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Abstract

Time-to-target plots (ttt-plots) are a useful tool to cltdéesize, evaluate, and compare the be-
havior of randomized heuristics for a given problem inséant some combinatorial optimization
problem. Multiple time-to-target plots (mttt-plots) ateetr natural extension to sets of multiple in-
stances. We show how to build an mttt-plots from the indieidtt-plots for each instance in the
set. Finally, we give an illustrative example of the constien of the mttt-plots from the individual
ttt-plots for a case study involving GRASP algorithms fae #xpath network design problem.

1 Introduction

Runtime distributions or time-to-target plots (or, simply, ttt-plots) display on thmate axis the prob-
ability that an algorithm will find a solution at least as good as a given taajeevior a given problem
instance within a given running time, shown on the abscissa axis. Theidprawery useful tool to
characterize the running times of stochastic algorithms for combinatorial optionizaroblems and to
compare different algorithms or strategies for solving a given problem. -Tortarget plots were first
used by Feo et al. [4] and have been widely used as a tool for algoriéisigrdand comparison. They
have been also advocated by Hoos ani@Z [5, 6] as a way to characterize the execution times of
stochastic algorithms for combinatorial optimization.

Let P be an optimization problem arid a randomized heuristic for this problem. Furthermore, let
7 be a specific instance @& and letlook/ be a target value for this instance.

Aiex et al. [2] developed a perl program to create time-to-target plotsnfaisured times that are
assumed to fit a shifted exponential distribution, following closely the workiex et al. [1]. To build
the ttt-plot, the heuristi@{ is run N times on the fixed instancg and the algorithm is made to stop as
soon as a solution whose objective function is at least as good as thmetgiget valudook/ is found.
For each of theV runs, the random number generator used in the implementation of the heuristic is
initialized with a distinct seed. Therefore, the runs are assumed to be ke The solution time of
each run is recorded and saved.

After concluding theN independent runs, the solution times are sorted in increasing order. We
associate with théth sorted solution time; a probabilityp; = (i — 1/2)/N (see [12], page 114) and
plot the points:; = (¢;,p;), fori =1,..., N.

If X > 0 denotes the continuous random variable representing the time taken hstinetrto
find a solution as good as the target valuek for instanceZ, thenFX(ti) = p; is an estimator of
P(X < z) = Fx(x) for everyx = t;,i = 1,..., N. Figure 1 illustrates the plot of this estimated
cumulative probability distribution for some proble®y, a GRASP heuristié{, an instanceZ, and a
targetiook/. We can see that the probability that the heuristic finds a solution at leasbdsag the
target value in at most 416 seconds is about 50%, in at most 1064 sesaizbut 80%, and in at most
1569 seconds is about 90%.

Ribeiro et al. [16] developed a closed form result to compare two expiahalgorithms and an
iterative procedure to compare two algorithms following generic runtime disitvites This work was
extended by Ribeiro et al. [17] and was also applied in the comparisonafgddneuristics. Ribeiro and
Rosseti [15] developed a code to compare runtime distributions of randdmligerithms. However, a
possible limitation of the use of time-to-target plots to compare different algorittmtise same problem
is that they convey information that is valid strictly for a single pair of problesteince and target value at
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Figure 1: Cumulative probability distribution plot of measured data.

a time. To consider the implications of this assumption, let us consider one nahex@enple involving
an instance of the routing and wavelength assignment problem [18].

In the context of this problem, a point-to-point connection between twoaamof an optical net-
work is called a lightpath. Two lightpaths may use the same wavelength, prowidgdlo not share
any common link. The routing and wavelength assignment problem is thatitirigaa set of lightpaths
and assigning a wavelength to each of them, minimizing the number of waveleregttied. Suppose
that two randomized approaches are available for approximately solvingrdbtem and one wants to
compare their performance from the standpoint of their time-to-target glbesapproaches considered
are a multistart greedy heuristic [8] and a tabu search decomposition s¢@rme addition, suppose
that two networks are used for benchmarking. The first has 27 negessenting the capitals of the 27
states of Brazil, with 70 links connecting them. There are 702 lightpaths touted:o The second is
formed by 31 nodes and 51 links, with 930 lightpaths to be routed [7], grdsents an optical network
in Finland. The target was set at 24 (the best known solution value) $tarine Brazil and at 50 for
instance Finland (the best known solution value is 47).

The time-to-target plots of the decomposition and multistart strategies arénsppsed in Figure 2.
The direct comparison of the two approaches shows that decomposipioveah clearly outperformed
the multistart strategy for instance Brazil. However, the situation changesstance Finland. Although
both algorithms have similar performances, multistart performs slightly bettegirBiet al. [16] showed
that the probability that it will find a solution as good as the target in less time tharséarch is 0.536787
for instance Finland.

This example shows that different choices for the pair of problem instand target value may lead
to different conclusions regarding the behavior of two algorithms forahgesproblem. This observation
reinforces the well-known fact that the comparison of different algoritishould be based on a repre-
sentative set of benchmark test instances, and not only on a single arena few problem instances.
Therefore, the main limitation of time-to-target plots is that they can considemmeyroblem instance
at a time and that conclusions regarding algorithm efficiency are limited to timepn instance and to
the target value that generated the plot.

In this work, we define multiple time-to-target plots (or, simply, mttt-plots) in the sextion, as
the natural extension of ttt-plots to sets of multiple instances. In Section 3, ave lsbw to build an
mttt-plot from the individual ttt-plots for each instance in the set. We preseatcase study with a
numerical example in Section 4, to illustrate the applicability and the usefulndéise oéwly proposed
tool. Concluding remarks are drawn in the last section.
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Figure 2: Superimposed runtime distributions of multistart and tabu search.

2 Multiple ttt-plots — mttt-plots

We first introduce some basic definitions and the experimental framewdnwithkead to the construc-
tion of multiple time-to-target plots (mttt-plots).

As before, we are given an optimization probl@&and a randomized heuristi¢ for this problem.
However, instead of one single instance and one single target valuepwéaven instances; and
their corresponding targetsok ;, forj =1,...,n.

Let eachX; > 0 be a continuous random variable representing the time taken by he@fistiéind
a solution as good as the target valuek ; for instanceZ;, for j = 1,..., n. In addition, letFy, (z) =
P(X; < z)andfx, () be, respectively, the cumulative distribution function and the probabilitgiden
function of X;.

HeuristicA is run N times for each instancg;, for j = 1,...,n. Each run is interrupted when a
solution at least as good as the target vahug/ ; is found. Lett] < t; < ... <t} be the ordered
running times for instancg; and targetook ;, with 77 = {¢{,...,t%}. Then,Fy,(z) = |{t! < = :

i=1,...,N}|/N is an estimator ofx, () for everyz € T7.

In order to define an extension of the time-to-target plot of a single instamceonsider the cumula-
tive distribution functionf'x, +. 4+ x, () = P(X1+...+ X, < x) of the random variabl& +. . .+ X,
i.e., the probability that all targets of their corresponding instances bbedac total time less than or
equal tox.
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The mttt-plot of the instances; and their corresponding targeksoks ;, for j = 1,...,n, is an

estimatorFXIJr,,,Jan (z) of the cumulative distribution functiof'x, 1.+ x,, ().
To illustrate the computation of the estimatox, . 1 x, (z), we first consider the case= 2. By
the total probability theorem,

—+00
FX1+X2(I) = P(Xl + X5 < x) = / P(Xl + X9 < :L“|X2 = U) . fXQ(U)dU.

—00

Since both random variable$, and X, are non-negative,

P(X1+Xe<x)= / P(X1+ Xo <z|Xo =) fx,(v)dv
0

P(X1+ X2 <x)= / P(X1<z—v)- fx,(v)dv = / Fx, (z —v) - fx,(v)dv.
0 0
For any arbitrary small real number> 0, the above expression can be approximated by

k=21 (k+1)e
PXi1+Xo<z)= Z / Fx,(z —v)- fx,(v)dv. (1)
k=0 ke

For everyv € [ke, (k + 1)g],
PXi<z—(k+1)e) <PX1<z—-v)<P(X; <zx-—ke),

ie.,
Fx,(x — (k+1)e) < Fx,(x —v) < Fx, (x — ke). 2
Let )
k=¢-1 (k+1)e
Lex)= 3 / Fr, (2 — (k + 1)e) - fx, (0)dv
k=0 “ke
and i
k=21 (kt1)e
R(e,z) = Z / Fx,(z — ke) - fx,(v)dv.
k=0 ke
Then, from equation (1) and inequalities (2),
k=Z-1 (k+1)e
Le,z) < P(X1 + X2 <1x) = Z / Fx,(x —v) - fx,(v)dv < R(g,x),
k=0 ke

L(é‘,lﬁ') < P(Xl + X2 < SU) < R(&,Jf),
and, consequently, an estimator of the cumulative distribution funétion, + X») is given by

L(e,z) + R(e, x)

FXH-Xz ($) = 9 ) 3)
with the approximation errof\ (e, z) = R(e, ) — L(e, x) being
k=2-1 (k+1)e
Aex) = 3 [Fxle—ke) = Pl (b+02] [ fal)de (4)
k=0 ke

Now, leto = max,>o{fx, (u)}. Then,Fx, (z — ke) — Fx,(x — (k+ 1)e) < de and

k+1)e k

k=21 ( =21 (k1)
Ae,x) < Z 55/ fx,(v)dv = de Z / Ix,(v)dv = 6eFx,(z) < de.
k=0 ke k=0 ke
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The approximation error can be made as small as desired by choosiffigi@stly small value for.

However, in practice, the probability distributions are unknown. Neitherctimeulative distribu-
tion functionsF'x, (x) and F'x, (x) nor the probability density functiongy, (=) and fx, (x) are known.
Instead of them, all information available is a large numbeiof observations of the random vari-
ablesX, and X,, and the estimatorBy, (z) of Fx, (z) and F, (z) of Fx,(z). Since the value of =
max,>o{ fx, (v)} is also unknown beforehand, the appropriate valueaainnot be estimated. However,
for anye sufficiently small,fx, (v) may be approximated by, (v) = (Fx,((k + 1)) — Fx, (ke))/e
for everyv € [ke, (k + 1)e] in the above computations. Using this approximatiBg, . x, () can be
calculated following equation (3). If the approximation erfof=) = R(e) — L(e) given by equation (4)
is sufficiently small, then the procedure stops. Otherwise, the valaesdfialved and the procedure is
repeated until convergence, following a similar scheme to that proposddpy

For the general case > 2, FX1+,“+X2 (z) could be recursively computed by definiiig = X1,
Y;=X;+ Yy, fori=2,... nandFx, 4. 1x,(x) = Fy, ().

However, the numerical procedure described in this section is not fed@siterms of the processing
times needed to generate the mttt-plots, due to time taken by integration calculabangerdome this
limitation, we describe in the next section the construction of the mttt-plots by simulation

3 Construction by simulation

We assume that we want to create the mttt-plot associated with an experimdtihgeis N running
times taken by the randomized heuristicto reach each targétok ; of instanceZ; of problem?, for
j=1,...,n,i.e., each individual ttt-plot ha¥ points.

The mttt-plot will be defined by a set & points(sy, Fx,+..4+x, (sx)), for k = 1,..., M, where
eachs; is a sample ofX; + ... + X, and FX1+.,,+Xn is an estimator off'x, .. 1x,. In order to
generate thes#/ points of the mttt-plot by simulation, we simply sampglé occurrences of the sum of
independent variableX; + ... + X, using the algorithm whose pseudo-code appears in Figure 3.

begin mttt-plot(M);
1 fork=1,...,Mdo
2 s+ 0;

3 forj=1,...,ndo

4 Randomly sampléme from the random variablé&(;

5 Sk < Sk + time;

6 end-for;

7 end-for;

8 Sort the sampled timesy, k = 1,..., M) in non-decreasing order;

9 Associate a probability, = (k — 1/2)/M with the kth sorted times, fork = 1,..., M;
10 Callttt-plot to plot the pointsy, = (sk,px), fork =1,..., M;
end mttt-plot.

Figure 3: Computing the mttt-plot with/ points by simulation.

The loop in lines 1 to 7 generates thé points, wherell > N is a parameter defined by the user.
Line 2 sets to 0 théth running time, fork = 1,..., M. The loop in lines 3 to 6 samples one running
time from each random variabl€;, for j = 1,...,n, and adds up them all, saving the sampled value in
si. Line 8 sorts the sampled times in non-decreasing order. Line 9 computesmbability associated
with each sampled running time, as explained in Section 1. Finally, line 10 maledeanal call to the
ttt-plot code available in Aiex et al. [2] to draw the mittt-plot.

Furthermore, for each sampled point FX1+,,,+Xn(sk) = Zﬁj’f pe, k=1,...,n.

However, in practice the probability distributions of the independent nandhriablesX;, for j =
1,...,n, are notknown. Therefore, instead of sampling from the probability digtab of each random
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variable X; in line 4 of the previous algorithm, we sample from the observed running tiffles-
{t1,...,t)} for each instancg; and targetooks ;, with t] < t; < ... < t,. The pseudo-code of the
resulting algorithm is fully described in Figure 4.

begin mttt-plot(M);
1 fork=1,...,Mdo
2 sk < 0;

3 forj=1,...,ndo

4 Randomly selectime from {t/,i =1,...,N};

5 Sk < Sk + time;

6 end-for;

7 end-for;

8 Sortthe sampled timesy, k = 1,..., M) in non-decreasing order;

9 Associate a probability, = (k — 1/2)/M with the kth sorted times, fork = 1,..., M;
10 Callttt-plot to plot the pointsy, = (sk,px), fork =1,..., M;
end mttt-plot.

Figure 4: Computing the mttt-plot with/ points by simulation (final).

We notice that the number of runs of each instance and target may varjoasdnot have to be
necessarily equal to the same vahidor all of them.

4 Case study: numerical example

In this section, we give an illustrative example of the construction of the mttt-fitmts the individual
ttt-plots for a case study involving GRASP algorithms for the 2-path netwasigdeproblem.

Given a connected undirected graph with non-negative weights atexbeiith its edges, together
with a set of origin-destination nodes, the 2-path network design prol@esists in finding a minimum
weighted subset of edges containing a path formed by at most two edgeshevery origin-destination
pair. Applications can be found in the design of communication networks, ichvgaths with few edges
are sought to enforce high reliability and small delays. Its decision veisidR-complete [3].

We illustrate the construction of mttt-plots by comparing two heuristics for ajpately solving
this problem. The first is a GRASP with forward path-relinking, while the sdds a GRASP with
backward path-relinking [10, 11, 13, 14]. We have considered &melomly instances with 100 nodes,
4950 edges, 1000 demands, and edge weights in the inférval. For each instance, two target values
were considered (700 and 710), making a totahof 10 pairs instance-target. Each algorithm was
run N = 200 times for each pair instance-target, until a solution at least as good asrthepmnding
target was found for each instance. Figure 5 displays the individudbt-for GRASP with forward
path-relinking and GRASP with backward path-relinking for each of thg#&érs instance-target.

Figure 6 displays the mttt-plot resulting from the ten individual ttt-plots by the sitionlalgorithm
described in Figure 4 usingy/ = 10°. The application of the tttplots-compare tool developed by [15]
shows that GRASP with backward path-relinking performs better for thisfseen instances and ten
targets, since the probability that the time taken by GRASP with backward @latking to find a
solution at least as good as the target is less than or equal to the time takd®ABPGvith forward
path-relinking is 0.808776.

5 Concluding remarks

This work is a continuation of previous research reported in [1, 2] tliatdghe development and use
of time-to-target plots (ttt-plots) as a very useful tool to characterize theimg times of stochastic
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Figure 5: 2-path network design problem: individual ttt-plots for GRASP ¥ativard path-relinking
vs. GRASP with backward path-relinking for ten instance-target pairs.
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algorithms for combinatorial optimization problems and to compare differentitigts or strategies for
solving a given problem.

We showed in this work that time-to-target plots of individual problems caextended to sets
of multiple instances. Multiple ttt-plots (mttt-plots) may be skillfully numerically computednfthe
individual ttt-plots of each instance by simulation. Their use allow for more solictlusions about the
comparison of different randomized heuristics for the same combinatptiatiaation problem.
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