
Effective probabilistic stopping rules for

randomized metaheuristics:

GRASP implementations

Celso C. Ribeiro1, Isabel Rosseti1, and Reinaldo C. Souza2

1 Department of Computer Science, Universidade Federal Fluminense,
Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil.

2 Department of Electrical Engineering, Pontif́ıcia Universidade Católica do Rio de
Janeiro, Rio de Janeiro, RJ 22453-900, Brazil.

{celso,rosseti}@ic.uff.br, reinaldo@ele.puc-rio.br

Abstract. The main drawback of most metaheuristics is the absence of
effective stopping criteria. Most implementations stop after performing
a given maximum number of iterations or a given maximum number of
consecutive iterations without improvement in the best known solution
value, or after the stabilization of the set of elite solutions found along
the search. We propose probabilistic stopping rules for randomized meta-
heuristics such as GRASP and VNS. We first show experimentally that
the solution values obtained by GRASP fit a Normal distribution. Next,
we use this approximation to obtain an online estimation of the number
of solutions that might be at least as good as the best known at the
time of the current iteration. This estimation is used to implement effec-
tive stopping rules based on the trade off between solution quality and
the time needed to find a solution that might improve the best found to
date. This strategy is illustrated and validated by a computational study
reporting results obtained with some GRASP heuristics.

1 Introduction and motivation

Metaheuristics are general high-level procedures that coordinate simple heuris-
tics and rules to find good approximate solutions to computationally difficult
combinatorial optimization problems. Among them, we find simulated annealing,
tabu search, GRASP, VNS, and others. They are based on distinct paradigms
and offer different mechanisms to escape from locally optimal solutions, contrar-
ily to greedy algorithms or local search methods. Metaheuristics are among the
most effective solution strategies for solving combinatorial optimization prob-
lems in practice and they have been applied to a very large variety of areas and
situations. The customization (or instantiation) of some metaheuristic to a given
problem yields a heuristic to the latter.

A number of principles and building blocks blended into different and often
innovative strategies are common to different metaheuristics. Randomization
plays a very important role in algorithm design. Metaheuristics such as simu-
lated annealing, GRASP, VNS, and genetic algorithms rely on randomization to

2

sample the search space. Randomization can also be used to break ties, so as
that different trajectories can be followed from the same initial solution in mul-
tistart methods or to sample fractions of large neighborhoods. One particularly
important use of randomization appears in the context of greedy randomized
algorithms, which are based on the same principle of pure greedy algorithms,
but make use of randomization to build different solutions at different runs.

Greedy randomized algorithms are used in the construction phase of GRASP
heuristics or to create initial solutions to population metaheuristics such as ge-
netic algorithms or scatter search. Randomization is also a major component of
metaheuristics such as simulated annealing and VNS, in which a solution in the
neighborhood of the current one is randomly generated at each iteration.

The main drawback of most metaheuristics is often the absence of effective
stopping criteria. Most of their implementations stop after performing a given
maximum number of iterations or a given maximum number of consecutive it-
erations without improvement in the best known solution value, or after the
stabilization of the set of elite solutions found along the search. In some cases
the algorithm may perform an exaggerated and non-necessary number of itera-
tions, when the optimal solution is quickly found (as it often happens in GRASP
implementations). In other situations, the algorithm may stop just before the
iteration that could find an optimal solution. Dual bounds may be used to imple-
ment quality-based stopping rules, but they are often hard to compute or very
far from the optimal values, which make them unusable in both situations.

Bayesian stopping rules proposed in the past were not followed by enough
computational results to sufficiently validate their effectiveness or to give evi-
dence of their efficiency. Bartkutė et al. [1, 2] made use of order statistics, keeping
the value of the k-th best solution found. A probabilistic criterion is used to infer
with some confidence that this value will not change further. The method pro-
posed for estimating the optimal value with an associated confidence interval is
implemented for optimality testing and stopping in continuous optimization and
in a simulated annealing algorithm for the bin-packing problem. The authors
observed that the confidence interval for the minimum value can be estimated
with admissible accuracy when the number of iterations is increased.

Boender and Rinnooy Kan [3] observed that the most efficient methods for
global optimization are based on starting a local optimization routine from an
appropriate subset of uniformly distributed starting points. As the number of
local optima is frequently unknown in advance, it is a crucial problem when to
stop the sequence of sampling and searching. By viewing a set of observed minima
as a sample from a generalized multinomial distribution whose cells correspond to
the local optima of the objective function, they obtain the posterior distribution
of the number of local optima and of the relative size of their regions of attraction.
This information is used to construct sequential Bayesian stopping rules which
find the optimal trade off between reliability and computational effort.

In Dorea [5] a stochastic algorithm for estimating the global minimum of a
function is described and two types of stopping rules are derived. The first is
based on the estimation of the region of attraction of the global minimum, while

3

the second is based on the existence of an asymptotic distribution of properly
normalized estimators. Hart [12] described sequential stopping rules for several
stochastic algorithms that estimate the global minimum of a function. Stopping
rules are described for pure random search and stratified random search. These
stopping rules use an estimate of the probability measure of the ǫ-close points
to terminate these algorithms when a specified confidence has been achieved.
Numerical results indicate that these stopping rules require fewer samples and
are more reliable than the previous stopping rules for these algorithms. They
can also be applied to multistart local search and stratified multistart local
search. Numerical results on a standard test set show that these stopping rules
can perform as well as Bayesian stopping rules for multistart local search. The
authors claimed an improvement on the results in [5].

Orsenigo and Vercellis [15] developed a Bayesian framework for stopping
rules aimed at controlling the number of iterations in a GRASP heuristic. Two
different prior distributions are proposed and stopping conditions are explicitly
derived in analytical form. The authors claimed that the stopping rules lead to
an optimal trade off between accuracy and computational effort, saving from
unnecessary iterations and still achieving good approximations.

In another context, stopping rules have also been discussed in [6, 28]. The
statistical estimation of optimal values for combinatorial optimization problems
as a way to evaluate the performance of heuristics was also addressed in [16, 25].

We propose effective probabilistic stopping rules for randomized metaheuris-
tics. In the next section, we give a template for a GRASP heuristic and we
describe the optimization problems and test instances that have been used in
our computational experiments. In Section 3, we assume that the solution val-
ues obtained by a GRASP procedure fit a Normal distribution. This hypothesis
is validated experimentally for all problems and test instances described in the
previous section. In Section 4, we first show how this Normal approximation can
be used to give an online estimation of the number of solutions that might be
at least as good as the currently best known solution. This estimation is used to
implement effective stopping rules based on the time needed to find a solution
that might improve the incumbent. The robustness of this strategy is illustrated
and validated by a computational study reporting results obtained with some
GRASP implementations. Concluding remarks are made in the last section.

2 GRASP and experimental environment

We consider in what follows a general combinatorial optimization problem of
minimizing f(x) over all solutions x ∈ F , which is defined by a ground set
E = {e1, . . . , en}, a set of feasible solutions F ⊆ 2E , and an objective function
f : 2E → R. The ground set E, the objective function f , and the constraints
defining the set of feasible solutions F are defined and specific for each problem.
We seek an optimal solution x∗ ∈ F such that f(x∗) ≤ f(x), ∀x ∈ F .

GRASP (which stands for greedy randomized adaptive search procedures) [8],
is a multi-start metaheuristic, in which each iteration consists of two phases:

4

construction and local search. The construction phase builds a feasible solution.
The local search phase investigates its neighborhood until a local minimum is
found. The best overall solution is kept as the result; see [18, 21, 19, 20].

The pseudo-code in Figure 1 gives a template illustrating the main blocks of
a GRASP procedure for minimization, in which MaxIterations iterations are
performed and Seed is used as the initial seed for the pseudo-random number
generator.

procedure GRASP(MaxIterations, Seed)
1. Set f∗ ←∞;
2. for k = 1, . . . , MaxIterations do

3. x← GreedyRandomizedAlgorithm(Seed);
4. x← LocalSearch(x);
5. if f(x) < f∗ then begin; x∗ ← x; f∗ ← f(x); end;
6. fk ← f(x);
7. end;
8. return x∗;
end.

Fig. 1. Template of a GRASP heuristic for minimization.

An especially appealing characteristic of GRASP is the ease with which it
can be implemented. Few parameters need to be set and tuned, and therefore
development can focus on implementing efficient data structures to assure quick
iterations. Basic implementations of GRASP rely exclusively on two parameters:
the stopping criterion (usually set as a predefined number of iterations) and
the parameter used to limit the size of the restricted candidate list within the
greedy randomized algorithm used by the construction phase. In spite of its
simplicity and ease of implementation, GRASP is a very effective metaheuristic
and produces the best known solutions for many problems, see [9–11].

Two combinatorial optimization problems have been used in the experiments
reported in this paper: the 2-path network design problem and the p-median
problem. They are both described below.

Given a connected undirected graph G = (V,E) with non-negative weights
associated with its edges, together with a set of formed by K pairs of origin-
destination nodes, the 2-path network design problem consists of finding a min-
imum weighted subset of edges containing a path formed by at most two edges
between every origin-destination pair. Applications can be found in the design
of communication networks, in which paths with few edges are sought to en-
force high reliability and small delays. Its decision version was proved to be
NP-complete by Dahl and Johannessen [4]. The GRASP heuristic that has been
used in the computational experiments was firstly presented in [23, 24]. Data of
the four instances involved in the experiments are summarized in Table 1.

5

Table 1. Test instances for the 2-path network design problem.

Instance |V | |E| K

2pndp50 50 1,225 500
2pndp70 70 2,415 700
2pndp90 90 4,005 900
2pndp200 200 19,900 2000

Given a set F of m potential facilities, a set U of n customers, a distance
function d : U×F → R, and a constant p ≤ m, the p-median problem consists of
determining which p facilities to open so as to minimize the sum of the distances
from each costumer to its closest open facility. It is a well-known NP-hard prob-
lem [14], with numerous applications in location [26] and clustering [17, 27]. The
GRASP heuristic that has been used in the computational experiments with
the p median problem was firstly presented in [22]. Data of the four instances
involved in the experiments are summarized in Table 2.

Table 2. Test instances for the p-median problem.

Instance m n p

pmed10 200 800 67
pmed15 300 1800 100
pmed25 500 5000 167
pmed30 600 7200 200

3 Normal approximation for GRASP iterations

We assume that the solution values obtained by a GRASP procedure fit a Normal
distribution. This hypothesis is validated experimentally for all problems and test
instances described in the previous section. Let f1, . . . , fN be a sample formed
by all solution values obtained along N GRASP iterations. We assume that the
null (H0) and alternative (H1) hypotheses are:

H0: the sample f1, . . . , fN follows a Normal distribution; and

H1: the sample f1, . . . , fN does not follow a Normal distribution.

The chi-square test is the most commonly used to determine if a given set
of observations fits a specified distribution. It is very general and can be used
to fit both discrete or continuous distributions [13]. First, a histogram of the
sample data is estimated. Next, the observed frequencies are compared with
those obtained from the specified density function. If the histogram is formed by

6

k cells, let oi and ei be the observed and expected frequencies for the i-th cell,
with i = 1, . . . , k. The test consists of computing

D =

k∑

i=1

(oi − ei)
2

ei
. (1)

It can be shown that, under the null hypothesis, D follows a chi-square distri-
bution with k−1 degrees of freedom. Since the mean and the standard deviation
are unknown, they should be estimated from the sample. As a consequence, two
degrees of freedom are lost to compensate for that. The null hypothesis that the
observations come from the specified distribution cannot be rejected at a level
of significance α if D is less than χ2

[1−α;k−3].
Let m and S be, respectively, the average and the standard deviation of the

sample f1, . . . , fN . A normalized sample f ′
i = (fi−m)/S is obtained by subtract-

ing the average m from each value fi and dividing the result by the standard
deviation S, for i = 1, . . . , N . Then, the null hypothesis that the original sample
fits a Normal distribution with mean m and standard deviation S is equivalent
to compare the normalized sample with the N(0, 1) distribution.

We show below that the solution values obtained along N GRASP iterations
fit a Normal distribution, for all problems and test instances presented in Sec-
tion 2. In all experiments, we used α = 0.1 and k = 14, corresponding to a
histogram with the intervals (−∞,−3), [−3.0,−2.5), [−2.5,−2.0), [−2.0,−1.5),
[−1.5,−1.0), [−1,−0.5), [−0.5, 0.0), [0.0, 0.5), [0.5, 1.0), [1.0, 1.5), [1.5, 2.0), [2.0, 2.5),
[2.5, 3.0), and [3.0,∞). For each instance, we illustrate the Normal fittings after
N = 50, 100, 500, 1000, 5000, and 10000 iterations.

Table 3 reports on the application of the chi-square test to the four instances
of the 2-path network design problem after N = 50 iterations. We observe that
already after as few as 50 iterations the solution values obtained by the heuristic
fit very close a Normal distribution.

To further illustrate that this close fitting is maintained when the number of
iterations increase, we present in Table 4 the main statistics for each instance
and for increasing values of the number N = 50, 100, 500, 1000, 5000, and 10000
of iterations: mean, standard deviation, skewness (η3), and kurtosis (η4). The
skewness and the kurtosis are computed as follows [7]:

η3 =

√
N ·∑N

i=1(fi −m)3

[
∑N

i=1(fi −m)2]3/2
and η4 =

N ·∑N
i=1(fi −m)4

[
∑N

i=1(fi −m)2]2
.

Table 3. Chi-square test for 90% confidence level: 2-path network design problem.

Instance Iterations D χ2
[1−α;k−3]

2pndp50 50 0.398049 17.275000
2pndp70 50 0.119183 17.275000
2pndp90 50 0.174208 17.275000
2pndp200 50 0.414327 17.275000

7

The skewness measures the symmetry of the original data, while the kurtosis
measures the shape of the fitted distribution. Ideally, they should be equal to 0
and 3, respectively, in the case of a perfect Normal fitting. We first notice that
the mean value consistently converges very quickly to a steady-state value when
the number of iterations increases. Furthermore, the mean after 50 iterations
is already very close to that of the Normal fitting after 10000 iterations. The
skewness values are consistently very close to 0, while the measured kurtosis of
the sample is always close to 3.

Table 4. Statistics for Normal fittings: 2-path network design problem.

Instance Iterations Mean Std. dev. Skewness Kurtosis

50 372.920000 7.583772 0.060352 3.065799
100 373.550000 7.235157 -0.082404 2.897830

2pndp50 500 373.802000 7.318661 -0.002923 2.942312
1000 373.854000 7.192127 0.044952 3.007478
5000 374.031400 7.442044 0.019068 3.065486
10000 374.063500 7.487167 -0.010021 3.068129

50 540.080000 9.180065 0.411839 2.775086
100 538.990000 8.584282 0.314778 2.821599

2pndp70 500 538.334000 8.789451 0.184305 3.146800
1000 537.967000 8.637703 0.099512 3.007691
5000 538.576600 8.638989 0.076935 3.016206
10000 538.675600 8.713436 0.062057 2.969389

50 698.100000 9.353609 -0.020075 2.932646
100 700.790000 9.891709 -0.197567 2.612179

2pndp90 500 701.766000 9.248310 -0.035663 2.883188
1000 702.023000 9.293141 -0.120806 2.753207
5000 702.281000 9.149319 0.059303 2.896096
10000 702.332600 9.196813 0.022076 2.938744

50 1599.240000 13.019309 0.690802 3.311439
100 1600.060000 14.179436 0.393329 2.685849

2pndp200 500 1597.626000 13.052744 0.157841 3.008731
1000 1597.727000 12.828035 0.083604 3.009355
5000 1598.313200 13.017984 0.057133 3.002759
10000 1598.366100 13.066900 0.008450 3.019011

Figure 3 displays the Normal distributions fitted for the three first instances
for each number of iterations. Together with the above statistics, these plots illus-
trate the robustness of the Normal fittings to the solution values obtained along
the iterations of the GRASP heuristic for the 2-path network design problem.

Table 5 reports the application of the chi-square test to the four instances
of the p-median problem after N = 50 iterations. As before, we observe that
already after as few as 50 iterations the solution values obtained by the heuristic
for this problem also fit very close a Normal distribution.

8

Table 5. Chi-square test for 90% confidence level: p-median problem.

Instance Iterations D χ2
[1−α;k−3]

pmed10 50 0.196116 17.275000
pmed15 50 0.167526 17.275000
pmed25 50 0.249443 17.275000
pmed30 50 0.160131 17.275000

Table 6 gives the same statistics for each instance of the p-median problem
and for increasing values of the number N = 50, 100, 500, 1000, 5000, and
10000 of iterations. As for the previous problem, we notice that the mean value
consistently converges very quickly to a steady-state value when the number of
iterations increases. Furthermore, the mean after 50 iterations is already very
close to that of the Normal fitting after 10000 iterations. Once again, the skew-
ness values are consistently very close to 0, while the measured kurtosis of the
sample is always close to 3. Figure 4 displays the Normal distributions fitted for
the three first instances for each number of iterations. Once again, these results
illustrate the robustness of the Normal fittings to the solution values obtained
along the iterations of the GRASP heuristic for the p-median problem.

Similar experiments have been performed for other problems and test in-
stances, such as the quadratic assignment and the set k-covering problems, with
results of the same caliber. We conclude this section by observing that the null
hypothesis cannot be rejected with 90% of confidence. Therefore, we may ap-
proximate the solution values obtained by a GRASP heuristic by a Normal
distribution that can be progressively fitted and improved as more iterations are
performed. This approximation will be used in the next section to establish and
validate a probabilistic stopping rule for GRASP heuristics.

4 Probabilistic stopping rule

We show in this section that the Normal distribution fitted to the solution values
obtained along the GRASP iterations can be used to give an online estimation of
the number of solutions that might be at least as good as the best known solution
at the time of the current iteration. This estimation is used to implement an
effective stopping rule based on the time needed to find a solution that might
improve the incumbent. The robustness of the proposed strategy is illustrated
and validated by a computational study reporting the results obtained.

We denote by X the random variable representing the value of the local
minimum obtained at each iteration. We recall that f1, . . . , fk is a sample formed
by the solution values obtained along the k first iterations. Let mk and Sk

be, respectively, the estimated mean and standard deviation of f1, . . . , fk. As
already established, we assume that X fits a Normal distribution N(mk, Sk)
with average mk and standard deviation Sk, whose probability density function
and cumulative probability distribution are, respectively, fk

X(.) and F k
X(.).

9

Table 6. Statistics for Normal fittings: p-median problem.

Instance Iterations Mean Std. dev. Skewness Kurtosis

50 1622.020000 57.844097 -0.179163 3.255009
100 1620.890000 59.932611 -0.364414 3.304588

pmed10 500 1620.332000 63.484721 0.111186 3.142248
p = 67 1000 1619.075000 64.402076 0.074091 2.964164

5000 1617.875200 63.499795 0.043152 2.951273
10000 1618.415400 63.415181 0.087909 2.955408

50 2170.500000 58.880642 -0.041262 1.949923
100 2168.450000 65.313609 0.270892 2.693553

pmed15 500 2173.060000 65.881958 0.202400 2.828056
p = 100 1000 2173.484000 65.590272 0.129234 2.784433

5000 2174.860000 64.639604 0.086450 2.940204
10000 2175.651600 65.101495 0.096328 2.954639

50 2277.780000 54.782220 0.330959 3.028905
100 2279.610000 58.034799 0.360133 3.466265

pmed25 500 2271.546000 56.029848 0.219415 3.311486
p = 167 1000 2274.182000 56.915366 0.081878 3.068963

5000 2276.305200 56.985195 -0.041096 3.108109
10000 2277.151600 57.583524 -0.041570 3.073374

50 2434.660000 57.809899 -0.130383 2.961249
100 2446.560000 57.292464 -0.259531 2.667470

pmed30 500 2444.638000 56.109134 -0.189935 2.691882
p = 200 1000 2441.465000 57.265005 -0.053183 2.858399

5000 2441.340400 54.941836 -0.013377 3.054188
10000 2441.277700 54.978827 0.006407 3.066879

Let UBk be the value of the best solution found along the k first iterations.
Therefore, the probability of finding a solution value smaller than or equal to

UBk in the next iteration can be estimated by F k
X(UBk) =

∫ UBk

−∞
fk
X(τ)dτ . This

estimation is periodically updated or whenever the best solution value improves.
We propose the following stopping rule: for any given threshold β, stop the

GRASP iterations whenever F k
X(UBk) ≤ β. In other words, the iterations will

be interrupted whenever the probability of finding a solution at least as good as
the current best becomes less than or equal to β.

To assess the effectiveness of this stopping rule, we have devised and per-
formed the following experiment for each problem and test instance considered
in Section 3. For each value of the threshold β = 10−3, 10−4, and 10−5, we run the
GRASP heuristic until F k

X(UBk) becomes less than or equal to β. Let us denote
by k the iteration counter when this condition is met and by UB the best known

solution at this time. At this point, we may estimate by N̂≤ = ⌊N ·F k
X(UB)⌋ the

number of solutions whose value will be at least as good as UB if N additional
iterations are performed. We empirically set N = 1, 000, 000. Next, we perform
N additional iterations and we count the number N≤ of solutions whose value
is less than or equal to F k

X(UB).

10

The computational results displayed in Table 7 show that N̂≤ = ⌊N ·F k
X(UB)⌋

is a good estimation for the number N≤ of solutions that might be found after
N additional iterations whose value is less than or equal to the best value at
the time the algorithm would stop for each threshold value β. The probabil-
ity F k

X(UBk) may be used to estimate the number of iterations that must be
performed by the algorithm to find a new solution at least as good as the cur-
rently best one. Since the user is able to account for the average time taken by
each GRASP iteration, the threshold defining the stopping criterion can either
be fixed or determined online so as to bound the computation time when the
probability of finding improving solutions becomes very small.

The pseudo-code in Figure 2 extends the previous template of a GRASP pro-
cedure for minimization, implementing the termination rule based on stopping
the GRASP iterations whenever the probability F k

X(UBk) of improving the best
known solution value gets smaller than or equal to β. Lines 8 and 9 update the
sample f1, . . . , fk and the best known solution value UBk = f∗ at each iteration
k. The mean mk and the standard deviation sk of the fitted Normal distribu-
tion in iteration k are estimated in line 10. The probability of finding a solution
whose value is better than the currently best known solution value is computed
in line 11 and used in the stopping criterion implemented in line 12.

The threshold β used to implement the stopping criterion may either be a
fixed parameter or iteratively computed. In the last case, it will be computed
considering the probability of finding an improving solution (or, alternatively, the
estimated number of iterations to find an improving solution) and the average
computation time per iteration.

We also notice that since the average time consumed by each GRASP iter-
ation is known, another promising avenue of research consists in investigating
stopping rules based on estimating the amount of time needed to probabilisti-
cally improve the best solution found by each percent point.

5 Concluding remarks

The main drawback of most metaheuristics is often the absence of effective stop-
ping criteria. Most of their implementations stop after performing a given maxi-
mum number of iterations or a given maximum number of consecutive iterations
without improvement in the best solution value, or after the stabilization of a
population of solutions or of a set of elite solutions found along the search. In
some cases, the algorithm may perform an exaggerated and non-necessary num-
ber of iterations. In other situations, the algorithm may stop just before the
iteration that could find a better, or even optimal, solution.

Bayesian stopping rules proposed in the past were not followed by enough
computational results to sufficiently validate their effectiveness or to give evi-
dence of their efficiency. In this paper, we proposed effective probabilistic stop-
ping rules for randomized metaheuristics.

We first showed experimentally that the solution values obtained by a GRASP
heuristic fit a Normal distribution. Next, we used the above Normal approxima-

11

Table 7. Stopping criterion vs. estimated and counted number of solutions at least as
good as the incumbent after N = 1, 000, 000 additional iterations.

Problem Instance Threshold Probability Estimation Count

β F k
X(UB) N̂≤ N≤

10−3 0.000701657 701 738
2pndp50 10−4 0.000001326 1 0

10−5 0.000001326 1 0
10−3 0.000655383 655 465

2-path 2pndp70 10−4 0.000036147 36 26
10−5 0.000005363 5 4
10−3 0.000322033 322 190

2pndp90 10−4 0.000014878 14 7
10−5 0.000001265 1 0
10−3 0.000525545 525 503

2pndp200 10−4 0.000098792 98 95
10−5 0.000000853 0 1

10−3 0.000181323 181 47
pmed10 10−4 0.000088594 88 16

10−5 0.000007667 7 0
10−3 0.000331692 331 123

p-median pmed15 10−4 0.000028636 28 7
10−5 0.000005236 5 0
10−3 0.000293215 293 211

pmed25 10−4 0.000053319 53 31
10−5 0.000008891 8 3
10−3 0.000569064 569 310

pmed30 10−4 0.000028080 28 8
10−5 0.000000790 0 0

tion to estimate the probability of finding a solution at least as good as the
currently best known solution at any iteration. With this probability, we have
been able to estimate the number of iterations that must be performed by the
algorithm to find a new solution at least as good as the currently best one.

We proposed a stopping rule based on the trade off between this estimation
and the time needed to find a solution that might improve the current best
one. GRASP iterations will be interrupted whenever the probability of finding
a solution at least as good as the current best becomes smaller than or equal a
certain threshold.

The robustness of this strategy was illustrated and validated by a computa-
tional study reporting results obtained with GRASP implementations for two
combinatorial optimization problems. Similar results already obtained for other
problems, such as the quadratic assignment and the set k-covering problems,
will be reported elsewhere in an extended version of this work.

Since the average time consumed by each GRASP iteration is known, an-
other promising avenue of research consists in investigating stopping rules based

12

procedure GRASP(β, Seed)
1. Set f∗ ←∞;
2. Set k ← 0;
3. repeat

4. x← GreedyRandomizedAlgorithm(Seed);
5. x← LocalSearch(x);
6. if f(x) < f∗ then begin; x∗ ← x; f∗ ← f(x); end;
7. k ← k + 1;
8. fk ← f(x);

9. UBk ← f∗;

10. Update the average mk and the standard deviation Sk of f1, . . . , fk;

11. Compute the estimate F k
X(UBk) = F k

X(f∗) =
∫ f∗

−∞
fk
X(τ)dτ ;

12. until F k
X(f∗) < β;

13. return x∗;
end.

Fig. 2. Template of a GRASP heuristic for minimization with the probabilistic stopping
criterion.

on estimating the amount of time needed to probabilistically improve the best
solution found by each percent point. We notice that the approach proposed in
this paper can be extended and applied not only to GRASP, but also to other
metaheuristics that rely on randomization to sample the search space.

Acknowledgments: The authors are grateful to M.G.C. Resende and R. Wer-
neck for making available their GRASP code for solving the p-median problem.

References

1. V. Bartkutė, G. Felinskas, and L. Sakalauskas. Optimality testing in stochastic and
heuristic algorithms. Technical report, Vilnius Gediminas Technical University,
2006. 4–10.

2. V. Bartkutė and L. Sakalauskas. Statistical inferences for termination of markov
type random search algorithms. Journal of Optimization Theory and Applications,
141:475–493, 2009.

3. C.G.E. Boender and A.H.G. Rinnooy Kan. Bayesian stopping rules for multistart
global optimization methods. Mathematical Programming, 37:59–80, 1987.

4. G. Dahl and B. Johannessen. The 2-path network problem. Networks, 43:190–199,
2004.

5. C. Dorea. Stopping rules for a random optimization method. SIAM Journal on

Control and Optimization, 28:841–850, 1990.

6. C. Duin and S. Voss. The Pilot method: A strategy for heuristic repetition with
application to the Steiner problem in graphs. Networks, 34:181–191, 1999.

7. M. Evans, N. Hastings, and B. Peacock. Statistical Distributions. Wiley, New York,
3rd edition, 2000.

13

8. T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109–133, 1995.

9. P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C.C.
Ribeiro and P. Hansen, editors, Essays and surveys in metaheuristics, pages 325–
367. Kluwer Academic Publishers, 2002.

10. P. Festa and M.G.C. Resende. An annotated bibliography of GRASP, Part I:
Algorithms. International Transactions in Operational Research, 16:1–24, 2009.

11. P. Festa and M.G.C. Resende. An annotated bibliography of GRASP, Part II: Ap-
plications. International Transactions in Operational Research, 16:131–172, 2009.

12. W.E. Hart. Sequential stopping rules for random optimization methods with ap-
plications to multistart local search. SIAM Journal on Optimization, 9:270–290,
1998.

13. R. Jain. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. Wiley, New York,
1991.

14. O. Kariv and L. Hakimi. An algorithmic approach to nework location problems,
Part II: The p-medians. SIAM Journal of Applied Mathematics, 37:539–560, 1979.

15. C. Orsenigo and C. Vercellis. Bayesian stopping rules for greedy randomized pro-
cedures. Journal of Global Optimization, 36:365–377, 2006.

16. R.L. Rardin R. and Uzsoy. Experimental evaluation of heuristic optimization al-
gorithms: A tutorial. Journal of Heuristics, 7:261–304, 2001.

17. M.R. Rao. Cluster analysis and mathematical programming. Journal of the Amer-

ican Statistical Association, 66:622–626, 1971.
18. M.G.C. Resende and C.C. Ribeiro. GRASP. In E.K. Burke and G. Kendall,

editors, Search Methodologies. Springer, 2nd edition. To appear.
19. M.G.C. Resende and C.C. Ribeiro. A GRASP with path-relinking for private

virtual circuit routing. Networks, 41:104–114, 2003.
20. M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances

and applications. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuris-

tics: Progress as Real Problem Solvers, pages 29–63. Springer, 2005.
21. M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures:

Advances, hybridizations, and applications. In M. Gendreau and J.-Y. Potvin,
editors, Handbook of Metaheuristics, pages 283–319. Springer, 2nd edition, 2010.

22. M.G.C. Resende and R.F. Werneck. A hybrid heuristc for the p-median problem.
Journal of Heuristics, 10:59–88, 2004.

23. C.C. Ribeiro and I. Rosseti. A parallel GRASP heuristic for the 2-path network
design problem. Lecture Notes in Computer Science, 2400:922–926, 2002.

24. C.C. Ribeiro and I. Rosseti. Efficient parallel cooperative implementations of
GRASP heuristics. Parallel Computing, 33:21–35, 2007.

25. F.S. Serifoglu and G. Ulusoy. Multiprocessor task scheduling in multistage hybrid
flow-shops: A genetic algorithm approach. Journal of the Operational Research

Society, 55:504–512, 2004.
26. B.C. Tansel, R.L. Francis, and T.J. Lowe. Location on networks: A survey. Man-

agement Science, 29:482–511, 1983.
27. H.D. Vinod. Integer programming and the theory of groups. Journal of the Amer-

ican Statistical Association, 64:506–519, 1969.
28. S. Voss, A. Fink, and C. Duin. Looking ahead with the Pilot method. Annals of

Operations Research, 136:285–302, 2005.

14

(a) 50-node instance

0.000

0.010

0.020

0.030

0.040

0.050

0.060

 350 360 370 380 390 400

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

(b) 70-node instance

0.000

0.010

0.020

0.030

0.040

0.050

 510 520 530 540 550 560 570

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

(c) 90-node instance

0.000

0.010

0.020

0.030

0.040

0.050

 670 680 690 700 710 720 730

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

Fig. 3. Fitted probability density functions for the 2-path network design problem.

15

(a) Instance pmed10 with p = 67

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

(b) Instance pmed15 with p = 100

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

(c) Instance pmed25 with p = 167

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

solution value

50 iterations
100 iterations
500 iterations

1000 iterations
5000 iterations

10000 iterations

Fig. 4. Fitted probability density functions for the p-median problem.

