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1 Introduction and motivation

Let G = (V,E) be an undirected graph, where V is the set of vertices and E is
that of edges. An equitable k-coloring of G is a partition of V into k disjoint
stable subsets such that the difference on the cardinalities of any two subsets
is at most one. Each subset is associated with a color and called a color set.
The Equitable Coloring Problem (ECP) consists of finding the minimum value
of k such that there is an equitable k-coloring of G. This number is said to
be the equitable chromatic number of G and it is denoted by χ=(G).

The equitable coloring problem was first introduced in [7], motivated by
an application to municipal garbage collection [9]. It was proved to be NP-
hard in [5]. A branch-and-cut algorithm based on an integer programming
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formulation and Gomory and lifted cover cuts was proposed in [1]. A poly-
hedral approach for the equitable coloring problem was proposed in [6], but
the largest randomly generated instances solved by this approach had only 35
nodes.

This paper presents a new exact algorithm for the problem, based on a
generalization of the 0-1 formulation by representatives for the vertex coloring
problem [2]. A tabu search heuristic provides upper bounds, and a cutting
plane procedure is used to strengthen the lower bounds. These two methods,
together with a branching strategy, are used in a branch-and-cut algorithm for
solving ECP. Section 2 summarizes the proposed branch-and-cut algorithm.
Computational experiments are reported in Section 3. Concluding remarks
are drawn in the last section.

2 Branch-and-cut algorithm

In the formulation by representatives, we choose one vertex to be the repre-
sentative of all vertices colored with the same color. Therefore, each vertex is
in one of the following two states: either it represents its color or there exists
another vertex that represents its color. To break symmetries, we establish
that a vertex u ∈ V can only represent the color of a vertex v ∈ V if u < v.
Therefore, the representative vertex of a color is that with the smallest index
among all those with this same color. The representative formulation has been
successfully applied to other graph coloring problems [2,4].

Let A(u) = {v ∈ V : (u, v) /∈ E, v 6= u} be the anti-neighborhood of a
vertex u ∈ V (i.e., the subset of vertices that are not adjacent to u). Fur-
thermore, let A>(u) = {v ∈ A(u) : v > u} be the out-anti-neighborhood
of a vertex u ∈ V (i.e., the vertices that cannot represent vertex u) and
A<(u) = {v ∈ A(u) : v < u} be the in-anti-neighborhood of vertex u ∈ V
(i.e., the vertices that may represent vertex u, itself excluded). We also define
A′

>(u) = A>(u) ∪ {u} and A′
<(u) = A<(u) ∪ {u}, for any u ∈ V . Given a

subset of vertices V ′ ⊆ V , we denote by E[V ′] the subset of edges induced
in the graph G = (V,E) by V ′. A vertex v ∈ A>(u) is said to be isolated in
A>(u) if E[A>(u)] = E[A>(u) \ {v}] (i.e., vertex v has no adjacent vertex in
A>(u)).

We define the binary variables xuv for all u ∈ V and for all v ∈ A′
>(u), such

that xuv = 1 if and only if vertex u represents the color of vertex v; otherwise
xuv = 0. Let Lw and Uw be, respectively, integer lower and upper bounds for
the value w of the cardinality of the largest color set in an equitable coloring
of G (i.e., the cardinality of each color set is either w or w− 1). We introduce



the equilibrium variable yi ∈ {0, 1}, for every integer i ∈ [Lw, Uw], such that
yi = 1 if the cardinality of the largest color set of the equitable coloring of G
is i; yi = 0 otherwise. We also introduce variables zui ∈ R, where zui = xuu · yi
at any integer solution of ECP, for every u ∈ V and every integer i ∈ [Lw, Uw].
For sake of conciseness, we omit the details of the computations of Lw and
Uw.

We also define V s = {u ∈ V : A<(u) = ∅} as the set of vertices whose
in-anti-neighborhoods in G are empty (i.e., the set of vertices that are always
representatives). Since vertices in V s are always representatives, then xuu = 1
in any feasible solution, for any u ∈ V s. Therefore, these variables may be
removed from the formulation. ECP can be formulated as the following integer
programming problem. For sake of simplicity, we use the notation βu = 1 if
u ∈ V s; otherwise βu = xuu. The integer programming problem LF2 described
below is said to be the formulation by representatives of the equitable coloring
problem:

min
∑

v∈V \V s

xvv+ | V s |(1)

subject to: ∑
v∈A′

<(u)

xvu = 1, ∀u ∈ V \V s(2)

xuv + xuw ≤ βu, ∀u ∈ V, ∀(v, w) ∈ E : v, w ∈ A>(u)(3)

xuv ≤ xuu, ∀u ∈ V \V s,∀v ∈ A>(u) : v is isolated in A>(u)(4)

βu +
∑

v∈A>(u)

xuv ≤
Uw∑

i=Lw

i · zui, ∀u ∈ V(5)

2 · βu +
∑

v∈A>(u)

xuv ≥
Uw∑

i=Lw

i · zui, ∀u ∈ V(6)

Uw∑
i=Lw

yi = 1(7)

zui ≤ yi, zui ≤ βu, zui ≥ yi + βu − 1, ∀u ∈ V, ∀i ∈ [Lw, Uw](8)

xuv ∈ {0, 1}, ∀u ∈ V, ∀v ∈ A′
>(u)(9)

yi ∈ {0, 1}, ∀i ∈ [Lw, Uw](10)

zui ∈ R, ∀u ∈ V, ∀i ∈ [Lw, Uw].(11)

The objective function (1) counts the number of representative vertices, i.e.,
the number of colors. Constraints (2) enforce that each vertex u ∈ V \V s



must be represented either by itself or by another vertex v in its in-anti-
neighborhood. Inequalities (3) enforce that adjacent vertices have distinct
representatives. Inequalities (3) together with constraints (4) ensure that a
vertex can only be represented by a representative vertex. Inequalities (5)-(8)
guarantee that the difference on the cardinalities of any two color sets is at
most one.

The branching strategy plays a major role in the success of a branch-and-
cut algorithm. Branching on the xuv variables, with u ∈ V and v ∈ A′

>(u),
is not efficient because most of them are null in integer solutions. Therefore,
our branching strategy is based on the cardinality variables yi. Branching on
the xuv variables starts only after all the yi variables are integer.

To improve the linear relaxation bound, we use the two families of valid
inequalities described in detail in [3]: external cuts and internal cuts.

The adaptive tabu search heuristic of Touhami [8] that provides upper
bounds for the frequency assignment problem was adapted to give initial fea-
sible solutions for ECP at each node of the branch-and-cut tree. Due to the
limitation of space, we omit here the details of this algorithm.

3 Computational experiments

Algorithm B&C-LF2 (based on formulation LF2) and the branch-and-cut in [1]
were implemented in C++ and compiled with version v3.41 of the Linux/GNU
compiler. XPRESS version 2005-a was used as the linear programming solver.
All experiments were performed on an AMD-Atlon machine with a 1.8 GHz
clock and one Gbyte of RAM memory. The graphs used in the experiments
have been randomly generated exactly as described in [6].

The branch-and-cut algorithm in [6] was able to solve only very small ECP
instances with at most 35 nodes. Due to the limitation of space, and since our
approach was able to solve much larger instances, we report only the results
obtained by algorithm B&C-LF2 and the branch-and-cut in [1] for graphs
with 60 nodes and edge densities ranging from 10% to 90%. Each ale n p s
instance has n vertices and an uniform probability p that any two vertices
share an edge. The last digit s is an instance differentiator.

The first three columns in Table 1 display the name of each instance, its
number of vertices, and its number of edges. The next four columns give the
lower bound, the upper bound, the number of evaluated nodes in the branch-
and-cut tree, and the CPU times (in seconds) for finding the optimal solution
provided by the algorithm in [1]. The last four columns give the same results
for algorithm B&C-LF2. A missing time entry in this table indicates that the



B&C [1] B&C-LF2

Graph | V | | E | lb ub nodes time lb ub nodes time

ale60 10 1 60 166 4 4 35 6 4 4 20 38
ale60 10 2 60 148 4 4 29 6 4 4 11 15
ale60 10 3 60 150 4 4 13 5 4 4 8 16
ale60 10 4 60 173 4 4 25 8 4 4 15 23
ale60 10 5 60 152 4 4 57 9 4 4 9 14
ale60 30 1 60 529 6 7 82426 - 7 8 4368 -
ale60 30 2 60 519 6 7 76495 - 7 8 3945 -
ale60 30 3 60 535 6 7 152382 - 7 7 41 61
ale60 30 4 60 509 6 7 206105 - 7 7 137 111
ale60 30 5 60 506 6 7 223443 - 7 8 3873 -
ale60 50 1 60 880 8 12 8112 - 11 11 351 214
ale60 50 2 60 853 8 11 5178 - 10 11 13501 -
ale60 50 3 60 858 8 13 38413 - 10 10 5 15
ale60 50 4 60 849 9 13 14105 - 10 11 36708 -
ale60 50 5 60 903 8 13 5941 - 11 11 657 388
ale60 70 1 60 1239 12 25 4826 - 16 16 33 19
ale60 70 2 60 1240 12 18 3401 - 16 16 61 28
ale60 70 3 60 1240 13 20 5966 - 16 16 771 252
ale60 70 4 60 1209 12 17 6153 - 16 16 63 28
ale60 70 5 60 1261 12 22 2320 - 16 16 71 28
ale60 90 1 60 1559 22 25 3823 - 24 24 1 9
ale60 90 2 60 1561 18 31 456 - 31 31 1 9
ale60 90 3 60 1571 19 26 858 - 25 25 1 9
ale60 90 4 60 1583 22 37 4081 - 25 25 2 9
ale60 90 5 60 1606 23 38 1699 - 26 26 1 9

Table 1
Computational results for randomly generated graphs with 60 nodes.

problem could not be solved within two hours of processing time. In this case,
we display the lower bound, the upper bound, and the number of evaluated
nodes at the time the algorithm was stopped.

The lower bounds provided by formulation LF2 were always better than or
equal to those provided by the branch-and-cut algorithm in [1]. The branch-
and-cut algorithm B&C-LF2 solved 20 out of the 25 instances in Table 1 within
two hours of processing time, while the algorithm in [1] managed to solve only
five out of the 25 instances with edge density 10%.

The average relative gap (UB−LB)/LB observed for the branch-and-cut
algorithm B&C-LF2 over the 25 instances in Table 1 was only 2.5%, while the
same gap for the algorithm in [1] was 37.3%. Algorithm B&C-LF2 achieves
its best performance on instances with edge densities larger than 50%. This
is due to the fact that the larger is the graph density, the larger are the sizes
of the cliques, odd holes, and odd anti-holes used to generate the internal
and external cuts. The hardest instances for B&C-LF2 were those with edge
densities ranging from 30% to 50%, because the cliques, odd holes, and odd
anti-holes found in such instances were not great enough to generate good in-
ternal and external cuts. However, the largest absolute gap UB−LB observed
for algorithm B&C-LF2 on the 25 instances in Table 1 was of only one color,



while the same value for the branch-and-cut algorithm in [1] was as large as
15 colors (for instance ale60 90 4).

4 Concluding remarks

We proposed a branch-and-cut algorithm for the equitable graph coloring
problem, based on its formulation by representatives. Instances with up to
60 nodes and edge densities ranging from 10% to 90% have been solved to
optimality, while the largest problems solved to date in [6] had only 35 nodes.
The proposed branch-and-cut algorithm B&C-LF2 clearly outperformed those
in [1,6].
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