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Abstract Given a set of lightpath requests, the problem of routing and wavelength (RWA)
assignment in wavelength division multiplexing (WDM) optical networks consists in rout-
ing a subset of these requests and assigning a wavelength to each of them, such that two
lightpaths that share a common link are assigned to different wavelengths. There are many
variants of this problem in the literature. We focus in the variant in which the objective is
to maximize the number of requests that may be accepted, given a limited set of available
wavelengths. This problem is called max-RWA and it is of practical and theoretical interest,
because algorithms for this variant can be extended for other RWA problems that arise from
the design of WDM optical networks. A number of exact algorithms based on integer pro-
gramming formulations have been proposed in the literature to solve max-RWA, as well as
algorithms to provide upper bounds to the optimal solution value. However, the algorithms
based on the state-of-the-art formulations in the literature cannot solve the largest instances
to optimality. For these instances, only upper bounds to the value of the optimal solutions
are known. The literature on heuristics for max-RWA is short and focus mainly on solving
small size instances with up to 27 nodes. In this paper, we propose new greedy constructive
heuristics and a biased random-key genetic algorithm, based on the best of the proposed
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greedy heuristics. Computational experiments showed that the new heuristic outperforms
the best ones in literature. Furthermore, for the largest instances in the literature where only
upper bounds to the value of the optimal solutions are known, the average optimality gap of
the best of the proposed heuristics is smaller than 4%.

Keywords Random-key genetic algorithms · Metaheuristics · Optical networks · Routing
and wavelength assignment

1 Introduction

In optical networks, information is transmitted as optical signals through optical fibers. Each
optical link operates at a speed of the order of terabits per second, which is much faster than
the currently available optical devices.Wavelength Division Multiplexing (WDM) allows the
more efficient use of the capacity of the optical fibers, as far as it permits the simultaneous
transmission of different signals along the same fiber, provided they are multiplexed with
different wavelengths. An all-optical point-to-point connection between two nodes is called
a lightpath. Each lightpath is characterized by its route and by the wavelength with which
it is multiplexed. Two lightpaths may use the same wavelength, provided they do not share
any common fiber.

Given the physical topology of an optical network and a set of lightpaths defining a logical
topology in this network, the problem of Routing and Wavelength Assignment (RWA) in
WDM optical networks consists in routing the set of lightpaths and assigning a wavelength
to each of them, such that lightpaths whose routes share a common fiber are assigned to
different wavelengths. Variants of RWA are characterized by different optimization criteria
and traffic patterns, see e.g. [11,57].We considerRWAvariants inwhich the lightpath requests
are known beforehand and no wavelength conversion is available, i.e. a lightpath must be
assigned to the same wavelength on all fibers along its route. Let G = (V, A) be a directed
graph representing the physical network topology, where V is the set of the nodes and
A represents the fiber connections between the nodes. Let also R be the set of lightpaths
requests, each one defined by a source and a destination node in V . There can be more than
one lightpath request between any pair of nodes, since the traffic between a pair of nodes can
be larger than that supported by a single lightpath. We denote by λ the number of available
wavelengths. In the min-RWA problem variant [14], the number of available wavelengths
is unbounded and the objective is to minimize the number of wavelengths used to establish
all lightpath requests in R. This paper focus on the max-RWA variant [10], where λ < |R|.
Therefore, it may not be possible to accept and route all requests in R. The objective is to
maximize the number of requests that may be accepted. Both problems have been proved to
be NP-hard in [14] and [10], respectively.

Exact algorithms based on integer programming formulations have been proposed in the
literature. However, as the worst case complexity of these algorithms grows exponentially
with the size of the network, they can only solve small instances to optimality. State-of-the-art
exact algorithms can only provide upper bounds to the optimal value for the largest instances
in the literature. To the best of our knowledge, the only existing heuristics for max-RWA are
the greedy algorithms in [33,38], the graph partitioning approach in [5], and the tabu search
heuristic in [12].

In this paper, we propose heuristics for efficiently solving large instances in the literature.
Related work is reviewed in Sect. 2. Greedy constructive heuristics are proposed in Sect. 3. A
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biased random-key genetic algorithm (BRKGA), based on the best of the greedy heuristics,
is proposed in Sect. 4. Computational experiments are reported in Sect. 5, where it is shown
that the proposed heuristics outperform the previous heuristics in the literature. Finally,
concluding remarks are drawn in the last section.

2 Related work

2.1 Exact formulations and algorithms for max-RWA

Most of the literature on algorithms for solving max-RWA reports on integer programming
formulations and exact approaches [26,30,33,33,34,41,48]. A review on formulations for
max-RWA can be found in [27,29,42].

Krishnaswamy and Sivarajan [33] developed an arc based compact formulation for max-
RWA. This formulation allows cycles, but they argue that these cycles have no impact in the
value of the objective function. A cycle free compact formulation based on the previous one
was proposed in [26]. This formulation does not improve the upper bounds of the former,
but it can be solved more efficiently by MIP solvers. Martins [42] improved the compact
formulations of [26,33] and found optimal solutions for instances with up to 18 nodes.

Lee et al. [34] proposed a formulation based on theweighted independent set problemwith
additional cardinality constraints [21], whose linear relaxation can be solved by a column
generation algorithm. Jaumard et al. [26,30] proposed an improved formulation that uses only
maximal independent sets and found better upper bounds than those of [34] for instances
with up to 27 nodes.

Ramaswami and Sivarajan [48] proposed a maximum independent set formulation with
an exponential number of variables. They proved that the upper bound provided by its linear
relaxation is never smaller than that of the best compact integer programming formulations
found in the literature at the time of its publication. Jaumard et al. [30] implemented a column
generation algorithm based on this formulation and solved instances with up to 27 nodes to
optimality.

Martins et al. [41,42] proposed a new, improved formulation based on those in [30,34,48].
Their approach obtained the first upper bounds for the three instances based on the 71-node
ATT2 network, that could not be computed by previous works in the literature due to memory
overflow. They found the best upper bounds for the largest instances in the literature of max-
RWA with up to 90 nodes. However, not even feasible solutions have been reported for these
instances.

2.2 Heuristics for max-RWA

To the best of our knowledge, there are few heuristics for max-RWA in the literature. Krish-
naswamy and Sivarajan [33] proposed two rounding heuristics based on the linear relaxation
of their integer programming formulations. Computational experiments carried out on two
networks with 14 and 20 nodes showed that the average relative optimality gap for the best
of the two heuristics was of 6.0 and 7.2%, respectively.

Manohar,Manjunath, and Shevgaonkar [38] developed theGreedy-EDP-RWA heuristic.
At each iteration, a subset of lightpaths is selected and routed with edge disjoint paths by
the BGAforEDP heuristic for the maximum edge disjoint path (EDP) problem [32]. Then,
all lightpaths in this subset are assigned the same wavelength, and the procedure is repeated
with the remaining lightpaths. This heuristic was proposed for the min-RWA variant of the
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problem, but the authors argue that it can also be used formax-RWA, by running BGAforEDP
forλ iterations.The authors reported that their algorithmwas faster than and found solutions as
good as the linear programming based algorithms for min-RWA at the time of its publication.
No computational experiments on the performance of this heuristic for max-RWA have been
reported by the authors.

A tabu search heuristic was proposed by Dzongang et al. [12]. First, this heuristic builds a
set Pr of pre-computed paths between the endnodes of each request r ∈ R. Each neighbor of
the current solution S is generated by using a path p ∈ Pr and a wavelength ω ∈ {1, . . . , λ}
to route a request r not accepted in the solution S and then removing from S all requests
assigned to wavelength ω that share a link with p. Computational experiments on the same
instances used in [33] have shown that tabu search found much better solutions than the
rounding heuristics of [33], with average relative optimality gaps of 1.41 and 1.53% for the
instances with 14 and 20 nodes, respectively.

Belgacem and Puech [5] proposed a decomposition heuristic for max-RWA, in which the
original instance is partitioned into smaller instances which are exactly solved by integer
programming. The local solutions are combined into a feasible solution. This proposal was
validated by an application to the European backbone network EBN57 with 57 nodes and to
randomly generated planar networks with up to 500 nodes.

2.3 Heuristics for variants of max-RWA with wavelength conversion

Marković et al. [39] proposed a bee colony optimization heuristic for the variant ofmax-RWA
in which the wavelength conversion is available at some nodes. Computational experiments
showed that the heuristic was able to produce optimal or near-optimal solutions only for two
small networks with 8 and 18 nodes.

Qin et al. [47] proposed a new optimization objective, which consists in determining
the maximum number of connections with the least number of wavelength converters. The
problem was tackled by a genetic algorithm.

Jaumard et al. [28] proposed a new two-phase heuristic for the variant inwhichwavelength
conversion is possible in every node. Wavelength assignment is reformulated as a general-
ized partition coloring problem, extending the partition coloring formulation proposed by
Noronha and Ribeiro [46]. This problem was solved by a tabu search heuristic. Computa-
tional experiments on instances with up to 27 nodes have shown that wavelength conversion
is of little help to increase the number of accepted lightpaths, except for some very particular
traffic patterns [28].

2.4 Heuristics for min-RWA

Contrarily to the max-RWA variant considered in this paper, most of the research on
algorithms for solving the min-RWA variant is focused into heuristics. Some approaches
decompose the problem into two subproblems (routing and wavelength assignment) [3,24,
25,36,46], while others tackle the two subproblems simultaneously [38,40–43,45,54].

Skorin-Kapov [54] proposed the current state-of-the-art greedy constructive heuristics
for min-RWA. Each wavelength is associated with a different copy of G. Lightpaths that
are routed along disjoint arcs on the same copy of G are assigned to the same wavelength.
Copies of G are associated with the bins and lightpaths with the items of an instance of the
bin packing problem [31]. In this context, min-RWA can be reformulated as the problem of
packing all the lightpath requests (items) in a minimum number of wavelength (bins). Four
min-RWA heuristics based on classical bin packing heuristics were developed: (i) FF-RWA,
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procedure BFD-RWA(G,R,d,π)
1 Set S ← ,0/ Ω ← dna,0/ k ← 0;
2 for i= 1, . . . , |R| do
3 if there is a path for routing lightpath π(i) with less than d arcs in any of the graphs G1, . . . ,Gk
4 then
5 Let r ∈ {1, . . . ,k} such that lightpath π(i) can be routed in graph Gr with the

least number of arcs;
6 else
7 k ← k+1;
8 Gk ← G;
9 r ← k;
10 end-if;
11 Let Pπ(i) be the shortest path between the endnodes of lightpath π(i) in Gr;
12 S ← S∪{(pπ(i) ,r)};
13 Remove all arcs in path Pπ(i) from Gr ;
14 end-for;
15 return S,k;
end BFD-RWA.

Fig. 1 Pseudo-code of the BFD-RWA heuristic for min-RWA

based on the first fit heuristic, (ii) BF-RWA, based on the best fit heuristic, (iii) FFD-RWA,
based on the first fit decreasing heuristic, and (iv) BFD-RWA, based on the best fit decreasing
heuristic.

Computational results have shown that the best results have been obtained by BFD-RWA,
whose pseudo-code is presented in Fig. 1. The inputs are the graph G, the set R of lightpath
requests, the value d of the maximum number of arcs allowed in each route, and the vector
π = (π(1), . . . , π(|R|)) describing the order in which the lightpaths will be considered. Let
min-length(i) be the number of hops in the path inG with the smallest number of arcs between
the endnodes of lightpath i ∈ R. The lightpathswill be considered in a non-increasing order of
their min-length values, i.e., π(k) = argmax{min-length(i) : i ∈ R \ {π(1), . . . , π(k − 1)}},
for any k = 1, . . . , |R|. Ties between two lightpaths with the same min-length value are
broken arbitrarily. The idea behind this ordering is that long lightpaths are harder to be
routed and therefore should be routed first. The output is a set S of pairs in which the first
element is the path used to route lightpath i and the second is the wavelength with which it
is multiplexed.

Each solution is formed by a set of pairs, each of them containing the route and the
wavelength assigned to one lightpath. The solution S and the number k of lightpaths used are
initialized in line 1. The lightpaths are routed one at a time (and assigned to a wavelength)
in lines 2 to 14. In line 3, the algorithm determines whether lightpath π(i) can be routed
using any of the k wavelengths already used. If this is the case, then in line 5 the algorithm
determines wavelength r as that in which lightpath π(i) can be routed with the least number
of arcs. Otherwise, the number of wavelengths used is increased by one in line 7, a new copy
of graph G is created in line 8, and the new wavelength r = k is selected to be assigned to
lightpath π(i) in line 9. Line 11 computes the shortest path Pπ(i) between the endnodes of
lightpath π(i) in Gr . In line 12, the pair (Pπ(i), r) is added to the solution under construction
and all arcs in route Pπ(i) used by lightpath π(i) are removed from Gr in line 13. A feasible
solution S and the number k of wavelengths used are returned in line 15.

Noronha et al. [44] developed efficient algorithms and data structures for the implemen-
tation of heuristics FF-RWA, BF-RWA, FFD-RWA, and BFD-RWA. The longest running
times of their implementation of BFD-RWA took less than 3s, while the times reported for
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the heuristic in [54] took up to 8min on the same instances and the same Pentium IV 2.8 GHz
processor. BFD-RWA was successfully used in the iterated local search heuristic of Martins
at al. [43] and in the biased random-key genetic algorithm of Noronha et al. [45] for the
problem min-RWA. Computational experiments have shown that these are to date the best
heuristics for min-RWA. These results motivated the development of constructive heuristics
based on BFD-RWA and the development of a biased random-key genetic algorithm for the
max-RWA problem variant.

3 Greedy constructive heuristics for max-RWA

State-of-the-art exact algorithms and heuristics for max-RWA perform well only for small
instances with 27 nodes. In Sect. 3.1, we present three greedy heuristics for max-RWA based
on bin packing that are extensions of the best heuristic (BFD-RWA) for min-RWA. Next,
we propose in Sect. 3.2 three new greedy heuristics for max-RWA that are based on multi-
processor scheduling. Later, we will show that the heuristics contribute effectively in the
solution of the largest instances in the literature of max-RWA with up to 90 nodes.

3.1 Constructive heuristics based on bin packing

We recall that for min-RWA one may use as many wavelengths as necessary, while for max-
RWA there are at most λ available wavelengths for routing. The three heuristics (BFR-RWA,
BFI-RWA, and BFD-RWA) proposed in this section are derived from BFD-RWA and differ
by the order in which the lightpaths are considered:

– BFR: requests are randomly selected from R;
– BFI: requests are sorted in non-decreasing order of their min-length values; and
– BFD: as for BFD-RWA, requests are sorted in non-increasing order of their min-length

values, with ties arbitrarily broken.

A general framework BF* for the pseudo-code of the family of heuristics BFR, BFI,
and BFD is given in Fig. 2. The inputs are the graph G, the set R of lightpath requests,
the maximum number d of arcs in each route, a permutation π(1), . . . , π(|R|) describing
the order in which the requests are considered, and the maximum number λ of wavelengths
available. As for min-RWA, each solution is formed by a set of pairs, each of them containing
the route and the wavelength assigned to one lightpath. The solution S and the number k of
lightpaths used are initialized in line 1. The lightpaths are routed one at a time (and assigned
to a wavelength) in lines 2 to 14. In line 3, sets r to zero as a flag in case lightpath π(i) can not
be the routed with the λ available wavelengths. The algorithm determines in line 4 whether
lightpath π(i) can be routed using any of the k wavelengths already used. If this is the case,
then in line 6 the algorithm determines wavelength r as that in which lightpath π(i) can be
routed with the least number of arcs. Otherwise, and if not all wavelengths have already been
used, the number of wavelengths used is increased by one in line 8, a new copy of graph G
is created in line 9, and the new wavelength r = k is selected to be assigned to lightpath
π(i) in line 10. If lightpath π(i) can be routed, then line 14 computes the shortest path Pπ(i)

between the endnodes of lightpath π(i) in Gr . In line 15, the pair (Pπ(i), r) is added to the
solution under construction and all arcs in route Pπ(i) used by lightpath π(i) are removed
from Gr in line 16. A feasible solution S and the number k of wavelengths used are returned
in line 19.
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procedure BF*(G,R,d,π,λ )
1 Set S ← dna0/ k ← 0;
2 for i= 1, . . . , |R| do
3 r ← 0;
4 if there is a path for routing lightpath π(i) with less than d arcs in any of the graphs G1, . . . ,Gk
5 then
6 Let r ∈ {1, . . . ,k} such that lightpath π(i) can be routed in graph Gr with the

least number of arcs;
7 else if k < λ then
8 k ← k+1;
9 Gk ← G;
10 r ← k;
11 end-if;
12 end-if;
13 if r > 0 then
14 Let Pπ(i) be the shortest path between the endnodes of lightpath π(i) in Gr ;
15 S ← S∪{(Pπ(i),r)};
16 Remove all arcs in path Pπ(i) from Gr ;
17 end-if
18 end-for;
19 return S,k;
end BF*.

Fig. 2 Pseudo-code of the family BF* of constructive heuristics for max-RWA based on bin packing

3.2 Constructive heuristics based on multi-processor scheduling

In this section, we propose three new heuristics for max-RWA based on a classic heuristic for
theMulti-Processor Scheduling Problem (MPSP) [20]. Given a set P of processors and a set
T of tasks, where each task t ∈ T is associated with a running time bt , the heuristic consists
in assigning a processor pt ∈ P to each task t ∈ T , in order to minimize the maximum
completion time of a processor. If Tp ⊆ T denotes the subset of tasks assigned to each
processor p ∈ P in a given solution, the maximum completion time of this solution is given
by maxp∈P {∑t∈Tp bt }.

The Longest Processing Time heuristic [23] builds a feasible solution forMPSP as follows.
First, it sorts the tasks in non-increasing order of their completing time. Following this order,
each task is scheduled to one of the available processors in which the maximum completing
time increases the least.

The three heuristics for max-RWA described below are inspired by this algorithm. Each
wavelength is associated with a different copy of G. Lightpaths that are routed along disjoint
arcs on the same copy of G are assigned the same wavelength. Each copy of G is associated
with one processor and each lightpaths with one of the tasks of an instance of MPSP. The
completion time of each task is defined as the min-length of the corresponding lightpath.
Therefore, max-RWA can be reformulated as the problem of scheduling the tasks (lightpath
requests) in the set of processors (wavelengths).

The pseudo-code of the new family *PT of heuristics is presented in Fig. 3. As for BFR,
BFI and BFD, the inputs are the graph G, the maximum number d of arcs in each route, the
set R of lightpath requests, a permutation π(1), . . . , π(|R|) describing the order in which
the lightpaths are considered, and the maximum number λ of wavelengths available. Once
again, the three heuristics (RPT, SPT, and LPT) differ by the order in which the lightpaths
are considered:

– RPT: requests are randomly selected from R;
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procedure *PT(G,R,d,π,λ )
1 Set S ← dna0/ k ← 0;
2 for k = 1, . . . ,λ do
3 Gk ← G;
4 end-for;
5 for i= 1, . . . , |R| do
6 if lightpath π(i) can be routed with less than d arcs in any of the graphs G1, . . . ,Gλ
7 then
8 k ← k+1;
9 Let r ∈ {1, . . . ,λ} such that lightpath π(i) can be routed in graph Gr with the

least number of arcs;
10 Let Pπ(i) be the shortest path between the endnodes of lightpath π(i) in Gr ;
11 S ← S∪{(Pπ(i),r)};
12 Remove all arcs in path Pπ(i) from Gr ;
13 end-if
14 end-for;
15 return S,k;
end *PT.

Fig. 3 Pseudo-code of the family *PT of constructive heuristics for max-RWA based on multi-processor
scheduling

– SPT: requests are sorted in non-decreasing order of their min-length values; and
– LPT: as for the Longest Processing Time heuristic, requests are sorted in non-increasing

order of their min-length values, with ties arbitrarily broken.

Algorithms *PT in Fig. 3 are very similar to those named as BF* in Fig. 2. Basically, the
only difference consists that in the family *PT all processors are available (or, in other words,
all copies of the original graph are built beforehand) since the beginning of the algorithm.
As the numerical results will show, the underlying strategy of *PT is better, since creating
all copies of the graphs beforehand makes it possible to assign the best route (i.e., that with
the least number of edges) among all copies of the graph to each lightpath. Consequently,
the edges blocked to be used for each lightpath will be the least possible and will leave more
choices for the lightpaths that will be considered next.

Heuristics BFR, BFI, BFD, RPT, SPT, LPT, and GREEDY-EDP-RWA [38] will be eval-
uated and compared in Sect. 5.

4 Biased random-key genetic algorithm

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA), were first
introduced by Bean [4] for combinatorial optimization problems for which solutions can be
represented as a permutation vector. Solutions are represented as vectors of randomly gen-
erated real numbers called keys. A deterministic algorithm, called a decoder, takes as input
a solution vector and associates with it a feasible solution of the combinatorial optimization
problem, for which an objective value or fitness can be computed. Two parents are selected
at random from the entire population to implement the crossover operation in the implemen-
tation of a RKGA. Parents are allowed to be selected for mating more than once in a given
generation.

Abiased random-key genetic algorithm (BRKGA)differs fromaRKGA in theway parents
are selected for crossover, see Gonçalves and Resende [18] for a review. In a BRKGA, each
element is generated combining one element selected at random from the elite solutions in the
current population, while the other is a non-elite solution.We say the selection is biased since
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one parent is always an elite individual and because this elite solution has a higher probability
of passing its genes to the offsprings, i.e. to the new generation. A BRKGA provides a better
implementation of the essence of Darwin’s principle of “survival of the fittest”, since an elite
solution has a higher probability of being selected for mating and the offsprings have a higher
probability of inheriting the genes of the elite parent.

The development and application of a BRKGA to max-RWA was motivated by success-
ful applications to many network optimization problems, such as other variants of routing
and wavelength assignment [19,44–46], routing in OSPF networks [7,8,13,49], road con-
gestion [9], as well as to other combinatorial optimization problems, such as job shop
scheduling [15,35], assembly line balancing [16], lateness minimization on parallel batch
processing machines [37,56], and cell formation in manufacturing [17], among others.

The biased random-key genetic algorithm for max-RWA evolves a population of chromo-
somes that consists of vectors of real numbers (called keys). Each solution is represented by
an |R|-vector, in which each component is a real number in the range [0, 1] associated with a
lightpath request in R. Each solution represented by a chromosome is decoded by a decoding
heuristic that receives the vector of keys and builds a feasible solution for max-RWA.

Any of the heuristics BF* or *PT presented in Sect. 3 can be used as a decoding heuristic
for BRKGA. Since the computational experiments that will be presented in the next section
have shown that SPT obtains the best results among the seven tested greedy constructive
heuristics, the description of BRKGA that follows will consider SPT as the decoder. The
decoding consists of two steps. First, the lightpaths are sorted in non-decreasing order of the
sum of their min-length and key values. Therefore, the relative order between lightpaths with
the same min-length value is defined by their keys. The resulting order is used as the vector
π in SPT (see the pseudo-code in Fig. 3). The number of wavelengths found by SPT using
this order is used as the fitness of the chromosome. The algorithm stops when a maximum
elapsed time is reached or when a solution as good as a given target is found.

Weuse the parametrized uniformcrossover schemeproposed in [55] to combine twoparent
solutions and produce an offspring. In this scheme, the offspring inherits each of its keys
from the best fit of the two parents with probability ρ > 0.5 and from the least fit parent with
probability 1−ρ. This genetic algorithm does notmake use of the standardmutation operator,
where parts of the chromosomes are changed with small probability. Instead, the concept of
mutants is used: a fixed number of mutant solutions are introduced in the population in each
generation, randomly generated in the same way as in the initial population. Mutants play the
same role of the mutation operator in traditional genetic algorithms, diversifying the search
and helping the procedure to escape from locally optimal solutions.

The keys associated to each lightpath request are randomly generated in the initial pop-
ulation. At each generation, the population is partitioned into two sets: TOP and REST .
Consequently, the size of the population is |TOP| + |REST |. Subset TOP contains the best
solutions in the population. Subset REST is formed by two disjoint subsets: MID and BOT ,
with subsetBOT being formed by the worst elements on the current population. As illustrated
in Fig. 4, the chromosomes in TOP are simply copied to the population of the next generation.
The elements in BOT are replaced by newly created mutants that are placed in the new set
BOT . The remaining elements of the new population are obtained by crossover with one
parent randomly chosen from TOP and the other from REST . This distinguishes a biased
random-key GA from the random-key genetic algorithm of Bean [4] (where both parents
are selected at random from the entire population). Since a parent solution can be chosen
for crossover more than once in a given generation, elite solutions have a higher probability
of passing their random keys to the next generation. In this way, |MID| = |REST | − |BOT |
offspring solutions are created.
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Fig. 4 Population evolution between consecutive generations of a BRKGA

5 Computational experiments

The heuristics Greedy-EDP-RWA [38], BFD, BFR, BFI, LPT, RPT, SPT, and BRKGA were
implemented in C++ and compiled with GNU C++ version 4.6.3. The inheritance prob-
ability ρ of the crossover operator in BRKGA was set to 0.7, as used and recommended
in [6,15,19,45,52,58]. The population size was set to |TOP| + |MID| + |BOT| = |V |, with
the sizes of sets TOP, REST , and BOT set to 0.25× |V |, 0.7× |V |, and 0.05× |V |, respec-
tively, once again as suggested and used in [19,45] for the problem of routing and wavelength
assignment. The experiments were performed on a 3.40 GHz i7-4770 Intel Core CPU with
16 GB of RAM memory.

Four sets of instances have been used in the experiments. The physical topologies are
connected and each link corresponds to a pair of bidirectional fibers. The logical topology
is asymmetric, i.e. there might be a lightpath request from a node i to a node j , while
not from j to i . The first three sets were proposed in [41] and have 24 instances each.
They are based in the same 24 networks with up to 90 nodes, but differ from each other
by the number of wavelengths available. Set A is formed by instances in which there are
ten wavelengths available. Instances in sets B and C have 20 and 30 wavelengths available,
respectively. These are the largest and most difficult instances in the literature of max-RWA.
No feasible solutions are available in the literature, only the upper bounds obtained by the
column generation algorithm of [42]. The main characteristics of the networks used in sets
A, B, and C are presented in Table 1, which gives respectively, the network name, the number
of lightpath requests, the number of nodes, and the number of arcs of each network.

The fourth set of instances, referred here as D, was used byDzongang et al. [12] to evaluate
the performance of their tabu search heuristic, and to show that the latter outperforms the two
rounding heuristics of [33]. It has 30 instances based on the NSF and EONNET networks.
These networks have the same physical topologies of the networksNSF1 and EONof Table 1,
respectively, but have different sets of lightpath requests and different values forλ. NSF has 14
nodes, 21 links, and 268 lightpath requests, while EONNET has 20 nodes, 39 links, and 374
lightpath requests. Fifteen instances are based on NFS and have from 10 to 24 wavelengths
available, while the other fifteen instances are based on EONNET and also have from 10 to
24 wavelengths available.

In the first experiment, we evaluate and compare the quality of the solutions provided by
the heuristics Greedy-EDP-RWA, BFD, BFR, BFI, LPT, RPT, and SPT for the instances in
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Table 1 Main characteristics of
the networks in sets A, B, and C

Name Lightpaths Nodes Links

ATT 359 90 137

ATT2 2918 71 175

BRASIL 1370 27 70

COST266 6543 37 57

DFN-BWIN 4840 10 45

DFN-GWIN 3771 11 47

EON 373 20 39

FINLAND 930 31 51

FRANCE 15,398 25 45

GIUL 14,732 39 86

JANOS-US 3262 26 42

NOBEL-EU 1898 28 41

NOBEL-GERMANY 660 17 26

NOBEL-US 478 14 21

NORWAY 5348 27 51

NSF1 284 14 21

NSF12 551 14 21

NSF21 284 14 22

NSF212 551 14 22

NSF23 285 14 22

NSF248 547 14 22

NSF3 285 14 21

NSF48 547 14 21

SUN 952 27 51

sets A, B, and C. The vectors π describing the order in which the lightpaths are considered by
heuristics Greedy-EDP-RWA, BFR, and RPT have been randomly generated. Ties between
two lightpaths with the same min-length value were broken randomly for heuristics BFD,
BFI, LPT, and SPT. Each heuristic was run 10 times for each instance, with different seeds
for the random number generator [53]. The average optimality gap (UB–LB/UB between the
value LB of the solution provided by the heuristic and the upper bound UB presented in [42]
is calculated for each instance.

The average gap over all instances in each set is displayed in Fig. 5 for each constructive
heuristic. We first observe that the relative behavior of the seven heuristics is absolutely
the same for the three test sets. We notice that BFD and LPT led to the largest average
gaps among the seven tested heuristics. This is due to the fact that in these algorithms the
lightpaths requests are sorted in non-increasing order of their min-length values, that is,
the hardest lightpath to route is the first inserted into the solution. Although this greedy
criterion often leads to good results for other problems, in situations such as max-RWA it
might be better not to accept long lightpaths (i.e., those with large min-length values) in
order to save space for shorter lightpaths (i.e., with smaller min-length values). The best
results have been obtained by heuristics BFI and SPT for all test sets, with both of them
considering the lightpath requests in a non-decreasing order of their min-length values. The
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Fig. 5 Average relative optimality gaps for heuristics Greedy-EDP-RWA[38], BFD, BFR, BFI, LPT, RPT,
SPT for instance sets A, B, and C

average optimality gaps observed for BFI and SPT were, respectively, 13.36 and 9.41% for
set A, 11.21 and 8.07% for set B, and 8.24 and 5.73% for set C. Heuristic SPT proposed in
this work outperformed the BFI heuristic based on the work of [54]. In addition, the average
optimality gaps provided by SPT were less than half of those observed with the Greedy-
EDP-RWA [38] heuristic, which amounted to 30.94, 22.13, and 16.53% for sets A, B, and
C, respectively. These results indicate that SPT is the most promising heuristic to be used in
advanced metaheuristics for max-RWA. Therefore, SPT will be used as the decoder for our
implementation of the BRKGA heuristic for max-RWA.

In the second experiment, we investigate if BRKGA with SPT as its decoder efficiently
identifies the relationships between keys and good solutions and converges to near-optimal
solutions. For this end, we compare its performance with that of a multi-start (MS) procedure
that uses the same decoding heuristic as BRKGA. Each iteration of the multi-start procedure
applies this same decoding heuristic starting from a randomly generated vector of random-
keys. Therefore, nothing is learned from one iteration of MS to the next.

Each of the heuristics BRKGA andMSwas given 10min of computation time and stopped
thereafter. Ten runs of each heuristic have been performed for each instance, with different
seeds for the random number generator [53]. The results for instance sets A, B, and C are
displayed in Tables 2, 3 and 4. The first two columns provide the network name and the upper
bound (UB) already reported in [41]. The minimum (min), average (avg), and maximum
(avg) solution values obtained by MS are displayed in the next three columns. The average
optimality gap, and the coefficient of variation (CV = σ/avg) are shown in the following two
columns, where σ is the standard deviation of the sample. The same statistics are displayed
for BRKGA in the subsequent columns. The best average optimality gaps for each instance
are displayed in boldface.

Table 2 shows that BRKGA found better solutions than MS for all instances in set A.
The average optimality gap observed for BRKGA was only 3.54%, while that for MS was
5.45%. Besides, the maximum gap for MS was 10.38%, while that for BRKGA was only
7.30%. Similar results were observed for sets B and C. Table 3 shows that MS never obtained
better average solution values than BRKGA, which found strictly better solutions than MS
for all, but three instances in set B. The average optimality gap obtained with BRKGA for
this set was only 3.99%, while that resulting from MS was 5.49%. The maximum gap for
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MS was 9.72%, while that for BRKGA was only 8.23%. Relating to set C, BRKGA found
better solutions than MS for all, but the six instances where both heuristics found the optimal
solution value. The average optimality gap of BRKGA for set C was only 3.14%, while that
for MS was 4.18%. The maximum gap for MS was 10.90%, while that for BRKGA was
10.53%. To summarize, BRKGA found better solution values and smaller maximum and
average optimality gaps for all test sets. In addition, the coefficient of variation of BRKGA
was at most 1.78% from the average (observed for network ATT2 in set C) and less than 1%
for 68 out of the 72 test instances.

Run time distributions or time-to-target plots display on the ordinate axis the probability
that an algorithm will find a solution at least as good as a given target value within a given
running time, shown on the abscissa axis. Run time distributions have also been advocated
by Hoos and Stützle [22] as a way to characterize the running times of stochastic local
search algorithms for combinatorial optimization. In the next experiment, both heuristics
MS and BRKGA were made to stop whenever a solution with cost smaller than or equal to
a given target value was found. This target value was set to the average cost of the solutions
obtained by MS in the previous experiments, i.e., the average of ten 10-min runs of MS for
each instance. The heuristics were run 200 times on each instance, with different seeds for
the pseudo-random number generator. Next, the empirical probability distributions of the
time taken by each heuristic to find a target solution value are plotted. To plot the empirical
distribution for each heuristic, we followed the methodology described in [1,2]. We associate
a probability pi = (i − 1

2 )/200 with the i-th smallest running time ti and plot the points
zi = (ti , pi ), for i = 1, . . . , 200. The more to the left is a plot, the better is the algorithm
corresponding to it.

We illustrate the runtime distributions (or ttt-plots, for short) for one instance of each test
set. The runtime distributions for the instance of set A defined by network ATT2 are shown
in Fig. 6. BRKGA finds solutions with 856 accepted lightpaths with a probability close to
100% in less than 10s of running time, while MS may take up to 2500s to find solutions as
good as them with the same probability. Similar results were observed for the instances of
sets B and C. The ttt-plots for the instance of set B defined by network FRANCE are shown
in Fig. 7. BRKGA finds solutions with 1072 accepted lightpaths with a probability close to
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Fig. 6 Runtime distributions for the instance of set A defined by network ATT2 with the target value set at
856: P(TBRKGA ≤ TMS) = 0.985.
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Fig. 7 Runtime distributions for the instance of set B defined by network FRANCE with the target value set
at 1072: P(TBRKGA ≤ TMS) = 0.995.

100% in less than 9s of running time, while MS may take up to 5000s to find solutions as
good as them with the same probability. Finally, the runtime distributions for the instance
of set C defined by the network DFN-GWIN is shown in Fig. 8. In this case, BRKGA finds
solutions with 1944 accepted lightpaths with a probability close to 100% in less than 5s of
running time, while MS may take up to 1500s to find solutions as good as them with the
same probability.

We also used the tool proposed by Ribeiro et al. [51] to perform a direct numerical
comparison of heuristicsMS and BRKGA. Let TBRKGA (resp. TMS) be the continuous random
variable representing the time needed by heuristic BRKGA (resp. MS) to find a solution
as good as a given target value and let P(TBRKGA ≤ TMS) be the probability that BRKGA
converges faster thanMS, computed by the software available in [50]. The captions of Figs. 6,
7 and 8 show thatP(TBRKGA ≤ TMS) ≥ 0.985 for the above three instances, further illustrating
the superiority of BRKGA with respect to MS.

Figures 9 and 10 illustrate the evolution of the solution population along 200 generations
of BRKGA for one execution of instances DFN-GWIN and ATT2. They show that the biased
random-key genetic algorithm is able to continuously evolve the solution population and to
improve the best solution value.

Finally, Figs. 11 and 12 illustrate (for the instance of set B defined by networkDFN-GWIN
with 20 lightpath requests) how the best solutions found by BRKGA and by the multi-start
procedure evolve along the first six and the first 60 s of processing time, respectively. They
show that the biased random-key genetic algorithm systematically finds better solutions faster
than the other algorithm. The best solution obtained by BRKGA is better than that found by
multi-start at any time along the run whose results are displayed in these figures. This same
behavior illustrated for this run is observed for all test instances.

These results show that BRKGA identifies the best relationships between the keys and the
good solutions throughout the evolutionary process, converging to high-quality, near-optimal
solutions.

In the third experiment, we compare the quality of the solutions provided by BRKGA
and the tabu search (TS) heuristic for the instance set D, which was used by Dzongang et
al. [12] to evaluate the performance of their heuristic. Upper bounds for the 30 instances are
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Fig. 8 Runtime distributions for the instance of set C defined by network DFN-GWIN with the target value
set at 1944: P(TBRKGA ≤ TMS) = 0.996.
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Fig. 9 Population evolution for the instance of set B defined by network DFN-GWIN: the value of the best
solution found by BRKGA after 4.42 s (200 generations) is 1492, while the best solution value after 10min
of running time is 1502

known from [33]. The tabu search heuristic was implemented in C++ and the experiments
were performed in a Pentium 4 with 2.4GHz. Individual running times for each instances are
not reported. However, it is said that the tabu search run for up to 60s. Our implementation
of BRKGA was run 10 times for each instance, with different seeds for the random number
generator [53]. The stopping criterion of BRKGAwas set to 60s, in order to make its running
times compatible with those of the tabu search heuristic.

The results for this experiment are displayed in Table 5. The first column provides the
number (λ) of wavelengths available for the instance. The next three columns display the
upper bound, the optimality gap of TS, and the average optimality gap of BRKGA for the cor-
responding NSF instance with λ wavelengths. The last three columns show the upper bound,
the optimality gap of TS, and the average optimality gap of BRKGA for the corresponding
EONNET instance with λ wavelengths. The smallest optimality gap for each instance is
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Fig. 10 Population evolution for the instance of set A defined by network ATT2 the value of the best solution
found by BRKGA after 42.00 s (200 generations) is 883, while the best solution value after 10min of running
time is 889
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Fig. 11 Evolution of the best solutions found by BRKGA and MS along the six first seconds of processing
time for the instance of set B defined by network DFN-GWIN with 20 lightpaths: the best solution value
obtained by BRKGA is 1493, while that found by MS is only 1457

displayed in boldface. Regarding the 15 instances with 14 nodes and 21 links based on NSF,
TS found smaller optimality gaps on 8 instances, while BRKGA out performs TS on five
instances. The average optimality gap of TS and BRKGA was 1.41 and 2.50%, respectively.
However, BRKGA found optimal solutions for six (out of the 15) instances, while TS found
optimal solutions for only two instances. Regarding the 15 largest instances with 20 nodes
and 39 links based on EONNET, BRKGA found solutions better than those of TS for 13
instances, while both heuristics found the optimal solution for the other two instances. The
average optimality gap of TS and BRKGA was 1.53 and 0.62%, respectively. For the 30
instances in this set together, The average optimality gap of TS and BRKGA was 1.47 and
1.56%, respectively. These results show that BRKGA finds solutions competitive with those
of the tabu search heuristic of [12].
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Fig. 12 Evolution of the best solution values found by BRKGA and MS along the 60 first seconds of
processing time for the instance of set B defined by network DFN-GWIN with 20 lightpaths: the best solution
value obtained by BRKGA is 1499, while that found by MS is only 1461

Table 5 BRKGA versus the tabu search (TS) of [12] for instances of test set D

λ NSF EONNET

UB TS (%) BRKGA (%) UB TS (%) BRKGA (%)

10 198 0.51 4.65 285 1.40 1.23

11 218 4.59 8.49 301 2.33 1.43

12 218 0.00 3.62 317 3.15 1.58

13 238 4.20 7.65 329 3.34 1.40

14 238 0.42 2.98 337 2.67 0.86

15 248 1.21 3.27 344 1.74 0.58

16 258 2.33 3.53 350 1.43 0.49

17 263 1.90 2.05 356 1.12 0.53

18 267 2.25 1.24 362 1.66 0.47

19 268 1.49 0.00 367 1.63 0.19

20 268 1.12 0.00 370 1.08 0.22

21 268 0.75 0.00 373 0.80 0.29

22 268 0.37 0.00 374 0.53 0.03

23 268 0.00 0.00 374 0.00 0.00

24 268 0.00 0.00 374 0.00 0.00

Average: 1.41 2.50 1.53 0.62

The smallest optimality gap for each instance is displayed in boldface

6 Conclusions

We have shown that most of the work in the literature about the max-RWA version of the
problemof routing andwavelength assignment is based on integer programming formulations
and focus into finding exact solutions or upper bounds to the optimal value. Only small
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instances with no more than 27 nodes are solved to optimality, and only upper bounds are
known for larger instances with up to 90 nodes in sets A, B, and C.

We proposed new greedy constructive heuristics and a biased random-key genetic algo-
rithm. Computational experiments showed that the greedy heuristic SPT outperformed the
best greedy heuristics in literature. In addition, the biased random-key genetic algorithm
using SPT as the decoding heuristic found near-optimal solutions with average optimality
gaps of 3.54, 3.99, 3.14, and 1.56% for the instances in set A, B, C, and D, respectively. The
optimality gap of this heuristic was at most 10.53% over all 102 test instances, observed for
network SUN in test set C.
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