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Abstract. Feature subset selection (FSS) is an important preprocessing step for the classification task, specially in
the case of datasets with high dimensionality, i.e., thousands of potentially predictive attributes. There is an extensive
literature on methods for performing FSS, but most of them do not apply to datasets with high dimensionality because
of the prohibitive computational cost. This paper proposes a feature subset selection algorithm which is suitable for
datasets with high dimensionality. Our proposal is based on the execution of a constructive procedure followed by a
local search strategy, in just one iteration. We conducted experiments using a variety of high-dimensional datasets,
showing that the proposed method can reach, in most cases, better accuracies — with a much lower computational cost
— than some well-known algorithms.

Categories and Subject Descriptors: 1.5.2 [Pattern Recognition]: Feature evaluation and selection

Keywords: classification, feature selection, high-dimensional datasets

1. INTRODUCTION

One of the most studied and applied tasks in data mining is the classification task, which aims at
estimating the class of an instance based on the available set of attributes. One method to improve
the performance of the classification process is to perform a feature subset selection (FSS) procedure,
an important step in the data mining process, which aims at choosing a subset of attributes that can
represent the relevant information within the data, based on some criteria [Liu and Motoda 1998].
The use of this procedure is strongly recommended, especially if the dataset has a huge dimensionality,
because most of the data mining algorithms may require a large computational effort if a huge number
of attributes is used. The use of an FSS procedure can provide: (a) improvement in classification
performance, eliminating useless attributes and those that can deteriorate the results, (b) simpler
classification models, reducing the computational cost of executing these models and providing a
better understanding of the obtained results, and (c) smaller datasets to be handled.

Because of the exponential (2") search space in terms of the number n of attributes, performing
FSS through exhaustive search is intractable. For this reason, several approximation strategies were
proposed to solve this problem. FSS algorithms are composed of a search method and a strategy to
evaluate the candidate solution [Liu and Yu 2005]. There are a number of different search strategies
such as ranker, sequential search, incremental search and metaheuristics, which are reviewed in the
next section. The evaluation of candidates can be performed in two ways: the filter approach, which
uses a relevance measure to estimate the quality of attributes or sets of attributes, and the wrapper
approach, which estimates the merit of candidates by the accuracy values obtained using a classifier.

We present in this work a feature subset selection algorithm — called Local Search Based (LSB)
strategy. LSB combines a construction phase followed by a local search, in only one iteration. Because
of the reduced number of evaluations of candidate solutions, this strategy is well-suited to high-
dimensional datasets, where some of the most popular FSS methods cannot be applied because of
prohibitive computational costs. The information gain of individual attributes is used in the first
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phase of LSB to produce a ranking of attributes. Based on this information, an initial candidate
solution is generated and, in the next step, its neighborhood is explored in order to find better
solutions.

This paper is organized as follows: Section 2 presents previous work on FSS. Section 3 describes
the proposed algorithm. Section 4 describes some well-known feature subset selection algorithms that
we compare experimentally with our proposal in this work. In Section 5, the experiments conducted
over nine datasets are showed, and an analysis of the results is presented. In Section 6, we evaluate a
variation of the proposed algorithm, by running many times the single iteration of the basic strategy.
Finally, the conclusions from this work and some ideas for the future are discussed in Section 7.

2. PREVIOUS WORK ON FEATURE SELECTION

There are some different strategies in the literature which can be applied to the feature subset selection
purpose.

Ranker approaches take into account the individual merit of attributes (with respect to their ca-
pacity of identifying the class) to create a ranking of attributes [Blum and Langley 1997; Guyon and
Elisseeff 2003]. The first k attributes of the resulting ranking are selected to compose the candidate
solution. These algorithms are very fast (linear complexity in terms of dataset dimensionality), but
because interactions between attributes are not considered, the quality of candidates may be degraded.
Moreover, it may be difficult to select an ideal value for k.

Sequential search algorithms are very simple: at each iteration, the inclusion/exclusion of each
attribute is evaluated and those that generate the highest improvement in the solution quality are
added/removed. Thus, the complexity of worst case is O(n?). The most common sequential strategies
are Sequential Forward Selection (SFS) — which starts with an empty solution and adds attributes
one by one — and Sequential Backward Selection (SBS) — which starts with all attributes and removes
one by one [Kittler 1978].

Incremental search strategies also add one attribute per iteration. However, these algorithms use
an initial ranking of the attributes, based on their individual merit. Thus, at each iteration, the
attribute at the top of the ranking is selected to be added in the candidate solution, and only this
new candidate is evaluated (O(n) complexity) [Ruiz et al. 2006; Bermejo et al. 2010].

Metaheuristics like GRASP [Feo and Resende 1995; Resende and Ribeiro 2014], Tabu Search [Glover
and Laguna 1997, Genetic [Goldberg 1989] and Memetic algorithms [Moscato 2003| have been used in
the FSS context. For many optimization problems, metaheuristic techniques have proved to be very
effective and feasible. However, their computational cost may be extremely high in the context of
high-dimensional datasets. Some FSS algorithms that employ metaheuristic approaches can be found
in [Yang and Honavar 1998; Inza et al. 2000; Yusta 2009; Esseghir 2010]. Despite the good results
achieved, those approaches were applied to low-dimensional datasets (less than 100 attributes).

Some of the most popular FSS methods cannot be applied to high-dimensional datasets because
of prohibitive computational costs. For example, for methods that are based on wrapper approaches,
which require execution of the classifier for each candidate evaluation, it may become infeasible to
execute a large number of evaluation steps.

In the last few years, some hybrid algorithms which combine filter and wrapper approaches have
been proposed with the idea of reducing the number of attributes before the wrapper evaluation.
Some of these approaches can be found in: [Ruiz et al. 2006; Flores et al. 2008], which incrementally
explores the attributes by following the ranking obtained by a filter measure; [Gutlein et al. 2009],
which applies a wrapper sequential forward search but only over the first k& attributes in the filter
ranking; [Bermejo et al. 2010; Ruiz et al. 2008], which uses the filter-based ranking for a better
organization of the search process; [Bermejo et al. 2011], which presents a GRASP with the main
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goal of speeding up the FSS process, by reducing the number of wrapper evaluations to carry out;
[Bermejo et al. 2014], which proposes to embed the classifier into the FSS algorithm instead of using
it as a black-box only for evaluating the candidate solutions; and [Moshki et al. 2015], which proposes
a GRASP with an extended version of a simulated annealing algorithm for local search. Our strategy
also follows a filter-wrapper approach in the sense that we use a filter in the constructive phase (to
rank the attributes and than proceed a pruning on the original list) and we use the wrapper strategy
to evaluate the candidate solutions (both in construction phase and in the local search).

3. THE PROPOSED ALGORITHM

The proposed heuristic — Local Search Based (LSB) — is a combination of a construction procedure
and a local search. As initialization, two steps are performed: (i) the list of attributes F from the
dataset is ranked by an individual relevance measure and (ii) the generated ranking is pruned so that
only the first k attributes from the ranking (represented by R) are considered in the next phases. The
value of k is controlled by a parameter p which defines a percentage of the whole list of attributes.
This pruning step is important in the context of high-dimensional datasets, because the evaluation of
the whole set of attributes may be impracticable.

The construction phase produces a viable solution S from the pruned ranking R. S is represented
by a vector S[i], 1 <1i < |R|, where if S[;]=0, it means that the i-th attribute from R does not belong
to S; on the other hand, if S[i]=1, the i-th attribute belongs to the solution S. Then the local search
phase tries to improve the quality of S by searching for better neighbors in the N(.S) neighborhood.
This combination construction + local search is executed only once and the final solution is the best
neighbor found in the local search procedure. Pseudocode of the proposed algorithm is presented in
Figure 1.

In line 01, a ranking E’ of the attributes from FE is generated. The measure used to evaluate the
individual attributes was Information Gain [Quinlan 1993], since it is a well-known measure in the
context of feature selection. In line 02, the number of attributes k& which will be considered for the
algorithm is calculated as p% of the total number of attributes in the dataset. Line 03 represents the
pruning step. R is filled with the first k attributes from the ranked list E’. This step speeds up the
algorithm since a reduced number of attributes (k) are considered in the constructive and local search
phases.

In line 04, S is initiated with an empty subset. The loop represented in lines 06 to 15 performs the
construction of a solution by traversing all the elements of |R|.

In line 07, a restricted candidate list (RCL) is generated. The RCL is a list of attributes whose
fitness belongs to the range [maz — o * (max — min), mazx], where min and mazx are the lowest
and highest fitness values from R, respectively, and « is a parameter which controls the size of this
restricted list. In line 08, one attribute e is randomly selected from RCL to be incorporated, in line
09, in the current solution .S. In line 10, the current solution is evaluated by a wrapper strategy, using
the Naive Bayes classifier, with internal 5-fold cross-validation.

In lines 11 to 13, the fitness of the new solution S’ is compared with the fitness of S. If S” outperforms
S, it becomes the current solution S. The last step of the iteration is presented in line 14, when the
evaluated attribute e is removed from R.

For the local search procedure (lines 16 to 25), the solution S generated by the constructive phase
is taken as starting point. A complete iteration of the local search tries to find the best neighbor
S; € N(S) which outperforms S. A new iteration is performed by taking the best neighbor S; better
than S as the current solution S. The neighborhood N(S) used is made up of all the n subsets
{51,52,...5,}, n=|R|, where the i-th bit S;[i], 1 < i < n, is inverted. In other words, if S[i]=0, then
S;[i]=1 and vice versa. This type of neighborhood takes into account insertions (when S[¢] is inverted
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procedure LSB(E, dataset, p, o)

// Initialization

01. E’ <« ranking of attributes from F;

02. k<« |E|*p/100;

03. R < first k attributes from E’ //(pruning step);

// Constructive phase

04. S < ¢

05. f(S) « 0;

06. while R <> ¢ do

07. Generates RCL from R based on «;
08. e < randomly selected attribute from RCL;
09. S’ + {e}us;

10. f(S") « fitness of solution S’;

11. if f(S") > f(S) then

12. S« S

13. end if;

14. R < R—{e};

15. end while;

//Local search phase

16. do

17. LS-improvement < false;
18. for each S; € N(S) do

19. if f(Si) > f(S) then

20. S« Si;

21. LS-improvement < true;
22. end if

23. end for

24. while LS-improvement is true;
25. return S;

end.

Fig. 1. Pseudocode of the proposed feature subset selection heuristic

from 0 to 1) and removals (when S[i] is inverted from 1 to 0) of attributes in S. When none of
the neighbors S; € N(S) presents f(S;) > f(95), the local search ends and returns, in line 25, the
best-fitness solution found.

4. SOME WELL-KNOWN FEATURE SUBSET SELECTION ALGORITHMS

WEKA (Waikato Environment for Knowledge Analysis) [Hall et al. 2009] is a powerful open-source
Java-based machine learning workbench. Among the techniques available within WEKA, we selected
four feature subset selection algorithms to make a comparison with LSB: GreedyStepwise (GS), Best-
First (BF), LinearForwardSelection (LF) and SubsetSizeForwardSelection (SS). The aim of the first
experiment is to compare LSB with some well-known available algorithms for feature selection.

The known greedy hill climbing search strategy considers local changes to the current feature subset.
Often, a local change is simply the addition or deletion of a single feature from the subset. GreedysS-
tepwise is an algorithm which performs a greedy forward or backward search through the space of
attribute subsets. It may start with no/all attributes or from an arbitrary point in the space. It stops
when the addition/deletion of any remaining attributes results in a decrease in evaluation [Hall et al.
2009].
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Best-first [Ginsberg 1994; Russell and Norvig 2003] searches the space of attribute subsets by
greedy hill-climbing augmented with a backtracking facility. The idea is to select the most promising
candidate generated which has not already been expanded. The backtracking level is controlled by a
parameter which defines the number of non-improving candidates allowed. Best-first may start with
the empty set of attributes and search forward, or start with the full set of attributes and search
backward. It is also possible start at any point and search in both directions (by considering all
possible single attribute additions and deletions at a given point).

In the classical Sequential Forward Selection approach, the number of evaluations grows quadrat-
ically with the number of attributes: the number of evaluations in each step is equal to the number
of remaining attributes that are not in the currently selected subset. This quadratic growth can be
problematic for datasets with a large number of attributes. Trying to mitigate this problem, [Gut-
lein et al. 2009] propose a technique to reduce the number of attribute expansions in each forward
selection step: the LinearForwardSelection, which is an extension of BestFirst. In this proposal, they
limit the number of attributes that are considered in each step so that it does not exceed a certain
user-specified constant. This drastically reduces the number of evaluations, and therefore improves
the runtime performance of the algorithm.

SubsetSizeForwardSelection is an extension of LinearForwardSelection. The algorithm determines
the subset size to be reached in forward selection to combat overfitting, where the search is forced
to stop at a precomputed subset size. The search performs an interior cross-validation (seed and
number of folds can be specified). A LinearForwardSelection is performed on each fold to determine
the optimal subset size m (using the given SubsetSizeEvaluator). Finally, a LinearForwardSelection
up to m is performed on the whole data. In [Gutlein et al. 2009], they show that this technique reduces
subset size while maintaining comparable accuracy with the LinearForwardSelection approach.

5. EXPERIMENTS AND RESULTS

Datasets used in the experiments were obtained from public repositories and have hundreds or thou-
sands of attributes. Table I presents these datasets showing their dimensionality and the number of
instances. Datasets are split in 10 folds to enable an external 10-fold cross-validation. Thus, accu-
racy values for each experiment represent the average of 10 executions of the algorithm for the same
dataset.

Since LSB uses a random function during the constructive phase to select an attribute from the
RCL, it is necessary to define an initial seed value for each execution. We conducted 10 independent
executions of each experiment, with 10 different initial seeds. Thus, the presented values in the next
section represent the average of 10 independent executions on each dataset, each of them using a
10-fold cross-validation.

We experimented with a range of different values for the o and p parameters, and the best results
were produced when a=0.2 and p=5%. The complete results and analysis of these experiments can
be found in [Tasca 2015].

We also tested different parameter combinations for each algorithm selected from the WEKA tool.
The combination with the best performance (regarding the solution quality) for each one was used in
the comparison with LSB. For GreedyStepwise, BestFirst and LinearForwardSelection algorithms, the
best accuracy values were obtained with the default parameters from WEKA. For SubsetSizeForward-
Selection, the best accuracies were obtained when we performed a ranking using the wrapper with
Naive Bayes and considered 100 attributes from this ranking.

At first, we analyzed the accuracy values obtained with the Naive Bayes (NB) [Duda et al. 2001]
classifier, by submitting the selected subset by each evaluated algorithm. NB is a probabilistic classifier
based on the assumption of conditional independence among the predictive attributes given the class.
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Table I. High-dimensional datasets used in the experiments

Dataset [ # of attributes [ # of instances
Leukemia 7130 72
DLBCL 4027 47
Lymphoma 4027 96
Madelon 500 2600
Colon 2001 62
Dexter 19999 600
Lung 12534 181
Prostate 12600 136
Gisette 5000 6000

In spite of this hard independence assumption, NB is a competitive classifier, working quite well in
many classification tasks [Fang 2013]. We have chosen Naive Bayes because we would like to compare
our algorithm with other proposals in the literature, which also used it.

Table II presents the accuracy values obtained in this experiment. Values in brackets represent the
position in the ranking which compares the five algorithms, for each dataset. The best accuracy value
in each line is marked in bold. The last row in the table presents the sum of the ranking positions
(SRP) for each strategy. Considering that position 1.0 represents the best accuracy for the given
dataset and position 5.0 represents the worst result, the optimum value for SRP would be 9.0 (when
the algorithm is at the top of the ranking for all datasets) and the worst value would be 45.0 (when
the algorithm gets the fifth position for all datasets). LSB presented the best behavior among the
evaluated algorithms, as it has the lowest sum of ranking positions (SRP).

Table 1I.  Accuracy values obtained from each evaluated algorithm

Datasets [ GS BF LF Ss LSB

Leukemia 88.57 (4.5) 88.57 (4.5)  91.61 (2.0) 90.00 (3.0) 95.94 (1.0)
Dibcl 77.50 (5.0)  80.00 (4.0)  88.00 (2.5) 88.00 (2.5) 89.50 (1.0)
Lymphoma 79.11 (2.0)  78.00 (3.0)  74.89 (4.0) 70.67 (5.0) 80.25 (1.0)
Madelon 61.27 (2.0) 61.19 (4.0)  60.12 (5.0) 61.23 (3.0) 61.41 (1.0)
Colon 80.48 (4.5) 80.48 (4.5) 83.81 (1.0) 83.81 (2.0) 82.62 (3.0)
Dexter 81.33 (5.0) 81.67 (4.0) 84.33 (3.0) 85.17 (2.0) 88.69 (1.0)
Lung 94.53 (4.5) 94.53 (4.5)  97.25 (2.0) 95.58 (3.0) 99.13 (1.0)
Prostate 70.55 (5.0) 71.92 (3.0)  73.46 (2.0) 70.60 (4.0) 81.07 (1.0)
Gisette 93.83 (1.0) 93.80 (2.0)  88.25 (5.0) 89.03 (4.0)  92.33 (3.0)
Sum of Ranking Positions (SRP) 33.50 33.50 26.50 28.50 13.00

To analyze if the results are statistically significant, we applied the non-parametric Friedman test
[Friedman 1937], which enables a multi-algorithm multi-dataset comparison. The null-hypothesis for
the Friedman test is that there are no differences between the algorithms. If the null-hypothesis is
rejected, we can conclude that at least two of the algorithms are significantly different from each
other, and the Nemenyi post-hoc test can be applied to identify these differences [Demsar 2006].
According to the Nemenyi test, the performances of two algorithms are significantly different if their
corresponding average of ranking positions has a difference of at least a determined critical value.

Using p-value=0.0336, the Friedman test execution rejected the null-hypothesis with a significance
level of 5%, so the Nemenyi test was performed (critical value=1.5634) and detected a significant
difference between GS and LSB and also between BF and LSB, which shows that LSB outperforms
those algorithms with statistical significance.

We also ranked the computational costs of the strategies based on the CPU time. Table III presents
the values obtained (in minutes) and the sum of the ranking positions for each evaluated strategy.
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LSB also obtained the best result according to this metric. For the nine evaluated datasets, LSB
obtained the first position for seven of them, taking the shortest CPU time to perform the FSS.

Table I[1I. CPU time obtained from each evaluated algorithm

Datasets [ GS BF LF SS LSB

Leukemia 1419 (4.0)  2.722 (5.0)  0.344 (3.0)  0.306 (2.0) 0.037 (1.0)
Dibcl 0.615 (4.0) 1.149 (5.0)  0.134 (2.0)  0.140 (3.0)  0.015 (1.0)
Lymphoma 3.881 (4.0) 7.925 (5.0) 0298 (2.0) 0.542 (3.0) 0.249 (1.0)
Madelon 2.085 (4.0)  7.011 (5.0)  1.232 (3.0)  0.939 (2.0) 0.074 (1.0)
Colon 0.392 (4.0)  1.184 (5.0) _ 0.075 (2.0) _ 0.081 (3.0)  0.017 (1.0)
Dexter 267.951 (4.0)  431.58 (5.0) 3.260 (1.0)  4.119 (2.0)  4.941 (3.0)
Lung 3.647 (4.0) 8.905 (5.0)  1.149 (3.0)  0.982 (2.0) 0.146 (1.0)
Prostate 10.726 (4.0)  28.604 (5.0)  1.036 (2.0)  1.044 (3.0) 0.500 (1.0)
Gisette 504.668 (4.0) 808.300 (5.0)  3.575 (2.0) 3.243 (1.0) 13.286 (3.0)
Sum of Ranking Positions (SRP) 36.00 45.00 20.00 21.00 13.00

With respect to the size of selected subsets, LSB proved to be very effective in reducing the datasets
dimensionality, in the same manner as the other evaluated algorithms. The selected subsets represent,
on average, 0.43% of all attributes. GS, BF, LF and SS generated, respectively, solutions with an
average size of 0.28%, 0.37%, 0.49% and 0.19% of all attributes. Table IV presents the size of the
solution generated by each strategy, as a percentage of the total number of attributes, for each dataset,
for each dataset.

Table IV. Size of generated solutions, in percentage

Datasets Total # of GS BF LF SS LSB

Attributes (%) (%) (%) (%) (%)
Leukemia 7129 0.04 0.04 0.05 0.05 0.09
Dlbcl 4026 0.08 0.09 0.12 0.10 0.15
Lymphoma 4026 0.17 0.19 0.21 0.20 0.41
Madelon 500 1.30 1.92 3.32 0.96 1.40
Colon 2000 0.24 0.35 0.34 0.19 0.39
Dexter 19999 0.11 0.16 0.10 0.07 0.18
Lung 12533 0.02 0.02 0.02 0.02 0.04
Prostate 12600 0.05 0.07 0.06 0.05 0.14
Gisette 5000 0.46 0.52 0.18 0.11 1.05
Mean (%) 0.28 0.37 0.49 0.19 0.43

Besides the algorithms from the WEKA tool, we also compared our proposal with the GRASP
presented in [Bermejo et al. 2011] (identified here as HC*). HC* was compared in the referred work
with the state-of-the-art feature subset selection algorithms and the results show that this proposal is
comparable in accuracy and cardinality of the selected subset to important algorithms, but requires
significantly less computational cost.

At first, we analyzed the accuracy values obtained from the Naive Bayes classifier, by submitting
the selected subset obtained with each evaluated algorithm (LSB and HC*). Accuracy values of HC*
were obtained from [Bermejo et al. 2011], because the source code of HC* was not available and we
could not execute it under the same conditions as LSB. The experiment for the LSB algorithm was
performed using the same datasets and the same 10 folds than those used in [Bermejo et al. 2011].
Table V shows the results for the two evaluated algorithms over the nine datasets. The best accuracy
value in each line is marked in bold.

To analyze if the results are statistically significant, we applied the Wilcozon test [Wilcoxon 1945],
which is a non-parametric test used to determine whether two dependent groups of data are different.
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Table V. Accuracy values obtained from HC* and LSB

Datasets | HC*  LSB

Leukemia 92.64 95.94
Dlbcl 86.17  89.50
Lymphoma | 74.90 80.25
Madelon 60.85 61.41
Colon 81.13  82.62
Dexter 83.47  88.69
Lung 95.69  99.13
Prostate 77.87  81.07
Gisette 93.06  92.33

The null-hypothesis for the Wilcozon test is that the two groups of data are not different. Based
on the W statistic, which is calculated from the data, we determine whether to accept or reject the
null-hypothesis.

The Wilcoxzon test execution for the evaluated algorithms rejected the null-hypothesis, because the
critical W for 5% level is 6, and the W statistic obtained was 2. This means that LSB outperforms
HC* with statistical significance.

The comparison between LSB and HC* in terms of computational cost was made through the
number of wrapper evaluations, because we could not run the HC*, for the reason mentioned before,
to register the CPU time for both algorithms under the same conditions. We know that the highest
cost step in both algorithms is the wrapper evaluation. So algorithms which execute fewer wrapper
evaluations have, consequently, lower computational cost.

The comparison between LSB and HC* is showed in Table VI. LSB presents lower computational
cost (in terms of number of wrapper evaluations) in seven out of nine datasets. For Dexter and
Prostate datasets, HC* was faster. The reason for the different behavior is related to the pruning
step. Both of them are based on an initial ranking and only the first & attributes are considered
on the construction and local search phases. However, HC* considers a fixed number (100), no
matter the dataset dimensionality. But LSB uses a percentage of attributes, set as 5% for these
experiments. Thus, since Dexter and Prostate datasets have a very high dimensionality (19999 and
12600 attributes, respectively), the number of candidates to be evaluated for LSB was much higher
than for HC* algorithm.

Table VI. Number of wrapper evaluations for HC* and LSB

Datasets HC* LSB % of LSB with
respect to HC*

Leukemia 5472.00 1513.60 | 28%

DLBCL 5206.10 890.30 17%

Lymphoma | 5608.60 | 1467.20 | 26%

Madelon 5076.80 | 205.90 4%

Colon 5065.20 | 509.80 10%

Dexter 5543.20 | 7063.00 | 127%

Lung 5940.10 2585.20 | 44%

Prostate 5252.40 6825.90 130%

Gisette 7206.20 6767.50 | 94%

With respect to the size of selected subsets, both of the strategies showed to be very effective to
reduce the datasets dimensionality. HC* generated solutions with an average size of 0.26% of all
attributes while LSB produced solutions with an average size of 0.43%, as we already mentioned
before.
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6. A MULTI-ITERATION OF LSB

Starting from the basic structure of LSB, we tried an extension of this initial strategy. In order to
explore the search space more broadly, we created a new approach, called LSB-Nx, which represents
the execution of the LSB algorithm for a number z of iterations. The execution of a construction
phase followed by a local search a number of times characterizes the GRASP [Feo and Resende 1995;
Resende and Ribeiro 2014] metaheuristic.

The idea of this new strategy is to take advantage of the random aspect of LSB. In this way,
by running many iterations of the algorithm the strategy has the opportunity to generate different
solutions in the constructive phase, which represent different starting points for the local search. In
this case, the final solution returned by the algorithm is the best solution found among the z iterations.

For the sake of simplicity, let us call LSBSteps both portions of LSB code named as Constructive
phase (lines 05 to 15) and Local search phase (lines 16 to 25) in Figure 1. Then the pseudocode of
LSB-Nz algorithm is presented in Figure 2.

procedure LSB-Nz(E, dataset, p, o, z)

//Initialization

01. E’ <« ranking of attributes from F;

02. k<« |E|*p/100;

03. R <« first k attributes from E’ //(pruning step);

04. S < ¢

05. f(S) « 0;

06. for i from 1 to z do
07. S’ + LSBSteps;

08. if f(S") > f(S) then

09. S+ 9
10. end if;
11. end for;
12. return S;
end.

Fig. 2. Pseudocode of LSB-Nz

We evaluated different values for the x parameter in the LSB-Nz: 1 (which corresponds the LSB
strategy), 2, 5, 10, 30, and 50. Table VII presents the comparison of these executions. In the first
column we can see the datasets. The column labeled as LSB-N1 shows the accuracy values obtained
with only one iteration. This strategy was defined as the baseline of the experiment. The remaining
columns present the accuracy values (Acc%) obtained with different values of « and the percentage
difference (Diff%) of the respective strategy regarding the accuracy obtained by the baseline algorithm.
For Leukemia dataset, for example, the LSB-N2 represents an accuracy reduction of 1.92% regarding
LSB-N1. For Prostate dataset, the LSB-N2 represents an accuracy increasing of 3.57% regarding the
baseline.

In contradiction to what would be expected, the execution of LSB a number of times did not
improve the quality of solutions for all datasets. When some heuristic is executed several times, better
solutions found replace previous ones. Thus, we expect that the quality of the final solution from an
experiment with several iterations is at least the same as the solution produced by an experiment
with only one iteration. However, in the context of FSS, it is possible to see different behavior in the
results of the training and the test datasets. The FSS algorithm searches for the best feature subset
which maximizes the accuracy generated by the considered classifier, taking into consideration the
training dataset. When the solution subset is defined, the final accuracy reported in the experiment
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Table VII. Accuracy values obtained with LSB-Nz algorithm

LSB-N1 LSB-N2 LSB-N5 LSB-N10 LSB-N30 LSB-N50
Datasets Acc% Acc%  Diff% Acc%  Diff% Acc%  Diff% Acc%  Diff% Acc%  Diff%
Leukemia 94.89 93.07 -1.92 93.39 -1.58 93.39 -1.58 93.39 -1.58 94.46 -0.45
Dlbcl 88.20 84.60 -4.08 83.80 -4.99 83.40 -5.44 83.40 -5.44 83.33 -5.52
Lymphoma 80.47 80.13 -0.42 80.60 0.17 81.02 0.69 81.24 0.96 80.18 -0.35
Madelon 60.86 59.96 -1.48 60.02 -1.39 60.26 -0.99 60.24 -1.01 60.26 -0.99
Colon 80.52 79.52 -1.24 80.14 -0.47 81.09 0.71 80.43 -0.12 78.09 -3.02
Dexter 87.92 87.84 -0.09 88.17 0.28 88.21 0.33 90.21 2.61 88.31 0.45
Lung 98.57 96.91 -1.68 96.59 -2.01 96.59 -2.01 96.59 -2.01 96.70 -1.90
Prostate 79.85 82.70 3.57 81.63 2.23 82.37 3.17 84.93 6.37 84.94 6.38
Gisette 92.21 92.32 0.12 92.60 0.42 92.65 0.47 92.44 0.25 92.83 0.67
Mean Diff% -0.80 -0.82 -0.52 0.00 -0.53

is calculated in the test dataset. So, when several iterations are executed in the training dataset, it
is possible to observe an improvement in terms of solution quality. But when the solution subset is
submitted to the classifier in the test dataset, the generated accuracy may be worse than that generated
in the training dataset. For this reason, it is possible that increasing the number of iterations does
not improve the quality of solutions. In the training dataset, we could observe this expected quality
improvement in all datasets. But since this quality improvement did not occur in the test dataset for
all databases, we will analyze each one individually.

Colon, Leukemia, Dlbcl and Lymphoma datasets have a small number of instances (62, 72, 47, and
96, respectively). When these datasets are split in 10 folds to enable cross-validation, each fold in test
dataset is very small (less than 10 instances). Thus, when the prediction for one instance is incorrect,
this mistake represents a significant percentage of the final accuracy. For this reason, if, by chance,
the classifier misses more predictions when considering the solutions generated by the LSB-Nx with
x > 1, the accuracy values will be worse than the values generated by LSB-N1. This fact makes it
seem like increasing x does not contribute to the improvement in solutions quality. In the training
datasets this improvement can be observed for the mentioned datasets.

In spite of the fact that Madelon dataset has many instances (2600), it has 500 attributes in total
and, as we perform a 5% pruning, only 25 attributes are considered by the feature subset selection
algorithm. This reduced number of attributes makes the search space more restricted, which does not
cause improvement quality when several iterations are executed.

Lung and Prostate datasets have 181 and 136 instances, respectively, and about 12500 attributes
both. Lung dataset does not present improvement in solutions quality because the quality obtained
with only one iteration is already very high (it reaches accuracy of 100% is some folds). Therefore,
it does not make sense to perform several iterations of LSB for this dataset. Prostate dataset does
not reach very high accuracies with one iteration and, since it has many attributes, we can see an
improvement in the solution quality when we increase the number of iterations.

Dexter and Gisette datasets have a high number of attributes (19999 and 5000, respectively) and
many instances (600 and 6000). For these datasets we can see a quality solution improvement when
more than one iteration are performed.

The computational cost of performing many iterations of LSB is very high, as we can see in Ta-
ble VIII. Columns labeled as “t CPU” show the CPU time in minutes for executing the referred
algorithm. Columns labeled as “Diff%” show the percentage difference of the respective strategy re-
garding the LSB-N1. For example, LSB-N2 takes 93.74% more time than LSB-N1 to generate a
feature subset solution for Leukemia dataset.

As we observed previously, the gain in terms of solutions quality is short for most of datasets. In
this way, the decision of performing a more broadly search depends on the dataset properties and how
crucial is the matter of computational time for executing the algorithm. In the data mining context,
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where FSS is usually a pre-processing step, it may be worth to wait extra time to obtain better quality
solutions.

Table VIII. CPU time for different values of parameter =

‘ LSB-N1 LSB-N2 LSB-N5 LSB-N10 LSB-N30 LSB-N50
Datasets ‘ t CPU t CPU Diff% t CPU Diff% t CPU Diff% t CPU Diff% t CPU Diff%
Leukemia 0.0307 0.0594 93.74 0.1280  317.21 0.2386  677.77 0.8527 2679.34 1.5878 5075.47
Dlbcl 0.0126 0.0227 80.60 0.0488  288.24 0.0942  648.81 0.3403 2604.93 0.6316 4920.93
Lymphoma 0.2044 0.3465 69.51 0.8769  328.93 1.7785  769.94 6.8225 3237.16 13.1671 6340.55
Madelon 0.0584 0.1192 104.01 0.2332  299.14 0.4038  591.17 1.1817 1922.70 1.9454 3229.97
Colon 0.0153 0.0256 66.97 0.0515  236.16 0.0973  535.38 0.3205 1991.91 0.5583 3544.26
Dexter 3.3895 6.5777 94.06 18.4554  444.49 35.9899  961.81 136.5803  3929.54 173.0743  5006.23
Lung 0.1036 0.1989 91.88 0.3963  282.36 0.7642  637.38 2.2102 2032.55 5.3244 5037.37
Prostate 0.3588 0.8195 128.42 1.7067  375.72 3.5637  893.33 10.2947  2769.53 24.8796  6834.88
Gisette 13.8982 22.0034  58.32 45.1860  225.12 98.6875  610.07 293.4739  2011.60 479.8762  3352.79
Mean Diff% 87.50 310.82 702.85 2575.47 4815.83

7. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed a feature subset selection algorithm, based on a simple combination of a
construction procedure and a local search phase. We are focused in the context of high-dimensional
datasets, since the most popular FSS methods are not applied to this context, specially if the method
of evaluating candidates is based on wrapper approaches. Our proposal aims at simplicity and effi-
ciency, generating solutions which produces good accuracies and reducing significantly the number of
attributes in the dataset, with a low computational cost.

We have compared LSB with some important F'SS algorithms available in WEKA over nine high-
dimensional datasets. A comparative study between our algorithm and the one proposed in [Bermejo
et al. 2011] was also presented. Results showed that LSB is a very competitive proposal. It produces,
in most cases, better accuracies with a lower computational cost.

A variation of LSB algorithm was evaluated. The new version, called LSB-Nz, corresponds to the
execution of LSB a number z of iterations, which characterizes the GRASP metaheuristic. Results
showed that increasing the number of iterations does not necessarily increase the quality of solutions
in the context of FSS. It depends on the characteristics of the dataset.

For future work, one idea is to investigate some modifications in the LSB strategy, like changing the
relevance measure for generating the initial ranking of attributes and trying different neighborhood
strategies for the local search. Another idea is to perform experiments with other classifiers in addition
to Naive Bayes. We also consider important to compare LSB with some recent approaches, like the
one proposed in [Moshki et al. 2015], which uses the simulated annealing strategy for the local search.

Besides the evaluation of specific variations, new challenges are emerging in the FSS area. The very
concept of high-dimensionality itself is also changing with datasets containing trillions of attributes
being used nowadays [Bolon-Canedo et al. 2015].
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