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Abstract

Time-to-target plots (ttt-plots) are a useful tool to characterize, evaluate, and compare the be-
havior of randomized heuristics for a given problem instance of some combinatorial optimization
problem. Multiple time-to-target plots (mttt-plots) are their natural extension to sets of multiple in-
stances. We show how to build an mttt-plots from the individual ttt-plots for each instance in the
set. Finally, we give an illustrative example of the construction of the mttt-plots from the individual
ttt-plots for a case study involving GRASP algorithms for the 2-path network design problem.

1 Introduction

Runtime distributions or time-to-target plots (or, simply, ttt-plots) display on the ordinate axis the prob-
ability that an algorithm will find a solution at least as good as a given target value for a given problem
instance within a given running time, shown on the abscissa axis. They provide a very useful tool to
characterize the running times of stochastic algorithms for combinatorial optimization problems and to
compare different algorithms or strategies for solving a given problem. Time-to-target plots were first
used by Feo et al. [4] and have been widely used as a tool for algorithm design and comparison. They
have been also advocated by Hoos and Stützle [5, 6] as a way to characterize the execution times of
stochastic algorithms for combinatorial optimization.

Let P be an optimization problem andH a randomized heuristic for this problem. Furthermore, let
I be a specific instance ofP and letlook4 be a target value for this instance.

Aiex et al. [2] developed a perl program to create time-to-target plots formeasured times that are
assumed to fit a shifted exponential distribution, following closely the work ofAiex et al. [1]. To build
the ttt-plot, the heuristicH is runN times on the fixed instanceI and the algorithm is made to stop as
soon as a solution whose objective function is at least as good as the given target valuelook4 is found.
For each of theN runs, the random number generator used in the implementation of the heuristic is
initialized with a distinct seed. Therefore, the runs are assumed to be independent. The solution time of
each run is recorded and saved.

After concluding theN independent runs, the solution times are sorted in increasing order. We
associate with theith sorted solution timeti a probabilitypi = (i − 1/2)/N (see [12], page 114) and
plot the pointszi = (ti, pi), for i = 1, . . . , N .

If X ≥ 0 denotes the continuous random variable representing the time taken by heuristic H to
find a solution as good as the target valuelook4 for instanceI, thenF̂X(ti) = pi is an estimator of
P (X ≤ x) = FX(x) for everyx = ti, i = 1, . . . , N . Figure 1 illustrates the plot of this estimated
cumulative probability distribution for some problemP, a GRASP heuristicH, an instanceI, and a
targetlook4 . We can see that the probability that the heuristic finds a solution at least as good as the
target value in at most 416 seconds is about 50%, in at most 1064 seconds is about 80%, and in at most
1569 seconds is about 90%.

Ribeiro et al. [16] developed a closed form result to compare two exponential algorithms and an
iterative procedure to compare two algorithms following generic runtime distributions. This work was
extended by Ribeiro et al. [17] and was also applied in the comparison of parallel heuristics. Ribeiro and
Rosseti [15] developed a code to compare runtime distributions of randomized algorithms. However, a
possible limitation of the use of time-to-target plots to compare different algorithmsfor the same problem
is that they convey information that is valid strictly for a single pair of problem instance and target value at
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Figure 1: Cumulative probability distribution plot of measured data.

a time. To consider the implications of this assumption, let us consider one numerical example involving
an instance of the routing and wavelength assignment problem [18].

In the context of this problem, a point-to-point connection between two endnodes of an optical net-
work is called a lightpath. Two lightpaths may use the same wavelength, providedthey do not share
any common link. The routing and wavelength assignment problem is that of routing a set of lightpaths
and assigning a wavelength to each of them, minimizing the number of wavelengthsneeded. Suppose
that two randomized approaches are available for approximately solving thisproblem and one wants to
compare their performance from the standpoint of their time-to-target plots.The approaches considered
are a multistart greedy heuristic [8] and a tabu search decomposition scheme[9]. In addition, suppose
that two networks are used for benchmarking. The first has 27 nodes representing the capitals of the 27
states of Brazil, with 70 links connecting them. There are 702 lightpaths to be routed. The second is
formed by 31 nodes and 51 links, with 930 lightpaths to be routed [7], and represents an optical network
in Finland. The target was set at 24 (the best known solution value) for instance Brazil and at 50 for
instance Finland (the best known solution value is 47).

The time-to-target plots of the decomposition and multistart strategies are superimposed in Figure 2.
The direct comparison of the two approaches shows that decomposition approach clearly outperformed
the multistart strategy for instance Brazil. However, the situation changes for instance Finland. Although
both algorithms have similar performances, multistart performs slightly better: Ribeiro et al. [16] showed
that the probability that it will find a solution as good as the target in less time than tabu search is 0.536787
for instance Finland.

This example shows that different choices for the pair of problem instance and target value may lead
to different conclusions regarding the behavior of two algorithms for the same problem. This observation
reinforces the well-known fact that the comparison of different algorithms should be based on a repre-
sentative set of benchmark test instances, and not only on a single one or a on a few problem instances.
Therefore, the main limitation of time-to-target plots is that they can consider onlyone problem instance
at a time and that conclusions regarding algorithm efficiency are limited to the problem instance and to
the target value that generated the plot.

In this work, we define multiple time-to-target plots (or, simply, mttt-plots) in the nextsection, as
the natural extension of ttt-plots to sets of multiple instances. In Section 3, we show how to build an
mttt-plot from the individual ttt-plots for each instance in the set. We present one case study with a
numerical example in Section 4, to illustrate the applicability and the usefulness ofthe newly proposed
tool. Concluding remarks are drawn in the last section.
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(a) Brazil instance with target 24
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Figure 2: Superimposed runtime distributions of multistart and tabu search.

2 Multiple ttt-plots – mttt-plots

We first introduce some basic definitions and the experimental framework that will lead to the construc-
tion of multiple time-to-target plots (mttt-plots).

As before, we are given an optimization problemP and a randomized heuristicH for this problem.
However, instead of one single instance and one single target value, we now haven instancesIj and
their corresponding targetslook4 j , for j = 1, . . . , n.

Let eachXj ≥ 0 be a continuous random variable representing the time taken by heuristicH to find
a solution as good as the target valuelook4 j for instanceIj , for j = 1, . . . , n. In addition, letFXj

(x) =
P (Xj ≤ x) andfXj

(x) be, respectively, the cumulative distribution function and the probability density
function ofXj .

HeuristicA is runN times for each instanceIj , for j = 1, . . . , n. Each run is interrupted when a
solution at least as good as the target valuelook4 j is found. Lettj1 ≤ tj2 ≤ . . . ≤ tjN be the ordered

running times for instanceIj and targetlook4 j , with T j = {tj1, . . . , t
j
N}. Then,F̂Xj

(x) = |{tji ≤ x :
i = 1, . . . , N}|/N is an estimator ofFXj

(x) for everyx ∈ T j .
In order to define an extension of the time-to-target plot of a single instance, we consider the cumula-

tive distribution functionFX1+...+Xn
(x) = P (X1+. . .+Xn ≤ x) of the random variableX1+. . .+Xn,

i.e., the probability that all targets of their corresponding instances be reached in total time less than or
equal tox.
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The mttt-plot of the instancesIj and their corresponding targetslook4 j , for j = 1, . . . , n, is an

estimatorF̂X1+...+Xn
(x) of the cumulative distribution functionFX1+...+Xn

(x).
To illustrate the computation of the estimatorF̂X1+...+Xn

(x), we first consider the casen = 2. By
the total probability theorem,

FX1+X2
(x) = P (X1 +X2 ≤ x) =

∫ +∞

−∞

P (X1 +X2 ≤ x|X2 = v) · fX2
(v)dv.

Since both random variablesX1 andX2 are non-negative,

P (X1 +X2 ≤ x) =

∫ x

0
P (X1 +X2 ≤ x|X2 = v) · fX2

(v)dv

P (X1 +X2 ≤ x) =

∫ x

0
P (X1 ≤ x− v) · fX2

(v)dv =

∫ x

0
FX1

(x− v) · fX2
(v)dv.

For any arbitrary small real numberε > 0, the above expression can be approximated by

P (X1 +X2 ≤ x) =

k=x
ε
−1∑

k=0

∫ (k+1)ε

kε

FX1
(x− v) · fX2

(v)dv. (1)

For everyv ∈ [kε, (k + 1)ε],

P (X1 ≤ x− (k + 1)ε) ≤ P (X1 ≤ x− v) ≤ P (X1 ≤ x− kε),

i.e.,
FX1

(x− (k + 1)ε) ≤ FX1
(x− v) ≤ FX1

(x− kε). (2)

Let

L(ε, x) =

k=x
ǫ
−1∑

k=0

∫ (k+1)ε

kε

FX1
(x− (k + 1)ε) · fX2

(v)dv

and

R(ε, x) =

k=x
ε
−1∑

k=0

∫ (k+1)ε

kε

FX1
(x− kε) · fX2

(v)dv.

Then, from equation (1) and inequalities (2),

L(ε, x) ≤ P (X1 +X2 ≤ x) =

k=x
ε
−1∑

k=0

∫ (k+1)ε

kε

FX1
(x− v) · fX2

(v)dv ≤ R(ε, x),

L(ε, x) ≤ P (X1 +X2 ≤ x) ≤ R(ε, x),

and, consequently, an estimator of the cumulative distribution functionF (X1 +X2) is given by

F̂X1+X2
(x) =

L(ε, x) +R(ε, x)

2
, (3)

with the approximation error∆(ε, x) = R(ε, x)− L(ε, x) being

∆(ε, x) =

k=x
ε
−1∑

k=0

[FX1
(x− kε)− FX1

(x− (k + 1)ε)]

∫ (k+1)ε

kε

fX2
(v)dv. (4)

Now, letδ = maxu≥0{fX1
(u)}. Then,FX1

(x− kε)− FX1
(x− (k + 1)ε) ≤ δε and

∆(ε, x) ≤

k=x
ε
−1∑

k=0

δε

∫ (k+1)ε

kε

fX2
(v)dv = δε

k=x
ε
−1∑

k=0

∫ (k+1)ε

kε

fX2
(v)dv = δεFX2

(x) ≤ δε.
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The approximation error can be made as small as desired by choosing a sufficiently small value forε.
However, in practice, the probability distributions are unknown. Neither thecumulative distribu-

tion functionsFX1
(x) andFX2

(x) nor the probability density functionsfX1
(x) andfX2

(x) are known.
Instead of them, all information available is a large numberN of observations of the random vari-
ablesX1 andX2, and the estimatorŝFX1

(x) of FX1
(x) andF̂X2

(x) of FX2
(x). Since the value ofδ =

maxu≥0{fX1
(u)} is also unknown beforehand, the appropriate value ofε cannot be estimated. However,

for anyε sufficiently small,fX2
(v) may be approximated bŷfX2

(v) = (F̂X2
((k + 1)ǫ) − F̂X2

(kε))/ε
for everyv ∈ [kε, (k + 1)ε] in the above computations. Using this approximation,F̂X1+X2

(x) can be
calculated following equation (3). If the approximation error∆(ε) = R(ε)−L(ε) given by equation (4)
is sufficiently small, then the procedure stops. Otherwise, the value ofε is halved and the procedure is
repeated until convergence, following a similar scheme to that proposed by[17].

For the general casen > 2, F̂X1+...+X2
(x) could be recursively computed by definingY1 = X1,

Yi = Xi + Yi−1, for i = 2, . . . , n, andF̂X1+...+X2
(x) = F̂Yn

(x).
However, the numerical procedure described in this section is not feasible in terms of the processing

times needed to generate the mttt-plots, due to time taken by integration calculations. To overcome this
limitation, we describe in the next section the construction of the mttt-plots by simulation.

3 Construction by simulation

We assume that we want to create the mttt-plot associated with an experiment resulting in N running
times taken by the randomized heuristicH to reach each targetlook4 j of instanceIj of problemP, for
j = 1, . . . , n, i.e., each individual ttt-plot hasN points.

The mttt-plot will be defined by a set ofM points(sk, F̂X1+...+Xn
(sk)), for k = 1, . . . ,M , where

eachsk is a sample ofX1 + . . . + Xn and F̂X1+...+Xn
is an estimator ofFX1+...+Xn

. In order to
generate theseM points of the mttt-plot by simulation, we simply sampleM occurrences of the sum of
independent variablesX1 + . . .+Xn using the algorithm whose pseudo-code appears in Figure 3.

beginmttt-plot(M );
1 for k = 1, . . . ,M do
2 sk ← 0;
3 for j = 1, . . . , n do
4 Randomly sampletime from the random variableXj ;
5 sk ← sk + time;
6 end-for;
7 end-for;
8 Sort the sampled times (sk, k = 1, . . . ,M ) in non-decreasing order;
9 Associate a probabilitypk = (k − 1/2)/M with thekth sorted timesk, for k = 1, . . . ,M ;
10 Callttt-plot to plot the pointszk = (sk, pk), for k = 1, . . . ,M ;
endmttt-plot.

Figure 3: Computing the mttt-plot withM points by simulation.

The loop in lines 1 to 7 generates theM points, whereM ≫ N is a parameter defined by the user.
Line 2 sets to 0 thekth running time, fork = 1, . . . ,M . The loop in lines 3 to 6 samples one running
time from each random variableXj , for j = 1, . . . , n, and adds up them all, saving the sampled value in
sk. Line 8 sorts the sampled times in non-decreasing order. Line 9 computes the probability associated
with each sampled running time, as explained in Section 1. Finally, line 10 makes anexternal call to the
ttt-plot code available in Aiex et al. [2] to draw the mttt-plot.

Furthermore, for each sampled pointsk, F̂X1+...+Xn
(sk) =

∑ℓ=k
ℓ=1 pℓ, k = 1, . . . , n.

However, in practice the probability distributions of the independent random variablesXj , for j =
1, . . . , n, are not known. Therefore, instead of sampling from the probability distribution of each random
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variableXj in line 4 of the previous algorithm, we sample from the observed running timesT j =

{tj1, . . . , t
j
N} for each instanceIj and targetlook4 j , with tj1 ≤ tj2 ≤ . . . ≤ tjN . The pseudo-code of the

resulting algorithm is fully described in Figure 4.

beginmttt-plot(M );
1 for k = 1, . . . ,M do
2 sk ← 0;
3 for j = 1, . . . , n do
4 Randomly selecttime from {tji , i = 1, . . . , N};
5 sk ← sk + time;
6 end-for;
7 end-for;
8 Sort the sampled times (sk, k = 1, . . . ,M ) in non-decreasing order;
9 Associate a probabilitypk = (k − 1/2)/M with thekth sorted timesk, for k = 1, . . . ,M ;
10 Callttt-plot to plot the pointszk = (sk, pk), for k = 1, . . . ,M ;
endmttt-plot.

Figure 4: Computing the mttt-plot withM points by simulation (final).

We notice that the number of runs of each instance and target may vary anddoes not have to be
necessarily equal to the same valueN for all of them.

4 Case study: numerical example

In this section, we give an illustrative example of the construction of the mttt-plotsfrom the individual
ttt-plots for a case study involving GRASP algorithms for the 2-path network design problem.

Given a connected undirected graph with non-negative weights associated with its edges, together
with a set of origin-destination nodes, the 2-path network design problem consists in finding a minimum
weighted subset of edges containing a path formed by at most two edges between every origin-destination
pair. Applications can be found in the design of communication networks, in which paths with few edges
are sought to enforce high reliability and small delays. Its decision versionis NP-complete [3].

We illustrate the construction of mttt-plots by comparing two heuristics for approximately solving
this problem. The first is a GRASP with forward path-relinking, while the second is a GRASP with
backward path-relinking [10, 11, 13, 14]. We have considered five randomly instances with 100 nodes,
4950 edges, 1000 demands, and edge weights in the interval[1, 10]. For each instance, two target values
were considered (700 and 710), making a total ofn = 10 pairs instance-target. Each algorithm was
runN = 200 times for each pair instance-target, until a solution at least as good as the corresponding
target was found for each instance. Figure 5 displays the individual ttt-plots for GRASP with forward
path-relinking and GRASP with backward path-relinking for each of the tenpairs instance-target.

Figure 6 displays the mttt-plot resulting from the ten individual ttt-plots by the simulation algorithm
described in Figure 4 usingM = 106. The application of the tttplots-compare tool developed by [15]
shows that GRASP with backward path-relinking performs better for this set of ten instances and ten
targets, since the probability that the time taken by GRASP with backward path-relinking to find a
solution at least as good as the target is less than or equal to the time taken by GRASP with forward
path-relinking is 0.808776.

5 Concluding remarks

This work is a continuation of previous research reported in [1, 2] that led to the development and use
of time-to-target plots (ttt-plots) as a very useful tool to characterize the running times of stochastic
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Figure 5: 2-path network design problem: individual ttt-plots for GRASP withforward path-relinking
vs. GRASP with backward path-relinking for ten instance-target pairs.
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Figure 6: 2-path network design problem: combined mttt-plots for GRASP with forward path-relinking
vs. GRASP with backward path-relinking for ten instance-target pairs obtained by simulation withM =
106 points each.

algorithms for combinatorial optimization problems and to compare different algorithms or strategies for
solving a given problem.

We showed in this work that time-to-target plots of individual problems can beextended to sets
of multiple instances. Multiple ttt-plots (mttt-plots) may be skillfully numerically computed from the
individual ttt-plots of each instance by simulation. Their use allow for more solidconclusions about the
comparison of different randomized heuristics for the same combinatorial optimization problem.
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