KEY systematically finds better solutions faster and that it converges to its best value before
one second for all test instances.

In the second experiment, we evaluate and compare the run time distributions (or time-to-target
plots—or ttt-plots, for short) of MS-KEY and GA-KEY. ttt-plots display on the ordinate axis the
probability that an algorithm will find a solution at least as good as a given target value within a
given running time, shown on the abscissa axis. Run time distributions have also been advocated
by Hoos and Stützle (1998) as a way to characterize the running times of stochastic local search
algorithms for combinatorial optimization. In this experiment, both MS-KEY and GA-KEY were
made to stop whenever a solution with cost smaller than or equal to a given target value was found.
The target is set as the cost of the best-known solution for the instance. The heuristics were run
200 times each, with different initial seeds for the pseudo-random number generator. Next, the
empirical probability distributions of the time taken by each heuristic to find a target solution value
are plotted. To plot the empirical distribution for each heuristic, we followed the methodology
proposed by (Aiex et al., 2002, 2007). We associate a probability pi = (i − 1

2)/200 with the ith
smallest running time ti and plot the points (ti, pi), for i = 1, . . . , 200. The more to the left is a plot,
the better is the algorithm corresponding to it.

Time-to-target plots for the six instances considered in this study are shown in Figs. 7 and
8. Figure 7 shows that GA-KEY finds solutions with makespan equal to 1109.28, 3954.92, and
6595.53 for the three first instances with probability close to 100% in less than one second of
running time, while MS-KEY may take up to 60 seconds to find solutions as good as those with
the same probability. Similar results are observed for the other instances in Fig. 8: GA-KEY finds
solutions with makespan equal to 9230.49, 11860.48, and 14492.37 for the three last instances with
probability close to 100% in less than five seconds of running time, while MS-KEY may take up to
120 seconds to find same quality solutions with the same probability. We used the tool proposed
by Ribeiro et al. (2012) to perform a direct numerical comparison of MS-KEY and GA-KEY.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17 11

Fig. 5. Best solution value versus running time along the first six seconds for CBM, MS-KEY, and GA-KEY.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

12 J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17

Fig. 6. Best solution value versus running time along the first six seconds for CBM, MS-KEY, and GA-KEY.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17 13

Fig. 7. ttt-plots for instances (a) W = 50, target = 1109.28, and P(TGA−KEY ≤ TMS−KEY) = 0.96; (b)
W = 250, target = 3954.92, and P(TGA−KEY ≤ TMS−KEY) = 0.97; and (c) W = 450, target = 6595.53, and

P(TGA−KEY ≤ TMS−KEY) = 0.98.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

14 J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17

Fig. 8. ttt-plots for instances (a) W = 650, target = 9230.49, and P(TGA−KEY ≤ TMS−KEY) = 0.99; (b)
W = 850, target = 11, 860.48, and P(TGA−KEY ≤ TMS−KEY) = 0.99; and (c) W = 1050, target = 14, 492.37, and

P(TGA−KEY ≤ TMS−KEY) = 0.99.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17 15

Let TGA−KEY (resp. TMS−KEY) be the continuous random variable representing the time needed by
GA-KEY (resp. MS-KEY) to find a solution as good as the target, and let P(TGA−KEY ≤ TMS−KEY)

be the probability that GA-KEY finds a solution as good as the target in less time than MS-KEY.
These probabilities are computed for the six test instances by the software developed by Ribeiro
et al. (2015) and reported in the captions of Figs. 7 and 8. We can see from these results that the
probability that GA-KEY finds the target in less time than MS-KEY is greater than or equal to
96% for all test instances, showing that BRKGA identifies the relationships between the keys and
the good solutions throughout the evolutionary process.

5. Concluding remarks

We considered the unconstrained multi-round divisible load scheduling problem with dedicated
and heterogeneous processors. Data transmission is divided into rounds and every active worker
receives a load chunk at each round. Multi-round systems may reduce the makespan by decreasing
the idle times, at the additional cost of repeated setup times at each round. A biased random-key
genetic algorithm was proposed for approximately solving this problem. This GA-KEY heuristic
improves upon the best algorithm in the literature in terms of solution quality, since it performs a
global search in the space of processor permutations in order to find the best transmission order
of the processors and the best values for the number of active processors and for the number of
rounds. Computational experiments showed that the makespans obtained by the proposed heuristic
improved those obtained by CBM by 11.68%, on average.

Acknowledgments

The work of Celso C. Ribeiro was partially supported by CNPq research grant 303958/2015-4 and
by FAPERJ research grant E-26/201.198/2014. The work of Mauricio G. C. Resende was done
when he was employed by AT&T Labs Research.

References

Abib, E.R., Ribeiro, C.C., 2009. New heuristics and integer programming formulations for scheduling divisible load tasks.
Proceedings of the IEEE Symposium on Computational Intelligence in Scheduling. Nashville, pp. 54–61.

Aiex, R., Resende, M., Ribeiro, C.C., 2002. Probability distribution of solution time in GRASP: an experimental investi-
gation. Journal of Heuristics 8, 343–373.

Aiex, R., Resende, M., Ribeiro, C.C., 2007. TTTPLOTS: a Perl program to create time-to-target plots. Optimization
Letters 1, 355–366.

Bean, J.C., 1994. Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing 2,
154–160.

Beaumont, O., Bonichon, N., Eyraud-Dubois, L., 2008. Scheduling divisible workloads on heterogeneous platforms under
bounded multi-port model. In: International Symposium on Parallel and Distributed Processing. IEEE, Miami, pp.
1–7.

Beaumont, O., Casanova, H., Legrand, A., Robert, Y., Yang, Y., 2005. Scheduling divisible loads on star and tree networks:
results and open problems. IEEE Transactions on Parallel and Distributed Systems 16, 207–218.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

16 J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17

Beaumont, O., Legrand, A., Robert, Y., 2003a. The master-slave paradigm with heterogeneous processors. IEEE Trans-
actions on Parallel and Distributed Systems 14, 897–908.

Beaumont, O., Legrand, A., Robert, Y., 2003b. Optimal algorithms for scheduling divisible workloads on heterogeneous
systems. 12th Heterogeneous Computing Workshop. IEEE Computer Society Press, Nice, pp. 98–111.

Berlinska, J., Drozdowski, M., 2010. Heuristics for multi-round divisible loads scheduling with limited memory. Parallel
Computing 36, 199–211.

Berlińska, J., Drozdowski, M., Lawenda, M., 2009. Experimental study of scheduling with memory constraints using
hybrid methods. Journal of Computational and Applied Mathematics 232, 638–654.

Bharadwaj, V., Ghose, D., Mani, V., 1995. Multi-installment load distribution in tree networks with delays. IEEE
Transactions on Aerospace and Electronic Systems 31, 555–567.

Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G., 1996. Scheduling divisible loads in parallel and distributed systems,
Wiley, IEEE Computer Society Press.

Blazewicz, J., Drozdowski, M., 1997. Distributed processing of divisible jobs with communication startup costs. Discrete
Applied Mathematics 76, 21–41.

Brandão, J.S., Noronha, T.F., Resende, M.G.C., Ribeiro, C.C., 2015. A biased random-key genetic algorithm for single-
round divisible load scheduling. International Transactions Operational Research 22, 823–839.

Buriol, L.S., Resende, M.G., Ribeiro, C.C., Thorup, M., 2005. A hybrid genetic algorithm for the weight setting problem
in OSPF/IS-IS routing. Networks 46, 36–56.

Buriol, L.S., Resende, M.G., Thorup, M., 2007. Survivable IP network design with OSPF routing. Networks 49,
51–64.

Chan, F., Tibrewal, R.K., Prakash, A., Tiwari, M., 2015. A biased random key genetic algorithm approach for inventory-
based multi-item lot-sizing problem. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture 229, 157–171.

Drozdowski, M., 1997. Selected Problems of Scheduling Tasks in Multiprocessor Computer Systems. Politechnika Poznan-
ska, Poznan.

Drozdowski, M., Lawenda, M., 2006. Multi-installment divisible load processing in heterogeneous systems with limited
memory. Parallel Processing and Applied Mathematics 3911, 847–854.

Drozdowski, M., Lawenda, M., 2007. Multi-installment divisible load processing in heterogeneous distributed systems.
Concurrency and Computation: Practice and Experience 19, 2237–2253.

Drozdowski, M., Wolniewicz, P., 2003. Divisible load scheduling in systems with limited memory. Cluster Computing 6,
19–29.

Drozdowski, M., Wolniewicz, P., 2006. Optimum divisible load scheduling on heterogeneous stars with limited memory.
European Journal of Operational Research 172, 545–559.

Duarte, A., Marti, R., Resende, M.G.C., Silva, R.M.A., 2014. Improved heuristics for the regenerator location problem.
International Transactions in Operational Research 21, 541–558.

Ericsson, M., Resende, M.G.C., Pardalos, P.M., 2002. A genetic algorithm for the weight setting problem in OSPF
routing. Journal of Combinatorial Optimization 6, 299–333.

Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C., 2009. A genetic algorithm for the resource constrained multi-project
scheduling problem. European Journal of Operational Research 189, 1171–1190.

Gonçalves, J.F., Resende, M.G.C., 2011. Biased random-key genetic algorithms for combinatorial optimization. Journal
of Heuristics 17, 487–525.

Gonçalves, J.F., Resende, M.G.C., 2013. A biased random key genetic algorithm for 2D and 3D bin packing problems.
International Journal of Production Economics 145, 500–510.

Gonçalves, J.F., Resende, M.G.C., 2014. An extended Akers graphical method with a biased random-key genetic algorithm
for job-shop scheduling. International Transactions in Operational Research 21, 215–246.

Gonçalves, J.F., Resende, M.G.C., 2004. An evolutionary algorithm for manufacturing cell formation. Computers and
Industrial Engineering 47, 247–273.

Gonçalves, J.F., Resende, M.G.C., Costa, M.D., 2016. A biased random-key genetic algorithm for the mini-
mization of open stacks problem. International Transactions in Operational Research 23, 25–46. Available at
http://dx.doi.org/10.1111/itor.12109

Hoos, H., Stützle, T., 1998. Evaluation of Las Vegas algorithms—pitfalls and remedies. In Cooper, G., Moral, S. (eds),
Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, pp. 238–245.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

J. S. Brandão et al. / Intl. Trans. in Op. Res. 00 (2017) 1–17 17

Hsu, C.H., Chen, T.L., Park, J.H., 2008. On improving resource utilization and system throughput of master slave job
scheduling in heterogeneous systems. The Journal of Supercomputing 45, 129–150.

Kim, H.J., 2003. A novel optimal load distribution algorithm for divisible loads. Cluster Computing —The Journal of
Networks Software Tools and Applications 6, 41–46.

Li, X., Bharadwaj, V., Ko, C., 2000. Divisible load scheduling on single-level tree networks with buffer constraints. IEEE
Transactions on Aerospace and Electronic Systems 36, 1298–1308.

Lin, X., Deogun, J., Lu, Y., Goddard, S., 2008. Multi-round real-time divisible load scheduling for clusters. High
Performance Computing 2008, Springer, pp. 196–207.

Maciej, D., Marcin, L., 2008. Scheduling multiple divisible loads in homogeneous star systems. Journal of Scheduling 11,
347–356.

Matsumoto, M., Nishimura, T., 1998. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Transactions on Modeling and Computer Simulation 8, 3–30.

Noronha, T.F., Resende, M.G.C., Ribeiro, C.C., 2011. A biased random-key genetic algorithm for routing and wavelength
assignment. Journal of Global Optimization 50, 503–518.

Ribeiro, C.C., Rosseti, I., Vallejos, R., 2012. Exploiting run time distributions to compare sequential and parallel stochastic
local search algorithms. Journal of Global Optimization 54, 405–429.

Ribeiro, C.C., Rosseti, I., Vallejos, R., 2015. tttplots-compare: a perl program to compare time-to-target plots or general
runtime distributions of randomized algorithms. Optimization Letters 9, 601–614.

Rosenberg, A.L., 2001. Sharing partitionable workloads in heterogeneous nows: greedier is not better. Proceedings of the
3rd IEEE International Conference on Cluster Computing, IEEE Computer Society, p. 124.

Shokripour, A., Othman, M., Ibrahim, H., 2010. A method for scheduling last installment in a heterogeneous multi-
installment system. Proceedings of the 3rd IEEE International Conference on Computer Science and Information
Technology, Chengdu, pp. 714–718.

Shokripour, A., Othman, M., Ibrahim, H., Subramaniam, S., 2011. A new method for job scheduling in a non-dedicated
heterogeneous system. Procedia Computer Science 3, 271–275.

Shokripour, A., Othman, M., Ibrahim, H., Subramaniam, S., 2012. New method for scheduling heterogeneous multi-
installment systems. Future Generation Computer Systems 28, 1205–1216.

Spears, W., de Jong, K., 1991. On the virtues of parameterized uniform crossover. In Belew, R., Booker, L. (eds) Proceedings
of the Fourth International Conference on Genetic Algorithms, Morgan Kaufman, San Mateo, pp. 230–236.

Wang, M., Wang, X., Meng, K., Wang, Y., 2013. New model and genetic algorithm for divisible load scheduling in
heterogeneous distributed systems. International Journal of Pattern Recognition and Artificial Intelligence 27(7).

Wang, X., Wang, Y., Meng, K., 2014. Optimization algorithm for divisible load scheduling on heterogeneous star networks.
Journal of Software 9, 1757–1766.

Wolniewicz, P., 2003. Divisible job scheduling in systems with limited memory. Ph.D. thesis, Poznan University of
Technology, Poznań.

Yang, Y., Casanova, H., 2003a. RUMR: Robust scheduling for divisible workloads. Proceedings of the 12th IEEE
Symposium on High Performance and Distributed Computing, Seattle, pp. 114–125.

Yang, Y., Casanova, H., 2003b. UMR: a multi-round algorithm for scheduling divisible workloads. Proceedings of the
17th International Parallel and Distributed Processing Symposium, Nice, pp. 24–32.

Yang, Y., Casanova, H., Drozdowski, M., Lawenda, M., Legrand, A., 2007. On the complexity of multi-round divisible
load scheduling. Technical Report 6096, INRIA Rhône-Alpes.

Yang, Y., van der Raadt, K., Casanova, H., 2005. Multi-round algorithms scheduling divisible loads. IEEE Transactions
on Parallel and Distributed Systems 16, 1092–1102.

Zheng, J.N., Chien, C.F., Gen, M., 2014. Multi-objective multi-population biased random-key genetic algorithm for the
3-D container loading problem. Computers & Industrial Engineering 89, 80–87.

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies

