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Optimal Solutions for Fault-Tolerant Topology
Control in Wireless Ad Hoc Networks

Renato E. N. Moraes, Celso C. Ribeiro and Christophe Duhamel

Abstract—Topology control is one of the most important
techniques used in wireless ad hoc and sensor networks to reduce
energy consumption. Algorithms for topology control attempt to
reduce the number of links and the power consumption in a
network subject to connectivity constraints. We show that the
related optimization problems may be classified into four main
variants, regarding the topology of the input graph (symmetric or
asymmetric) and of the solution (unidirectional or bidirectional).
We present three mixed integer programming formulations for
the k-connected minimum power consumption problem, which
consists in finding a power assignment to the nodes of a wireless
network so as that the resulting network topology bek-vertex
connected (i.e.,k-fault tolerant) and the total power consumption
be minimum. These formulations are sufficiently general to
encompass all four problem variants. We report computational
experiments comparing the formulations. Optimal solutions for
moderately sized networks are obtained using a commercial
solver.

Index Terms—Wireless networks, ad hoc networks, topology
control, k-connectivity, fault tolerance, energy consumption op-
timization, mixed integer programming.

I. I NTRODUCTION

A N ad hoc networkconsists of a collection of transceivers,
in which a packet may have to traverse multiple consec-

utive wireless links to reach its destination. They have become
an increasingly common and important object of study due to
their applications in battlefield communication, disasterrelief
communication, and sensor networks, among others.

Ad hoc networks can be represented by a setV of
transceivers (nodes), numbered0, 1, . . . , |V |−1, together with
their locations or the distances between them. A transmission
power pu is associated with each nodeu ∈ V . For each
ordered pair(u, v) of transceivers, withu, v ∈ V , we are given
a non-negative arc weighte(u, v) such that a signal transmitted
by the transceiveru can be received at nodev if and only if
the transmission power ofu is at least equal toe(u, v), i.e. if
pu ≥ e(u, v).

Wireless networks face a variety of constraints that do not
appear in wired networks. Nodes in a wireless network are
typically battery-powered, and it is expensive and sometimes
even infeasible to recharge the device. We focus on radio
power consumption, since radios tend to be the major source
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of power dissipation in wireless networks [1]. Instead of trans-
mitting with maximum power, the topology control algorithm
adjusts the transmission power of each node.

There are also increasing fault-tolerance requirements, due
to the evolving critical application domains and to the large
number of failures that may result from mobility, fading or
obstructions [2]. A connected graph is usually assumed as the
minimum connectivity requirement by the algorithms running
in different layers of the network, such as routing protocols [3].
However, if there is only one path between a pair of nodes,
failure of a single node (or link) between them will result
in a disconnected graph. Therefore, topologies with multiple,
alternative disjoint paths between any pair of nodes are often
required [4].

The transmission graphG(p) = (V,E(p)), whereE(p) =
{(u, v) : u ∈ V, v ∈ V, pu ≥ e(u, v)} is said to bek-vertex
connected if for any two nodesu, v ∈ V there existk vertex-
disjoint paths connectingu to v. In other words, the graph
G(p) is k-vertex connected if it remains connected after the
removal of any subset of up tok−1 vertices. Since ak-vertex
connected graph is alsok-edge connected, but the converse is
not necessarily true, we say that a graph isk-connected if it
is k-vertex connected.

Given the node setV , non-negative arc weightse(u, v)
for any u, v ∈ V , and a parameterk ≥ 1, the k-connected
minimum power consumption problemconsists in finding an
optimal assignment of transmission powersp : V → R+ to
every nodeu ∈ V , such that the total power consumption∑

u∈V pu is minimized and the resulting transmission graph
G(p) = (V,E(p)) is k-connected. This problem was proved
to be NP-hard fork = 1 in [5]. Calinescu and Wan [6]
established its NP-hardness fork = 2. Since theminimum
cost k-connected spanning subgraph problemis known to be
NP-hard even fork = 2 [7], the k-connected minimum power
consumption problem is conjectured to be NP-hard as well [8]
for any positive integerk.

Only one specific variant of thek-connected minimum
power consumption problem has been tackled to date by
exact integer programming approaches, and this for the par-
ticular case wherek = 1 (i.e., only a connected graph is
required) [9, 10, 11]. In this work, we present mixed integer
programming formulations that apply to all variants of the
problem and to every value of the connectivity parameter
k. The paper is organized as follows. The system model is
described in detail in the next section. Previous work is re-
viewed in Section III, in which we show that problem variants
can be organized into four different categories, regardingthe
topologies of the input graph (symmetric or asymmetric) and
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of the solution (unidirectional or bidirectional). Three mixed
integer programming formulations are proposed in Section IV.
Comprehensive computational results illustrating the behavior
of the integer programming formulations are reported and
discussed in Section V. Concluding remarks are made in the
last section.

II. SYSTEM MODEL

We are given a setV of transceivers, with|V | = n,
equipped with an omnidirectional antenna which is responsible
for sending and receiving signals. An ad hoc network is
established by assigning a transmission powerpu to each
transceiveru ∈ V .

Each node can (possibly dynamically) adjust its transmitting
power, based on the distance to the receiving nodes and on
the background noise. In the most common power attenuation
model [12], the signal power falls with1/dε, whered is the
distance from the transmitter andε is the path loss exponent
(typical values ofε are between 2 and 4). Under this model, the
power requirement at nodeu for supporting the transmission
through a link fromu to v is given by

pu ≥ dε
uv.qv, (1)

whereduv is the Euclidean distance between the transmitter
u and the receiverv, andqv is the receiver’s power threshold
for signal detection, which is usually normalized to 1.

We first define thesymmetric inputversion of the k-
connected minimum power consumption problem. In this
case, we assume that the power requirement (also referred
to as the weight of arc(u, v)) for supporting a transmission
between nodesu andv separated by a distanceduv becomes
e(u, v) = e(v, u) = dε

uv. Although the symmetric version is
widely accepted as reasonable, equation (1) holds only for
free-space environments with non-obstructed lines of sight.
It does not consider the possible occurrence of reflections,
scattering, and diffraction caused e.g. by buildings and terrains.

In practice, power requirement values for two nodesu and
v may be asymmetric because of many reasons. For example,
asymmetric arc weights can be used to model batteries with
different power levels [13] and heterogeneous nodes [14].
Also, the ambient noise levels of the regions containing
the two nodes may be different [15]. Therefore, we also
study the more generalasymmetric inputversion of thek-
connected minimum power consumption problem. Under this
model, there may be pairs of transceiversu, v ∈ V such that
e(u, v) 6= e(v, u).

Communication from nodeu to node v will be enabled
wheneverpu ≥ e(u, v). Therefore, the transmission graph
associated with a power assignmentpu to each transceiver
u ∈ V is defined as the direct graphG(p) = (V,E(p)), where
E(p) = {(u, v) : u ∈ V, v ∈ V, pu ≥ e(u, v)}.

Two different graph topology structures may be used to
enforcek-connectedness. In aunidirectional topology, all arcs
established by the power settings in the transmission graph
G(p) = (V,E(p)) are considered to enforce the connectivity
constraints. In abidirectional topology, the bidirectional edge
[u, v] (instead of the unidirectional arc(u, v)) is used as

a communication link to enforcek-connectedness ifv is
within the transmission range ofu and u is also within the
transmission range ofv. In this case, the arc set considered to
enforce the connectivity constraints in the transmission graph
G(p) = (V,E(p)) is restrained toB(p) = {(u, v) : u ∈ V, v ∈
V, pu ≥ e(u, v), pv ≥ e(v, u)} ⊆ E(p). The bidirectionalk-
connected minimum power consumption problem is also NP-
hard [6, 16, 17, 18].

III. PREVIOUS WORK

We may consider four versions of thek-connected minimum
power consumption problem:

• Symmetric input with unidirectional topology,
• Symmetric input with bidirectional topology,
• Asymmetric input with unidirectional topology, and
• Asymmetric input with bidirectional topology.

A. Symmetric Input with Unidirectional Topology

The symmetric version of the minimization of power
consumption while establishing a unidirectional1-connected
transmission graph (k = 1) was proved to be NP-hard by Chen
and Huang [5], who presented a 2-approximation algorithm
based on minimum spanning trees. Kirousis et al. [19] gave
anO(n4) dynamic programming algorithm for the case where
the nodes are co-linear, proved that the problem is NP-hard in
the three-dimensional Euclidean space, and described the same
2-approximation algorithm based on minimum spanning trees
also presented in [5]. Clementi et al. [20] gave a reduction
proving that the same problem is also NP-hard in the two-
dimensional Euclidean space.

Calinescu and Wan [6] discussed algorithms for the sym-
metric input with unidirectional topology version of the bi-
connected (k = 2) minimum power consumption problem
and established its NP-hardness. They also described a 4-
approximation algorithm for the problem.

Shpungin and Segal [21] addressed the symmetric input
with unidirectional topology version of thek-connected min-
imum power consumption problem in wireless ad-hoc net-
works. They presented an exact solution method for radio
networks with uniformly spaced nodes on a line and provided
fast constant factor approximation algorithms for the more
general case of linear networks. They also gave anO(k2)-
approximation algorithm for the planar case. Carmi et al. [22]
presented a polynomial-timeO(k)-approximation algorithm
based on minimum spanning trees for the two dimensional
instance of the samek-connected problem version.

B. Symmetric Input with Bidirectional Topology

Although implementing wireless unidirectional links is tech-
nically feasible [23], and imposing the requirement of symme-
try incurs in a considerable additional cost, the advantageof
using unidirectional links is questionable. There is a potential
for packet loss and error in realistic networks, and thus
acknowledgments and retransmissions are required [5]. There-
fore, to improve the network performance, link bidirectionality
is implicitly assumed in many routing protocols [24]. Marina
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and Das [25] have shown that the overhead needed to handle
unidirectional links in routing protocols outweighs the benefits
that they can provide, and that better performance can be
achieved by simply avoiding them.

The minimum power consumption problem with bidirec-
tional 1-connected subgraph (k = 1) from symmetric inputs
was proposed in [16, 17], where it is proved to be NP-
complete. Blough et al. [16] gave asymptotic bounds on the
solution cost for random instances and for the so called(∆, δ)
Euclidean instances. Cheng et al. [18] showed the importance
of the problem in the case of sensor networks, proved its NP-
completeness, and proposed two approximate algorithms.

The 2-approximation algorithm in [19] solves the symmetric
version of the minimum power consumption problem with
bidirectional1-connectivity. Calinescu et al. [17] pushed the
approximation ratio of the latter to below2 by exploiting sim-
ilarities with the minimum Steiner tree problem. In particular,
they gave a fully polynomial7/4 + ǫ approximation scheme
and a more practical 15/8 approximation. These approximation
factors have been improved by Althaus et al. [9] to5/3 + ǫ
and 11/6, respectively. They also gave an exact branch-and-cut
algorithm based on a new integer programming formulation.
Another exact algorithm was presented in [10]. Das et al. [11]
developed a mixed integer programming model for the prob-
lem with sectored antennas, presented a centralized heuristic
based on Kruskal’s algorithm for the minimum spanning tree
problem, and discussed a simple branch exchange heuristic to
improve the topology generated by the Kruskal-like algorithm.

Lloyd et al. [26] studied the symmetric input with bidirec-
tional topology version of the biconnected minimum power
consumption problem (k = 2). They gave an algorithm
with approximation ratio of at most2(2 − 2/n)(2 + 1/n).
Calinescu and Wan [6] proved it NP-hardness and developed
a 4-approximation algorithm.

For the case of general values ofk, algorithms with an
approximation factor ofO(k) for the symmetric input with
bidirectionalk-connected minimum power consumption prob-
lem were presented in [27]. This approximation factor was
improved from O(k) to O(log4 n) in [28]. Jia et al. [8]
presented, among others results, a3k-approximation algorithm
for k ≥ 3 and a6-approximation fork = 3. Das and Mesbahi
[29] proposed a heuristic procedure applying an algebraic
view of graph connectivity, defined as the second smallest
eigenvalue of the Laplacian matrix of a graph.

C. Asymmetric Input with Unidirectional Topology

While the symmetric version of thek-connected minimum
power consumption problem has received significant attention
in recent years, only a few approximation algorithms have been
proposed for the case with asymmetric power requirements.

Krumke et al. [15] considered the asymmetric version
of the unidirectional1-connected minimum power consump-
tion problem (k = 1). They showed that anΩ(log n)-
approximation algorithm cannot exist unlessP = NP
and presented anO(log n)-approximation algorithm. Indepen-
dently, Calinescu et al. [13] achieved a similar approxima-
tion bound by an algorithm which incrementally constructs

a tree. Caragiannis et al. [30] also obtained anO(log n)-
approximation algorithm.

Wang et al. [31] presented an approximation algorithm for
the the asymmetric input with bidirectional topology version
of the k-connected minimum power consumption problem.
The algorithm has an approximation factor ofO(k + ∆−),
where∆− is the maximum out-degree of a minimum power
k-outconnected subgraph, i.e., a subgraph withk node disjoint
paths from the root noder to every other node.

D. Asymmetric Input with Bidirectional Topology

Althaus et al. [9] obtained an inapproximability result
within a factor of O(log n) for the asymmetric version of
the bidirectional1-connected minimum power consumption
problem (k = 1). Caragiannis et al. [30] developed an
O(1.35 ln n)-approximation algorithm for the same problem.
A slightly inferior O(ln n)-approximation algorithm has been
independently obtained in [13] by different techniques.

There seems to be no further results for the asymmetric
version of the k-connected minimum power consumption
problem with bidirectional and unidirectional topology for
k ≥ 2.

The algorithms discussed until now are centralized ap-
proaches, mainly designed to static ad hoc wireless networks.
Their major advantage is the fact that they have provable
approximation factors. Distributed algorithms for energy-
efficient power assignments can be found in [32, 33, 34, 35,
36]. Non-centralized algorithms have the clear advantage of
being localized. However, the power consumption assignments
of the resulting solutions can be arbitrarily worse than those
of the optimal solutions [27].

In the following, we present three mixed integer program-
ming formulations for the four variants of thek-connected
minimum power consumption problem, together with com-
putational results obtained with a commercial integer pro-
gramming solver. The more interesting fault-tolerant casein
practice, corresponding tok = 2, is investigated in more detail.

IV. I NTEGERPROGRAMMING FORMULATIONS

In this section, we give three mixed-integer programming
(MIP) formulations based on multicommodity flows for the
k-connected minimum power consumption problem, wherek
is the required number of node-disjoint paths between any
pair of vertices. The reader is also referred to [37] for similar
formulations for a class of single commodity network design
optimization problems.

A. Continuous Power Model

A simple, naive way to formulate thek-connected min-
imum power consumption problem consists in definingk
commodities with a unit demand which have to be sent
from each of the|V | nodes to every one of the remaining
|V | − 1 nodes. Such a formulation would therefore involve
k|V |(|V |−1) commodities and would be very large. However,
Raghavan [38] has shown in the context of the network
design problem with connectivity requirements [39], that a
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min
∑

i∈V

pi (2)

subject to: ∑

j∈V

fc
ji −

∑

l∈V

fc
il = Dc(i), ∀c ∈ C,∀i ∈ V (3)

∑

j∈V

fc
ij ≤ 1, ∀c ∈ C,∀i ∈ V : i 6= o(c), i 6= d(c) (4)

pi ≥ e(i, j) · fc
ij , ∀i, j ∈ V,∀c ∈ C (5)

fc
ij ∈ {0, 1}, ∀i, j ∈ V,∀c ∈ C (6)

pi ≥ 0, ∀i ∈ V (7)

Fig. 1. Continuous power model (CP).

more compact model can be formulated using ak-connected
undirected requirement graphGk = (V,Ek) with a minimum
number|Ek| = ⌈k|V |/2⌉ of edges [40] built as follows:

• If k is even, there is an edge[i, j] in Ek for i, j ∈ V
whenever(i − j) mod |V | ≤ k/2.

• If k is odd and|V | is even, first build graphGk−1. Next,
obtainEk from Ek−1 by adding to the latter, edges[i, i+
|V |/2] for i = 0, . . . , |V |/2.

• Otherwise, build graphGk−1 and obtainEk from Ek−1

by adding to the latter, edges[0, (|V |−1)/2)], [0, (|V |+
1)/2], and[i, i+(|V |+1)/2] for i = 1, . . . , (|V |− 1)/2.

The setC of commodities is built as follows. Let[i, j] be
any edge inEk. If the problem calls for an unidirectional
topology, then create one commodity from nodei to j and
another from nodej to i, both with a demand ofk units.
Otherwise, create only one commodity between nodesi andj
with a demand ofk units, arbitrarily choosing any of them as
the origin and the other as the destination. This procedure
entails a multicommodity flow model for thek-connected
minimum power consumption problem with unidirectional
topology using only2·⌈k|V |/2⌉ commodities, which is smaller
than k|V |(|V | − 1). The bidirectional solution uses half the
number of commodities as the unidirectional case.

For each commodityc ∈ C, we represent byo(c) its origin
and by d(c) its destination. For any nodei ∈ V and any
commodityc ∈ C, let Dc(i) = −k if i = o(c), Dc(i) = +k if
i = d(c), Dc(i) = 0 otherwise. The discrete variablefc

ij and
the continuous variablepi represent, respectively, the flow of
commodityc through arc(i, j) and the power assignment to
nodei. The binary variablefc

ij is equal to one if the arc(i, j)
is used by commodityc for communication from nodei to j,
zero otherwise.

The mixed integer program CP defined by the objective
function (2) and constraints(3)-(7) presented in Figure 1 is a
valid formulation for the unidirectional topology case forboth
the symmetric (i.e.e(u, v) = e(v, u)) and asymmetric (e(u, v)
not necessarily equal toe(v, u)) versions of thek-connected
minimum power consumption problem. Constraints (3) are
the flow conservation equations. Inequalities (4) ensure node-
disjointness. Inequalities (5) state that arc(i, j) should be used
if there is a positive flow through it. If arc(i, j) is used, then

Fig. 2. Formulation DP:Pa = [2, 3, 5, 8] andS1
a

= {b}, S2
a

= {b, c, d},
S3

a
= {b, c, d, e}, S4

a
= {b, c, d, e, f}; formulation IP:Qa = [2, 1, 2, 3] and

T 1
a

= {b}, T 2
a

= {c, d}, T 3
a

= {e}, T 4
a

= {f}.

the powerpi assigned to nodei should be at least as large
as the requiremente(i, j). Constraints (6) and (7) express the
integrality and non-negativeness requirements on the variables.

Whenever a bidirectional topology is sought, constraints

pi ≥ e(i, j) · fc
ji, ∀i, j ∈ V,∀c ∈ C (8)

are added, ensuring that an edge[i, j] is used if there is flow
from i to j or from j to i.

B. Discrete Power Model

Let Pi = [p1
i , . . . , p

φ(i)
i ] be a finite list of increasing power

levels that can be assigned to nodei ∈ V . We denote byp1
i the

minimum powerpi such that transmissions from nodei reach
at least one node inV \ {i}. Furthermore,φ(i) ≤ |V | − 1 and
pℓ+1

i > pℓ
i for any ℓ = 1, . . . , φ(i) − 1. We defineSℓ

i as the
set of nodes reachable from nodei with the power assignment
pi = pℓ

i , for any ℓ = 1, . . . , φ(i), as illustrated in Figure 2.
We remark that∪ℓ=φ(i)

ℓ=1 Si = V \{i}. For ease of notation, we
defineSo = ∅.

The discrete variablefc
ij is defined as before and repre-

sents the flow of commodityc through arc(i, j). For any
ℓ = 1, . . . , φ(i), the binary variablewℓ

i is equal to one if there
is a nodej ∈ Sℓ

i such that arc(i, j) is used for communication
from i to j, zero otherwise. We definēℓ(i) ∈ {1, . . . , φ(i)}

such as that|S ℓ̄(i)−1
i | < k ≤ |S

ℓ̄(i)
i |. Then, for any node

i, |S
ℓ̄(i)
i | gives the minimum number of nodes needed to
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min
∑

i∈V

φ(i)∑

ℓ=1

pℓ
i · w

ℓ
i (9)

subject to: ∑

j∈V

fc
ji −

∑

l∈V

fc
il = Dc(i), ∀c ∈ C,∀i ∈ V (10)

∑

j∈V

fc
ij ≤ 1, ∀c ∈ C,∀i ∈ V : i 6= o(c), i 6= d(c) (11)

φ(i)∑

ℓ=ℓ̄(i)

wℓ
i = 1, ∀i ∈ V (12)

wℓ
i = 0, ∀i ∈ V, ℓ = 1, . . . , ℓ̄(i) − 1 (13)

φ(i)∑

ℓ=max(ℓ′(i,j),ℓ̄(i))

pℓ
i · w

ℓ
i ≥ e(i, j) · fc

ij , ∀c ∈ C,∀i, j ∈ V (14)

fc
ij ∈ {0, 1}, ∀i, j ∈ V,∀c ∈ C (15)

wℓ
i ∈ {0, 1}, ∀i ∈ V, ℓ = 1, . . . , φ(i). (16)

Fig. 3. Discrete power model (DP).

establish thek-connectivity requirement from nodei. We also
defineℓ′(i, j) = 1 if p1

i = e(i, j); ℓ′(i, j) ∈ {2, . . . , φ(i)} if
p

ℓ′(i,j)−1
i < e(i, j) ≤ p

ℓ′(i,j)
i , i.e., pℓ′(i,j)

i is the lowest power
level required to setup communication from nodei to j.

The mixed integer program DP defined by the objective
function (9) and constraints(10)-(16) presented in Figure 3
is also a valid formulation for the unidirectional topology
case for both the symmetric and asymmetric versions of
the k-connected minimum power consumption problem. Con-
straints (10), (11), and (14) in this formulation are the same
as (3), (4), and (5) in the previous formulation, respectively.
A node with a null power assignment cannot transmit or for-
ward any message. Since the transmission graphG(V,E(p))
is required to bek-connected, each node must be able to
communicate with at leastk other nodes. Therefore, the power
assigned to each node must be enough to reach at least
the k closest nodes to it. Constraints (12) ensure that one
single power level is assigned to each node. Furthermore, they
establish that this power level is capable to reach at least thek
closest nodes. Constraints (13) complement constraints (12),
setting to zero the power levels incapable of reaching, at least,
thek closest nodes. Since constraints (12) ensure that only one
single power level is assigned to each node, inequalities (14)
state that only the power levels which are greater than the
power requiremente(i, j) are acceptable. Constraints (15) and
(16) express the integrality requirements.

This formulation gives an exact solution for the unidirec-
tional topology case. If a bidirectional topology is sought, it

suffices to add constraints

φ(i)∑

ℓ=max(ℓ′(i,j),ℓ̄(i))

pℓ
i · w

ℓ
i ≥ e(i, j) · fc

ji,

∀c ∈ C,∀i, j ∈ V (25)

ensuring the existence of one arc in each direction.

C. Incremental Power Model

Let Qi = [q1
i , . . . , q

φ(i)
i ] be a finite list of successive cu-

mulative increments in the power setting that can be assigned
to nodei, for any i ∈ V . Furthermore, letT ℓ

i be the set of
new nodes reachable from nodei if an additional incrementqℓ

i

is added to its current power assignment. With respect to the
notation defined in the previous section,q1

i = p1
i , T 1

i = S1
i ,

qℓ
i = pℓ

i − pℓ−1
i andT ℓ

i = Sℓ
i − Sℓ−1

i for any ℓ = 2, . . . , φ(i),
as illustrated in Figure 2.

The discrete variablefc
ij represents the flow of commodity

c through arc(i, j). The binary variablexℓ
i takes the value

one if there is a nodej ∈ T ℓ
i such that(i, j) is used for

communication fromi to j, zero otherwise.
The mixed integer program IP defined by the objective

function (17) and constraints(18)-(24) presented in Figure 4
is also a valid formulation for the unidirectional topology
case for both the symmetric and asymmetric versions of
the k-connected minimum power consumption problem. Con-
straints (18), (19), and (23) in this formulation are the same
as (3), (4), and (5) in the first formulation, respectively.
Inequalities (20) state thatxℓ

i must be set to one if there is a
node j ∈ T ℓ

i such that arc(i, j) is used for communication
from nodei to j by commodityc. Constraints (21) enforce
xℓ+1

i to be equal to zero if the previous increment was not
used, i.e. ifxℓ

i = 0. Constraints (22) set to one the incremental



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 6

min
∑

i∈V

φ(i)∑

ℓ=1

qℓ
i · x

ℓ
i (17)

subject to: ∑

j∈V

fc
ji −

∑

l∈V

fc
il = Dc(i), ∀c ∈ C,∀i ∈ V (18)

∑

j∈V

fc
ij ≤ 1, ∀c ∈ C,∀i ∈ V : i 6= o(c), i 6= d(c) (19)

xℓ
i ≥ fc

ij , ∀i ∈ V,∀c ∈ C,∀j ∈ T ℓ
i , ℓ = 1, . . . , φ(i) (20)

xℓ+1
i ≤ xℓ

i , ∀i ∈ V, ℓ = 1, . . . , φ(i) − 1 (21)

xℓ
i = 1, ∀i ∈ V, ℓ = 1, . . . , ℓ̄(i) (22)

fc
ij ∈ {0, 1}, ∀i, j ∈ V,∀c ∈ C (23)

xℓ
i ∈ {0, 1}, ∀i ∈ V, ℓ = 1, . . . , φ(i). (24)

Fig. 4. Incremental power model (IP).

powers necessaries to reach at least thek closest nodes of
each nodei. Constraints (23) and (24) express the integrality
requirements.

Whenever a bidirectional topology is sought, it suffices to
add constraints

xℓ
i ≥ fc

ji, ∀i ∈ V,

∀c ∈ C,∀j ∈ T ℓ
i , ℓ = 1, . . . , φ(i) (26)

to ensure the existence of one arc in each direction.
In the above case, we notice that the power assigned to node

i must be enough to establish bidirectional links whenever a
bidirectional topology solution is sought. Inequalities

xm
j ≥ xℓ

i − xℓ+1
i , ∀i, j ∈ V, ℓ = 1, . . . , φ(i) − 1,

m = 1, . . . , φ(j) : i ∈ Tm
j , j ∈ T ℓ

i , |T ℓ
i | = 1 (27)

imply that the transmission power of nodei is set to reach
node j ∈ T ℓ

i as the farthest one, i.e.xℓ
i = 1 and xℓ+1

i = 0.
They imply in the existence of the bidirectional edge[i, j].
Therefore, they enforcexm

j to be set to one, fori ∈ Tm
j .

We also can replace the unidirectional constraints (20)
and (26) by the bidirectional constraints

xℓ
i ≥ fc

ij + fc
ji, ∀i ∈ V,∀c ∈ C,

∀j ∈ T ℓ
i , ℓ = 1, . . . , φ(i). (28)

Every solution satisfying constraints (28) clearly also satisfies
(20) and (26). In order to show that the reverse is also valid,we
have to prove that bothfc

ij andfc
ji cannot be simultaneously

equal to one. This cannot be true, because otherwise there
would be a cycle of commodityc through nodesi and j.

The IP model extended with the set of inequalities (27)
and (28) is referred to as theincremental power bidirectional
model(IP-B).

V. COMPUTATIONAL RESULTS

Computational experiments have been carried out on a set
of random moderately sized asymmetric instances with|V | ∈

[10, 30] nodes uniformly distributed in the unit square grid.
The weight of the arc between nodesu andv is set ase(u, v) =
F ·dε

u,v, wheredu,v is the Euclidean distance between nodesu
andv, the path loss exponentε is set at 2, andF ∈ [0.8, 1.2]
is a random uniform perturbation. Symmetric instances were
built from their original asymmetric counterparts by assigning
to edge[u, v] the highest of the weights amonge(u, v) and
e(v, u). All generated instances are represented as complete
graphs.

An Intel Core 2 Quad machine with a 2.40 GHz clock and
8 Gbytes of RAM memory running under GNU/Linux 2.6.24
was used in the experiments. ILOG CPLEX 11.0 was used as
the MIP solver with parallel features disabled.

A. First Experiment:k-connected Solutions

In the first set of experiments, we compare the computation
times observed with the different models for different values
of the parameterk ranging from 2 to|V | − 1. Tables I and
II show the computation times in seconds and the optimal
solution values for asymmetric and symmetric instances with
15 nodes, respectively. Tables III and IV show the same results
for instances with 20 nodes. All values in these tables are
average results over one run of fifteen randomly generated
Euclidean instances with the same size.

Instances whose optimal solutions were not found by a
given formulation within three hours of computations were
discarded. In this case, Tables I to IV display in brackets the
number of instances exactly solved and used to calculate the
averages for the respective formulation. Formulation CP was
the only one which was not able to find optimal solutions
within this time limit to both unidirectional and bidirectional
topology instances (see Tables I and II). The DP formulation
failed to find optimal solutions within this time limit for
k = 9 and k = 11 in the case of unidirectional topologies
(see Table III) and fork = 11 in the case of unidirectional
topologies (see Table IV). Formulations IP and IP-B always
found the optimal solution within three hours of computations.
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TABLE I
COMPUTATION TIMES (IN SECONDS) AND AVERAGE OPTIMAL SOLUTION VALUES: ASYMMETRIC INPUTS WITH |V | = 15.

Unidirectional topology Bidirectional topology

Time (s) Optimal Time (s) Optimal

k CP DP IP value CP DP IP IP-B value

2 (12) 2909.30 29.72 20.98 1.52 400.55 20.54 10.28 7.55 1.57

3 (7) 5056.50 76.20 34.46 2.30 2137.02 54.14 30.01 17.78 2.40

4 (3) 7640.35 103.22 37.02 3.17 (12) 2471.24 63.72 34.38 17.12 3.27

5 (1) 8564.12 142.30 65.34 4.08 (9) 5309.48 85.43 39.08 27.16 4.22

6 (0) – 109.55 41.06 5.03 (4) 6766.61 81.92 34.02 23.14 5.18

7 (0) – 105.35 38.22 5.99 (7) 3906.37 76.01 35.36 22.08 6.18

8 (0) – 48.28 18.59 6.99 (1) 2871.09 39.46 20.28 12.71 7.20

9 (0) – 19.16 11.17 7.93 (1) 5368.02 34.05 11.05 9.29 8.18

10 (0) – 12.91 7.12 8.87 (2) 8209.58 16.96 7.19 4.70 9.15

11 (1) 5580.70 6.03 2.44 9.91 (4) 5278.28 12.49 4.78 5.46 10.14

12 (3) 6391.45 7.23 1.59 10.91 (9) 4466.20 10.35 1.87 2.05 11.10

13 6.19 1.67 0.59 11.99 4.88 1.36 0.36 0.32 12.10

14 0.23 0.33 0.23 13.06 0.15 0.28 0.16 0.12 13.06

TABLE II
COMPUTATION TIMES (IN SECONDS) AND AVERAGE OPTIMAL SOLUTION VALUES: SYMMETRIC INPUTS WITH |V | = 15.

Unidirectional topology Bidirectional topology

Time (s) Optimal Time (s) Optimal

k CP DP IP value CP DP IP IP-B value

2 (12) 2298.42 27.04 15.57 1.63 410.63 20.88 12.25 7.24 1.67

3 (5) 3052.69 64.11 21.46 2.47 1901.08 43.12 18.95 9.95 2.54

4 (1) 3414.39 76.32 29.53 3.40 (12) 2616.42 51.40 31.94 23.74 3.48

5 (0) – 98.84 39.38 4.40 (7) 4621.02 75.22 33.20 19.51 4.49

6 (0) – 114.04 58.04 5.43 (2) 6286.75 81.15 32.43 21.56 5.50

7 (0) – 87.15 48.43 6.45 (2) 4644.15 57.77 26.90 21.42 6.54

8 (0) – 69.79 28.76 7.53 (2) 6841.71 43.20 24.56 12.10 7.64

9 (0) – 28.72 16.92 8.57 (0) – 40.45 12.36 12.17 8.67

10 (0) – 16.51 11.01 9.62 (2) 4688.78 18.06 5.78 6.83 9.74

11 (0) – 9.07 6.16 10.71 (6) 4997.13 13.08 3.79 3.78 10.78

12 (4) 3917.60 6.24 1.63 11.76 (6) 4975.63 9.66 1.43 1.59 11.82

13 10.16 1.92 0.77 12.85 6.37 1.49 0.45 0.39 12.89

14 0.19 0.31 0.20 13.85 0.14 0.24 0.13 0.11 13.85

TABLE III
COMPUTATION TIMES (IN SECONDS) AND AVERAGE OPTIMAL SOLUTION VALUES: ASYMMETRIC INPUTS WITH |V | = 20.

Unidirectional topology Bidirectional topology

Time (s) Optimal Time (s) Optimal

k DP IP value DP IP IP-B value

2 268.79 177.59 1.35 160.83 72.89 67.79 1.39

3 1090.84 779.51 2.08 1018.91 426.89 290.34 2.17

4 1828.26 1104.11 2.89 1458.10 671.47 420.07 2.98

5 1818.49 1479.14 3.73 1760.31 1051.78 641.60 3.89

6 1757.40 1287.72 4.61 1263.74 680.89 562.82 4.82

7 1928.14 895.80 5.56 1579.53 626.97 391.30 5.80

8 2067.12 720.45 6.48 1627.56 571.64 380.74 6.69

9 (14) 1866.11 397.01 7.32 2047.16 598.10 473.43 7.65

10 1405.65 421.43 8.32 1609.07 377.42 269.88 8.63

11 (14) 1326.30 317.64 9.23 2300.35 473.91 388.87 9.68

12 952.18 208.39 10.37 1257.34 169.95 140.80 10.71

13 412.91 122.25 11.38 1248.65 186.67 142.22 11.76

14 158.40 65.66 12.42 377.77 44.29 51.74 12.74

15 107.51 36.71 13.45 131.35 36.26 24.10 13.78

16 79.16 30.06 14.47 140.39 35.86 32.85 14.80

17 45.10 8.65 15.66 73.56 5.45 5.78 15.91

18 11.50 3.34 16.79 9.34 1.97 1.59 16.92

19 1.24 0.73 17.92 0.98 0.50 0.38 17.92
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TABLE IV
COMPUTATION TIMES (IN SECONDS) AND AVERAGE OPTIMAL SOLUTION VALUES: SYMMETRIC INPUTS WITH |V | = 20.

Unidirectional topology Bidirectional topology

Time (s) Optimal Time (s) Optimal

k DP IP value DP IP IP-B value

2 277.16 179.02 1.46 226.05 54.82 47.26 1.48

3 615.13 464.32 2.23 592.78 236.07 160.49 2.30

4 1200.44 732.42 3.09 1030.55 404.07 310.09 3.17

5 1564.31 1405.94 4.02 1645.62 779.98 649.54 4.13

6 1761.35 1154.83 4.98 1409.22 605.27 492.14 5.11

7 2042.92 795.34 5.97 1279.66 577.23 276.39 6.11

8 1933.01 499.87 6.92 774.83 325.02 309.01 7.06

9 1440.98 524.45 7.92 1413.48 390.23 245.79 8.09

10 2031.82 495.39 8.95 1645.91 412.01 288.60 9.11

11 (13) 1018.45 184.48 9.93 2196.05 356.81 291.57 10.21

12 1745.10 299.14 11.14 1094.11 234.45 181.36 11.33

13 986.46 187.22 12.24 1163.28 173.41 121.32 12.42

14 367.52 119.45 13.29 605.58 68.08 50.82 13.44

15 89.85 60.20 14.40 138.23 25.48 22.89 14.56

16 73.23 34.18 15.54 105.32 18.20 14.85 15.68

17 58.82 16.18 16.74 85.87 8.92 13.00 16.83

18 11.51 3.47 17.88 9.31 2.05 1.62 17.92

19 1.23 0.72 18.95 1.00 0.50 0.36 18.95
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Fig. 5. Computation times for|V | = 15.
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Fig. 6. Optimal solution values for|V | = 15 for k = 2, . . . , 14.

Tables I to IV show that all formulations become progres-
sively harder to solve with the increase ink. Figure 5 displays
the average computation times in seconds for increasing values
of k, according to the numbers in Tables I and II. This behavior
is explained by the growth in the number of variables, since
the number of commodities is given by|C| = k · O(|V |) and
the number of constraints and variables by|C| · O(|V |2).

The computation times decrease ask increases up to|V |−1.
In fact, the solution graph is fully connected fork = |V | − 1.
In wired networks, the power assigned to nodei should be
greater than or equal toe(i, u) + e(i, v) if both nodesu
and v should be reached by transmissions from nodei. In
wireless networks, however, the power assignment should be
greater than or equal tomax{e(i, u), e(i, v)} in the same
situation, which is possibly smaller thane(i, u)+ e(i, v). This
reduction in the power that has to be assigned to each node
with respect to wired networks is called thewireless multicast
advantage[41]. Whenever the parameterk increases, each
node requests a greater power assignment to be able to transmit
through at leastk arcs to ensure thatk-node disjoint paths
exists. Therefore, the wireless multicast advantage enforces an
increasing number of arcs to enter into the solution whenk
increases, reducing the number of free decision variables and
speeding up the solver. In particular, the unique, trivial feasible
solution tok = |V | − 1 consists in assigning the maximum
power maxj∈V,j 6=i{e(i, j)} to each nodei = 1, . . . , |V |.
The solver is very quick not only fork = |V | − 2 for
all formulations, but also fork = |V | − 3 in the case of
formulations DP, IP and IP-B, because the solution of their
linear relaxations in the root of the search tree is already
integer.

All models are affected and benefit from the wireless multi-
cast advantage property. It is explicitly explored in formulation
DP by inequalities (12) and (13), and in formulation IP by
inequalities (22).

Figure 6 presents the growth in the optimal solution values
for all types of test instances with|V | = 15 whenk increases,
according to Tables I and II. The average power value also
increases ask grows. In the next section, we focus our analysis

TABLE V
NUMBER OF INSTANCES SOLVED IN THREE HOURS OF RUNNING TIME FOR

EACH FORMULATION CP, DP, IP,AND IP-B, WITH k = 2.

Unidirectional Bidirectional

|V | CP DP IP CP DP IP IP-B

10 15 15 15 15 15 15 15

15 12 15 15 15 15 15 15

20 0 15 15 12 15 15 15

A
sy

m
m

et
ric

25 – 15 15 – 15 15 15

30 – 5 11 – 9 12 12

10 15 15 15 15 15 15 15

15 12 15 15 15 15 15 15

20 0 15 15 12 15 15 15

S
ym

m
et

ric

25 – 15 15 – 15 15 15

30 – 6 10 – 9 13 12

into the biconnected case (k = 2), since it gives the smallest
fault tolerant minimum power assignments.

B. Second Experiment: Biconnected Solutions

The most important metric for performance evaluation is
the computation time taken by each formulation to solve
to optimality the biconnected minimum power consumption
problem. Table V shows the number of instances solved
by CPLEX using each model in less than three hours of
computation time. Cells in blank correspond to instance types
and sizes for which the weakest formulation CP could not be
applied.

Since some formulations do not solve all instances in three
hours, the numbers in Tables VI and VII are average results
over all instances solved to optimality by all formulations.
For each problem dimension|V | = 10, 15, 20, 25, 30 and
each formulation, Tables VI and VII display the average
computation time in seconds taken by CPLEX, the average
relative MIP gapM in percent between the first integer
solution found and the linear relaxation value at that time,
and the average relative duality gapD in percent between the
linear relaxation value and that of the optimal integer solution.

The log-scale plots in Figure 7 summarize the results
in Tables VI and VII, regarding the behavior of the exact
formulations in terms of their average computation times when
the number of nodes increases from 10 to 30. These results
show that the CP formulation takes very long computation
times and is very difficult to be solved, becoming unpractical
for n > 15 (resp.n > 20) in the asymmetric (resp. symmetric)
case. The main drawback of this formulation is the inexistence
of valid inequalities to further explore the wireless multicast
advantage property. Formulations DP and IP are much stronger
and lead to significantly smaller computation times and to
linear relaxation values that are very close to those of the
optimal integer solutions, for every instance size.

Formulation IP achieves smaller computation times and
becomes progressively better than DP with the increase in the
number of nodes. This is due to the fact that constraints (22)
of formulation IP lead to the fixation of more variables to one,
while contraints (13) of formulation DP allow the fixation of
fewer variables to zero. In consequence, the solver is more
effective for formulation IP than for DP, as illustrated by the
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TABLE VI
COMPUTATIONAL RESULTS OBTAINED WITH EACH FORMULATION (CP, DP, IP,AND IP-B) FOR THE UNIDIRECTIONAL PROBLEM VARIANTS WITHk = 2

CP formulation DP formulation IP formulation

|V | time (s) M (%) D (%) time (s) M (%) D (%) time (s) M (%) D (%)

10 51.73 84.67 61.69 0.75 24.82 11.06 0.89 27.53 11.06

15 2909.30 92.98 68.87 23.72 35.49 13.75 16.20 43.60 13.75

20 – – – 268.79 61.67 13.40 177.59 57.07 13.40

A
sy

m
m

et
ric

25 – – – 3011.59 72.75 11.96 1563.94 66.93 11.96

30 – – – 7186.82 77.04 7.47 2837.09 64.58 7.47

10 41.02 83.88 61.73 0.79 20.13 10.90 0.78 28.64 10.90

15 2298.42 92.09 68.72 23.48 33.21 14.23 16.03 40.62 14.23

20 – – – 277.16 61.20 12.80 179.02 58.21 12.80

S
ym

m
et

ric

25 – – – 2405.44 74.57 12.15 1600.28 76.05 12.15

30 – – – 7009.86 89.04 11.51 4875.97 82.02 11.51

TABLE VII
COMPUTATIONAL RESULTS OBTAINED WITH EACH FORMULATION (CP, DP, IP,AND IP-B) FOR THE BIDIRECTIONAL PROBLEM VARIANTS WITHk = 2.

CP formulation DP formulation IP formulation IP-B formulation

|V | time (s) M (%) D (%) time (s) M (%) D (%) time (s) M (%) D (%) time (s) M (%) D (%)

10 10.83 80.07 58.16 0.83 25.45 8.93 0.87 30.22 8.93 0.47 25.48 7.51

15 400.55 91.67 66.75 20.54 32.11 11.51 10.28 31.27 11.51 7.55 28.07 10.34

20 6878.64 94.61 68.74 141.12 40.45 9.40 62.69 45.37 9.40 66.61 72.26 8.10

A
sy

m
m

et
ric

25 – – – 2357.44 55.05 9.20 543.38 41.16 9.20 298.53 63.73 7.71

30 – – – 5393.10 53.16 5.42 1983.42 38.05 5.42 1351.98 56.92 4.56

10 9.52 80.18 58.61 0.63 24.48 8.54 0.73 19.44 8.54 0.48 23.61 7.25

15 410.63 91.02 66.65 20.88 44.35 11.42 12.25 26.64 11.42 7.24 42.58 10.14

20 5837.51 94.75 94.75 226.05 56.60 9.62 54.82 33.69 9.62 47.26 52.80 8.27

S
ym

m
et

ric

25 – – – 1679.72 49.74 9.05 703.74 37.10 9.05 509.83 57.71 7.70

30 – – – 5263.26 71.83 5.41 2436.90 52.81 5.41 1373.72 82.79 4.20

better results reported in Tables VI and VII for the average
relative gapM between the value of the first integer solution
found and the linear relaxation bound.

The IP-B formulation for bidirectional solutions is obtained
by reinforcing formulation IP with inequalities (27) and (28).
The computation times and the duality gapsD observed with
formulation IP-B are improved with respect to formulation
IP, in spite of the slightly increase in the relative MIP gapM
obtained by CPLEX. The linear relaxation bound is improved,
but the additional constraints lead to an increase in the
objective function value of the first integral solution found
and, consequently, to an increase in the relative gapM .

The results in Tables V, VI and VII also show that unidi-
rectional topology problems are harder to solve. This can be
explained by the number of commodities, since the number
of commodities in the case of formulations for unidirectional
topologies is twice the number of commodities for bidirec-
tional topologies.

VI. CONCLUDING REMARKS

We have shown that the variants of the minimum power
k-fault tolerant topology control optimization problem canbe
organized into four different categories, regarding the topolo-
gies of the input graph (symmetric or asymmetric) and of the
solution (unidirectional or bidirectional). We also presented a
literature survey according with this classification.

We have proposed three integer programming formulations
for the minimum powerk-fault tolerant topology control

optimization problem in wireless ad hoc networks. All formu-
lations are sufficiently general to encompass all four problem
variants. The formulations are also flexible enough to handle
any value of the parameterk associated with the connectivity
requirements. Stronger formulations with tighter lower bounds
were proposed for bidirectional solution topologies by the
addition of valid cut inequalities.

All conclusions were supported by comprehensive computa-
tional experiments comparing the formulations. The numerical
results showed that the more elaborate discrete formulations,
which explicitly incorporate the ad hoc multicast advantage
as constraints, lead to much better computation times and
linear relaxation bounds than the continuous formulation.
Moderate-size problem instances with up to 30 nodes could be
solved to optimality by commercial solvers. We are currently
working on approximate algorithms based on metaheuristics
for extending this limit and solving larger problem instances.
The exact formulations are also important in this context, since
they provide exact solutions and their linear and Lagrangean
relaxations give lower bounds that are useful to address and
compare the behavior of such heuristics.
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(Paris, France) in 1983. His research is supported by the Brazilian Council
of Scientific and Technological Development (CNPq) and by theRio de
Janeiro State Foundation for Research Support (FAPERJ). Professor Ribeiro
acted as President of the Brazilian Operations Research Society (SOBRAPO,
1989-1990) and of the Latin-American Association of Operations Research
Societies (ALIO, 1992-1994), and as Vice-President of the International
Federation of Operational Research Societies (IFORS, 1998-2000). He was a
visiting researcher at AT&T Labs Research, International Computer Science
Institute (ICSI, Berkeley), Ecole Polytechnique de Montréal, and Universit́e
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