
M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-1

Exploiting run time distributions to compare sequential and

parallel stochastic local search algorithms

Celso C. Ribeiro
∗

Isabel Rosseti
†

∗Department of Computer Science, Universidade Federal Fluminense,
Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil.

celso@ic.uff.br

†Department of Science and Technology, Universidade Federal Fluminense,
Polo Universitário de Rio das Ostras, Rio das Ostras, RJ 28890-000, Brazil.

rosseti@ic.uff.br

1 Motivation

Run time distributions or time-to-target plots display on the ordinate axis the probability that
an algorithm will find a solution at least as good as a given target value within a given running
time, shown on the abscissa axis. Time-to-target plots were first used by Feo et al. [3]. Run time
distributions have been advocated by Hoos and Stützle [4, 5] as a way to characterize the running
times of stochastic algorithms for combinatorial optimization.

Aiex et al. [2] described a perl program to create time-to-target plots for measured times that
are assumed to fit a shifted exponential distribution, following [1]. Such plots are very useful in the
comparison of different algorithms for solving a given problem and have been widely used as a tool
for algorithm design and comparison.

In this work, we describe a new tool to compare any pair of stochastic local search algorithms
and apply it in the investigation of different applications. In Section 2, we describe a numerical
procedure for computing the probability that one of the algorithms finds a given target solution
value in a smaller computation time than the other. Applications illustrating the comparison of
different sequential and parallel algorithms for the same problem appear in Section 3. Concluding
remarks are made in the last section.

2 Comparing run time distributions

We assume the existence of two stochastic local search algorithms A1 and A2 for approximately
solving some combinatorial optimization problem. Given a problem instance and a target value,
algorithms A1 and A2 stop when they find a solution with value at least as good as a given target.

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-2 MIC 2009: The VIII Metaheuristics International Conference

We denote by X1 (resp. X2) the continuous random variable representing the time needed by
algorithm A1 (resp. A2) to stop. We denote by FX1

(τ) and fX1
(τ) (resp. FX2

(τ) and fX2
(τ)) the

cumulative probability distribution and the probability density function of X1 (resp. X2), for τ > 0.

Since both algorithms stop when they find a solution at least as good as the target, we may say
that algorithm A1 performs better than A2 if the former stops before the latter. Therefore, we are
interested in evaluating the probability Pr(X1 ≤ X2) that X1 takes a value smaller than or equal
to X2. Conditioning on the value of X2 and applying the total probability theorem, we obtain:

Pr(X1 ≤ X2) =

∫ ∞

−∞

Pr(X1 ≤ τ)fX2
(τ)dτ =

∫ ∞

0
Pr(X1 ≤ τ)fX2

(τ)dτ.

For an arbitrary small real number ε, this expression can be rewritten as

Pr(X1 ≤ X2) =
∞∑
i=0

∫ (i+1)ε

iε

Pr(X1 ≤ τ)fX2
(τ)dτ. (1)

Since Pr(X1 ≤ iε) ≤ Pr(X1 ≤ τ) ≤ Pr(X1 ≤ (i + 1)ε) for iε ≤ τ ≤ (i + 1)ε, we obtain

∞∑
i=0

FX1
(iε)

∫ (i+1)ε

iε

fX2
(τ)dτ ≤ Pr(X1 ≤ X2) ≤

∞∑
i=0

FX1
((i + 1)ε)

∫ (i+1)ε

iε

fX2
(τ)dτ.

Let L(ε) and R(ε) be the left and right hand side values of the above expression, respectively, with
∆(ε) = R(ε) − L(ε). Then,

∆(ε) =
∞∑
i=0

[FX1
((i + 1)ε) − FX1

(iε)]

∫ (i+1)ε

iε

fX2
(τ)dτ.

Let δ = maxτ≥0{fX1
(τ)}. Since |FX1

((i + 1)ε) − FX1
(iε)| ≤ δε for i ≥ 0,

∆(ε) ≤
∞∑
i=0

δε

∫ (i+1)ε

iε

fX2
(τ)dτ = δε

∫ ∞

0
fX2

(τ)dτ = δε.

In order to evaluate a good approximation to Pr(X1 ≤ X2), we select the appropriate value of ε
such that the resulting approximation error ∆(ε) is sufficiently small. Next, we compute L(ε) and
R(ε) to obtain

Pr(X1 ≤ X2) ≈
L(ε) + R(ε)

2
. (2)

In practice, the probability distributions of the random variables X1 and X2 are unknown.
Instead of them, we have a large number N of observations of X1 and X2. Since δ = maxτ≥0{fX1

(τ)}
is unknown, the value of ε cannot be estimated. Then, we proceed iteratively as follows.

Let t1(j) (resp. t2(j)) be the value of the j-th smallest observation of X1 (resp. X2), for
j = 1, . . . , N . We set the bounds a = min{t1(1), t2(1)} and b = max{t1(N), t2(N)} and choose an
arbitrary number h of integration intervals to compute an initial value for the integration interval
ε = (b−a)/h. For small values of ε, the probability density function fX1

(τ) in the interval [iε, (i+1)ε]
can be approximated by f̂X1

(τ) = (F̂X1
((i+1)ε)−F̂X1

(iε))/ε, where F̂X1
(iε) = |{t1(j), j = 1, . . . , N :

t1(j) ≤ iε}|. The same approximation holds for X2.

The value of Pr(X1 ≤ X2) can be computed as in (2), using the estimates f̂X1
(τ) and f̂X2

(τ)
in the computation of L(ε) and R(ε). If the approximation error ∆(ε) = R(ε) − L(ε) is sufficiently
small, then the procedure stops. Otherwise, the value of ε is halved and the above steps are repeated.

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-3

3 Applications

The tool described in the previous section was applied by Ribeiro et al. [9] in the comparison of
stochastic local search algorithms for three different test problems: DM-D5 and GRASP algorithms
for server replication for reliable multicast, multistart and tabu search algorithms for routing and
wavelength assignment in optical networks, and GRASP algorithms for 2-path network design. In
this section, we further apply this tool to illustrate the comparison between different sequential
versions of GRASP with path-relinking, as well as the comparison of cooperative and independent
parallel implementations of GRASP with bidirectional path-relinking on up to 32 processors for
solving the 2-path network design problem.

Given a connected undirected graph with non-negative weights associated with its edges, to-
gether with a set of origin-destination nodes, the 2-path network design problem consists of finding
a minimum weighted subset of edges containing a path formed by at most two edges between every
origin-destination pair. Applications can be found in the design of communication networks, in
which paths with few edges are sought to enforce high reliability and small delays.

We first compare different GRASP heuristics, with and without path-relinking, for solving the 2-
path network design problem [8]. The first is a pure GRASP algorithm (algorithm A1). The others
integrate different path-relinking strategies for search intensification at the end of each GRASP
iteration: forward (algorithm A2), bidirectional (algorithm A3), backward (algorithm A4), and
mixed (algorithm A5) [6, 7]. Each version was run 500 independent times. These experiments are
summarized by the results obtained on an instance with 80 nodes and 800 origin-destination pairs,
with the target value set at 588.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.001 0.01 0.1 1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

GRASP
GRASP+forPR
GRASP+biPR

GRASP+backPR
GRASP+mixPR

Figure 1: Superimposed empirical run time distributions of pure GRASP and four versions of
GRASP with path-relinking.

The empirical run time distributions of the five algorithms are superimposed in Figure 1. Algo-
rithm A2 (as well as A3, A4, and A5) performs much better than A1, since Pr(X2 ≤ X1) = 0.968732.
Algorithm A3 outperforms A2, as illustrated by the fact that Pr(X3 ≤ X2) = 0.615286. Al-
gorithm A4 performs slightly better than A3 for this instance, since Pr(X4 ≤ X3) = 0.535582.
Algorithms A5 and A4 also behave very similarly, but A5 is slightly better for this instance since
Pr(X5 ≤ X4) = 0.554354.

Figures 2 and 3 superimpose the run time distributions of the cooperative and independent

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-4 MIC 2009: The VIII Metaheuristics International Conference

parallel implementations of GRASP with bidirectional path-relinking for the same problem, respec-
tively, on 2, 4, 8, 16, and 32 processors, for an instance with 100 nodes and 1000 origin-destination
pairs, and with the target value set at 683. Each algorithm was run 200 times. Since parallel
implementations produce many outliers, we eliminated the observations corresponding to the 5%
lower and the 5% higher parallel elapsed times. We denote by Ak

1 (resp. Ak
2) the cooperative (resp.

independent) parallel implementation running on k processors, for k = 2, 4, 8, 16, 32.

Table 1 displays the probability that the cooperative parallel implementation performs better
than the independent on 2, 4, 8, 16, and 32 processors. We observe that the independent imple-
mentation performs better than the cooperative on two processors. In this case, the cooperative
implementation does not benefit from the existence of two processors, since only one of them per-
forms iterations, while the other acts as the master. However, as the number of processors increases
from four to 32, the cooperative implementation performs progressively better than the independent,
since more processors are devoted to perform GRASP iterations.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1 10 100 1000 10000 100000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

2 procs
4 procs
8 procs

16 procs
32 procs

Figure 2: Superimposed empirical run time distributions of cooperative parallel GRASP with bidi-
rectional path-relinking running on 2, 4, 8, 16, and 32 processors.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

2 procs
4 procs
8 procs

16 procs
32 procs

Figure 3: Superimposed empirical run time distributions of independent parallel GRASP with
bidirectional path-relinking running on 2, 4, 8, 16, and 32 processors.

Table 2 displays the probability that each of the two parallel implementations performs better on
2j+1 than on 2j processors, for j = 1, 2, 3, 4. The cooperative implementation scales appropriately
as the number of processors grows. Contrarily, the performance of the independent implementation

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-5

Processors (k) Pr(Xk
1 ≤ Xk

2)

2 0.309660
4 0.597253
8 0.766698
16 0.860910
32 0.944846

Table 1: Comparing the cooperative and independent parallel implementations.

Processors (a) Processors (b) Pr(Xa
1 ≤ Xb

1) Pr(Xa
2 ≤ Xb

2)

4 2 0.766204 0.629691
8 4 0.748302 0.662932
16 8 0.713272 0.571173
32 16 0.742037 0.224815

Table 2: Comparing the parallel implementations on 2j+1 and 2j processors, for j = 1, 2, 3, 4.

apparently deteriorates in the same scenario.

4 Concluding remarks

Run time distributions are useful tools to characterize stochastic algorithms for combinatorial opti-
mization. In this work, we extended previous tools for plotting and evaluating run time distributions.
We described a numerical iterative procedure for computing the probability that one algorithm finds
a solution at least as good as some target value in a smaller computation time than another.

This procedure was applied in the comparison of sequential heuristics and parallel implemen-
tations of local search algorithms, providing an alternative to evaluate and compare their perfor-
mances. The proposed tool was also used to illustrate insightful analysis involving trade-offs between
computation times and scalability of parallel implementations when the number of processors varies.

References

[1] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution time in
GRASP: An experimental investigation. Journal of Heuristics, 8:343–373, 2002.

[2] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS: A perl program to create time-
to-target plots. Optimization Letters, 1:355–366, 2007.

[3] T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search procedure
for maximum independent set. Operations Research, 42:860–878, 1994.

[4] H. Hoos and T. Stützle. On the empirical evaluation of Las Vegas algorithms - Position paper.
Technical report, Computer Science Department, University of British Columbia, 1998.

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-6 MIC 2009: The VIII Metaheuristics International Conference

[5] H.H. Hoos and T. Stützle. Evaluation of Las Vegas algorithms - Pitfalls and remedies. In
Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pages 238–245,
1998.

[6] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–249. Kluwer, 2003.

[7] M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances and appli-
cations. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as Real

Problem Solvers, pages 29–63. Springer, 2005.

[8] C.C. Ribeiro and I. Rosseti. Efficient parallel cooperative implementations of GRASP heuristics.
Parallel Computing, 33:21–35, 2007.

[9] C.C. Ribeiro, I. Rosseti, and R. Vallejos. On the use of run time distributions to evaluate and
compare stochastic local search algorithms, 2009. Submitted for publication.

Hamburg, Germany, July 13–16, 2009

