
New Heuristics and Integer Programming Formulations for
Scheduling Divisible Load Tasks

Elbio R. T. Abib and Celso C. Ribeiro

Abstract— Divisible load applications occur in many fields of
science and engineering. They can be parallelized in a master-
worker fashion, but they pose several scheduling challenges.
We propose single-round and multi-round integer programming
formulations for scheduling divisible load applications with
minimum makespan. An innovative linear-time exact algorithm
improving the complexity of the best known algorithm to date is
described for the special case in which the processor activation
order is known beforehand. This algorithm is embedded within
a greedy-with-feedback heuristic for finding good solutions for
single-round problems. Numerical results illustrate the speed
and the effectiveness of the proposed heuristic.

I. MOTIVATION

The divisible load model was introduced by Cheng and
Robertazzi [9] and has been studied and spread, see e.g.
Bharadwaj et al. [4]. Divisible loads can be split into ar-
bitrarily many tasks or fractions that can be easily processed
in parallel without precedence restrictions, following the
master-worker paradigm. We assume that the load may be
split continuously, since a high data granularity is assumed.
Many applications in science and engineering fit this model.
As an example, we cite the search for the best matching of
a given image with those in a database, when the size of
each single image is much smaller than that of the entire
database itself. Each image in the database can be sent to a
processor that performs its matching with the given image.
All processors can work in parallel, without precedence
constraints. Other problems in video and image processing
[13], linear algebra [5], simulation [1], and other science and
engineering problems [8] can also be handled as divisible
load applications. The robustness of the divisible load model
was addressed in [11].

We propose new algorithms and integer programming
formulation for scheduling divisible load applications, for
which numerical results are reported. We assume that the
divisible load applications run in dedicated grids with a
star structure, in which one specific processor is always
in charge of distributing the load to all others taking part
in the computations. The system model and the problem
formulation are described in detail in Section II. Related

Elbio R. T. Abib is now with Microsoft Corporation, One Microsoft
Way, Redmond, WA 98052, USA. This work was supported by a CNPq
scholarship and developed while he was with União Pioneira de Integração
Social, Department of Informatics, SEPS 712/912, Conjunto A, Asa Sul,
Brası́lia, DF 70390-125, Brazil (e-mail: elbio.abib@microsoft.com).

Celso C. Ribeiro is now with the Department of Computer Science, Uni-
versidade Federal Fluminense, Rua Passo da Pátria 156, Niterói, RJ 24210-
240, Brazil (e-mail: celso@ic.uff.br). Work of this author was supported by
CNPq research grants 301.694/2007-9 and 485.328/2007-0, and by FAPERJ
research grant E-152.522/2006.

work is reviewed in Section III. An integer programming
model for the single-round problem is presented in Section
IV. A low complexity exact algorithm for a special case is
presented in Section V. A fast feedback heuristic is proposed
in Section VI. Numerical results are reported in Section VII.
An integer programming model for the multi-round problem
is presented in Section VIII. Concluding remarks are drawn
in the last section.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We denote by a processor a single processing unit, with
its own memory, disk, and network device. Terms like data
and load are used interchangeably in this work. We assume a
dedicated cluster is running a parallel application following
the master/worker model [3], [15]. There are n worker
processors P1, P2, . . . , Pn and one master processor P0.
At the beginning, the master owns the total load W to be
processed. It splits the load into chunks and send them to
the workers, but does not take part in the computations.
The interconnection topology is a star, composed of n
links connecting the master P0 to the workers. There is no
communication overlap: the master is able to send data to at
most one processor at a time, without concurrency.

We denote by Gi > 0 the time needed to send one unit of
data from the master to processor Pi, for every i = 1, . . . , n.
The latency (or startup time) gi is the time needed to initiate
the communication with processor Pi (involving e.g. the
establishment of a TCP connection and the authentication
of the master). Furthermore, we denote by wi > 0 the time
needed to process one unit of data at Pi.

The model assumes concurrency between communication
and computation: any given processor may start receiving a
new chunk of data while it is still processing the previous
chunk. However, one processor may only execute one chunk
at a time and it can only start processing a new chunk after
receiving it entirely.

In a single-installment scheduling, only one chunk of data
is sent to each processor. Let αi be the load sent to processor
Pi, for i = 1, . . . , n, with

∑i=n
i=1 αi = W . Then, gi + Giαi

is the total time needed to send the load to be processed
at Pi. Execution at processor Pi starts once all data has
been received and lasts for wiαi time units. We define the
makespan as the total elapsed time since the master began to
send data to the first processor, until the last processor stops
its computations.

The single-installment scheduling problem consists in de-
termining the processors to be used, the order in which data
should be sent to them (i.e., their activation order), and the

Fig. 1. Optimal single-installment schedule.

Fig. 2. Non-optimal single-installment schedule.

amount of load to be sent to each of them so as to minimize
the makespan.

Figure 1 depicts an optimal schedule in which the worker
processors P6, P1, P8, P7, P9, P5, P3, P10, P4, and P2 are
activated in this order. Black bars indicate latencies, hatched
bars represent data transfer periods, and gray bars correspond
to processing periods at each worker. Each processor taking
part of the computation receives exactly one chunk of data.
All processors stop their computations at the same time
and the solution is optimal. Figure 2 displays a non-optimal
schedule for the worker processors P3, P9, P10, P4, P8, and
P2 activated in this order.

Fig. 3. Three-installment schedule.

Fig. 4. More flexible three-installment schedule.

In a multi-installment scheduling, several chunks of data
may be sent to each processor. The schedule is organized into
multiple rounds (or installments) of transmission, following
the same activation order [15], [16], [17]. Multi-installment
schedules may reduce the makespan by decreasing the idle
times, at the additional cost of repeated latency periods. The
plot in Figure 3 illustrates a three-round schedule where
all processors receive data in all rounds. In this work, we
propose a more flexible and generic formulation allowing
the use of a different number of processors in each round,
what may lead to better solutions as shown in Figure 4.

III. RELATED WORK

The divisible load model was first introduced by Cheng
and Robertazzi [9] to address computation and communi-
cation costs in networks of intelligent sensors. Afterwards,
it was generalized and applied to different interconnection
topologies, such as buses [4], star networks [4], and hyper-
cubes [6]. The star topology is the most widely considered,
since it seems to be the more appropriate to represent current
interconnection technologies in clusters and local networks.

Latency times were not considered in [4], but have been
addressed in more recent models such as [2], [3], [7], [12],
[14], [16].

The use of communication costs was generalized in [7] by
fixed startup times, also considered in [2], [3], [14]. Other
models of communication and computation latencies were
considered in [16]. In this work, we adopted the same model
used in [2], [3], [7], [14], since the additional complexity
introduced in the solution of the model proposed in [16]
does not contribute too much to its robustness.

Two different types of scenarios have been considered in
[3], [4], depending on whether or not the workers perform
computations while they are receiving data from the master.
The model that allows the superposition of communications
and computations is more used in the literature and was
adopted in this work, since it is more close to the actual
characteristics of real-life computing systems.

Bharadwaj et al. [4] described simple algorithms to deter-
mine optimal schedules for both homogeneous and hetero-
geneous systems when there are no communication latencies
(i.e., gi = 0 for i = 1, . . . , n). Beaumont et al. [3] and
Blazewicz and Drosdowski [7] reported exact algorithms
for special cases considering communication latencies. A
nonlinear integer programming formulation was reported in
[10] and improved in [14] for the case where there are
memory constraints on the processors.

In addition to the variables considered in the single-
installment case, multi-installment schedules should also
determine the total number of communication rounds, their
durations, and which processors will be activated in each
round. For the sake of simplicity, the same activation order
is used in all installments, but the number of processors used
in each round can vary from one round to another. For the
special case where the number of processors is fixed and
equal in all rounds, heuristics were given in [3], [4], [17].

IV. SINGLE-INSTALLMENT MODEL

Approximate non-linear integer programming models for
the single-installment divisible load scheduling problem can
be found in [2], [10], [14]. The first model presented in [10]
may not even give a solution if there is not enough time to
send data to all processors and make them finish processing
at the same time. The models in [2], [14] addressed this
drawback, but remain difficult to be solved.

We propose an innovative linear integer programming
formulation for the single-installment problem. Let the binary
variable xij be equal to 1 if processor Pi is the jth to
be activated and receive data, 0 otherwise. Moreover, let
αij > 0 be the amount of data sent to processor Pi if it
is the jth to be activated (αij = 0 otherwise), tj be the
time instant in which the jth processor to be activated starts
receiving data, and T be the makespan. Model 1 below is an
appropriate formulation for the single-installment divisible
load scheduling problem.

Model 1 Single-installment mixed integer program

T ∗ = minimum T (1)
subject to:∑n

i=1 xij ≤ 1 j = 1, . . . , n
(2)∑n

j=1 xij ≤ 1 i = 1, . . . , n
(3)∑n

i=1 xij ≥
∑n
i=1 xi,j+1 j = 1, . . . , n− 1

(4)∑n
i=1

∑n
j=1 αij = W (5)

αij ≤Wxij i, j = 1, . . . , n
(6)

t1 = 0 (7)
tj ≥ tj−1 +

∑n
i=1 (gixi,j−1 +Giαi,j−1) j = 2, . . . , n

(8)
tj +

∑n
i=1 (gixij + (Gi + wi)αij) = T j = 1, . . . , n

(9)
xij ∈ {0, 1} i, j = 1, . . . , n

(10)
αij ≥ 0 i, j = 1, . . . , n.

(11)

Constraints (2) imply that at most one processor can be the
jth to receive data. Constraints (3) ensure that each processor
can be activated at most once. Constraints (4) guarantee that
there must be j previously activated processors when the
(j + 1)th is activated. Constraint (5) ensures that the total
load W is divided over the processors.

Constraints (6) ensure that processor i can only be the jth

to receive data if it was chosen to be the jth in the activation
order. Constraint (7) establishes that the first processor to be
activated will start to receive data at instant zero. Constraints

(8) are used to enforce that the jth processor to be activated
will start receiving data after the previous processor in the
activation order finishes receiving its data. Constraints (9)
imply that the makespan T is equal to the time tj in which
any processor Pj starts receiving its data plus the time∑n
i=1 gixij + (Gi + wi)αij it needs to receive and process

its data, since in any optimal solution all processors finish at
the same time [7].

This formulation improves and extends that in [2]. Con-
straints (9) remove the nonlinearities in the previous formu-
lation, while constraints (4) improve solution consistency.

V. LINEAR-TIME ALGORITHM FOR A GIVEN ACTIVATION
ORDER

In this section, we describe a linear-time algorithm for
the special case in which the processor activation order is
known beforehand. In this case, the scheduling problem
consists exclusively in computing the loads to be sent to each
processor. The new algorithm improves upon the O(n log n)
algorithm in [7].

Without loss of generality and for easiness of notation,
we assume that processor Pi is the i-th to be activated.
We denote by α∗i the optimal amount of data to be sent
to processor Pi and we define fi = (wi + Gi)/wi−1, for
i = 1, . . . , n.

A. Feasible solutions with a given number of processors

We first suppose that the number ` of processors to be
used is also known. In this case, Blazewicz and Drozdowski
[7] established that the solution to the system

αkwk = gk+1 + αk+1(wk+1 +Gk+1), k = 1, . . . , `− 1
(12)∑̀

k=1

αk = W (13)

gives the optimal loads:

αk = α`
∏̀

j=k+1

fj+
∑̀
j=k+1

(
gj
wj−1

j−1∏
i=k+1

fi), k = 1, . . . , `−1

(14)

α` =
W −

∑`−1
k=1

∑`
j=k+1 (gj

wj−1

∏j−1
i=k+1 fi)

1 +
∑`−1
k=1

∏`
j=k+1 fj

(15)

These values yield a feasible solution if αk ≥ 0, for every
k = 1, . . . , `. Equations (12) imply that the products αiwi
are non-increasing for i = 1, . . . , `, since all constants Gi,
wi, and gi are non-negative. Therefore, αi ≥ 0 if and only if
α` ≥ 0, for i = 1, . . . , `. Finally, we conclude from equation
(15) that the above solution is feasible if and only if V (`) =∑`−1
k=1

∑`
j=k+1 (gj

wj−1

∏j−1
i=k+1 fi) ≤W.

B. Optimal number of processors

We now investigate the exact number `∗ of processors that
should be activated in an optimal solution.

The term V (`) appearing in the numerator of equation (15)
may be recursively defined by

V (`) =
g`
w`−1

`−1∑
k=1

`−1∏
i=k+1

fi + V (`− 1). (16)

For any activation order, V (`) is a non-decreasing function of
the number ` of activated processors. A solution is infeasible
if V (`) > W . Let the function F (`) =

∑`−1
k=1

∏`−1
i=k+1 fi be

recursively defined by

F (1) = 0, F (2) = 1, and F (`) = 1 + F (`− 1)f`−1.

Therefore, V (1) = 0 and for any ` > 1

V (`) =
g`
w`−1

F (`) + V (`− 1) (17)

may be computed in time O(1) from V (`− 1) and F (`).
Let us assume that a feasible solution exists for r pro-

cessors and suppose that one additional processor is made
available. If a feasible solution satisfying constraints (12-13)
still exists, then some load will be transferred from one of
the original r processors to the new processor taking part
in the computations. In consequence, the loads assigned to
the other processors will be decreased and the makespan
will be reduced. Therefore, the optimal solution (i.e., that
with minimum makespan) will have as many processors as
possible to achieve feasibility.

C. Linear-time algorithm

Given a fixed activation order, the algorithm starts by
sending all load exclusively to the first processor. Next, the
number ` of processors is iteratively increased from 1 to n,
until V (`) turns out to be greater than W . Then, the optimal
number of processors is set as `∗ = `− 1.

Once the optimal number `∗ of processors has been
computed, the load α`∗ sent to the last processor is computed
from equation (15). The other loads αi, for i = 1, . . . , `∗ −
1, are recursively computed from `∗ using equation (14).
Algorithm 1 implements the above computations in time
O(n).

Besides the number of processors and all their related
data, this algorithm takes as input a vector π describing the
activation order, such that π(i) = j indicates that processor
Pj is the i-th to be activated, for i, j = 1, . . . , n. For instance,
if n = 3 and π =< 2, 3, 1 >, then P2 is the first processor
to be activated, P3 is the second, and P1 is the third.

VI. A FAST CONSTRUCTIVE HEURISTIC WITH FEEDBACK

Algorithm 1 described in the previous section computes
the optimal number of processors and the optimal loads
for a given activation order. In this section, we propose a
quick constructive heuristic for the general case, in which the
activation order is unknown. Since a solution S is uniquely
associated with an order given by a vector π, it will be

Algorithm 1 Linear-time algorithm for a fixed order
Require: Vector π establishing the activation order
Ensure: Minimum makespan T ∗, number `∗ of processors,

loads αi for i = 1, . . . , n
1: F [1]← 0
2: F [2]← 1
3: for i← 3 to n do
4: F [i]← 1 + F [i− 1] · (wπ[i−1] +Gπ[i−1])/wπ[i−2]

5: end for
6: V [1]← 0
7: for i← 2 to n do
8: V [i]← (gπ[i]/wπ[i−1]) · F [i] + V [i− 1]
9: end for

10: for `← 1 to n do
11: if V [`] ≤W then
12: `∗ ← `
13: end if
14: end for
15: numerator ←W − V [`∗]
16: product← (wπ[`∗] +Gπ[`∗])/wπ[`∗−1]

17: denominator ← 1
18: for k ← `∗ − 1 down to 1 do
19: denominator ← denominator + product
20: if k 6= 1 then
21: product← product · (wπ[k] +Gπ[k])/wπ[k−1]

22: end if
23: end for
24: απ[`∗] ← numerator/denominator
25: for k ← `∗ − 1 to 1 do
26: απ[k] ← (gπ[k+1]+απ[k+1](wπ[k+1]+Gπ[k+1]))/wπ[k]

27: end for
28: for k ← `∗ + 1 to n do
29: απ[k] ← 0
30: end for
31: T ∗ ← απ[1] · (wπ[1] +Gπ[1]) + gπ[1]

represented by S.π, the associated makespan by S.T ∗, and
the optimal number of processors by S.`∗.

A heuristic for the problem of scheduling divisible loads
may then be seen as any algorithm that generates a good
activation order and then computes the associated optimal
loads. The heuristic proposed in this section is based on the
idea of equivalent processors. Given a time duration T , if a
load αi = (T − gi)/(wi + Gi) is sent to processor Pi, for
any i = 1, . . . , n, then it remains busy with communication
and processing for the whole duration T . The behavior of
this processor in this scenario is then equivalent to that
of a processor P eqi with the same processing power, but
with no latency and an equivalent communication throughput
1/Geqi = 1/(Gi + (gi/αi)). For instance, consider a proces-
sor P1 with w1 = 10, G1 = 5, and g1 = 7, receiving a load
α1 = 10. This processor is equivalent to another processor
P eq1 with weq1 = 10, geq1 = 0, and Geq1 = 5 + 7/10, that
would take exactly the same communication time (57 time
units) and the same processing time (50 time units) to process

the same load (α1 = 10).
The optimal activation order for systems with no latencies

can be determined by the algorithm in [7], which sched-
ules first the processors with faster transmission links. This
strategy is applied to find an optimal activation order for the
equivalent processors P eqi , which is then used for the original
processors Pi, with i = 1, . . . , n,

Algorithm 2 describes a heuristic using a feedback mech-
anism for the problem of scheduling divisible loads. It
computes a solution using an upper bound to the optimal
makespan. Using some initial activation order, the algorithm
computes equivalent processors and schedules them consid-
ering their transmission links. A new activation order results.
The makespan associated with this solution is used as a
refinement of the original upper bound and a new solution
is computed. The procedure continues until the upper bound
cannot be further refined.

A tentative activation order defined by vector π is initial-
ized in line 1, with Gπ[1] ≤ . . . ≤ Gπ[n]. Algorithm 1 is used
in line 2 to determine the makespan UB for this order, which
is used as the initial upper bound to the optimal makespan.

Initializations associated with the new solution to be
computed are performed in lines 4 to 6, with no processors
activated. The upper bound UB is used in the computation
of a possibly better activation order in lines 7 to 32. The
yet non-activated processors are scanned in lines 9 to 26.
The next processor to be activated is that with the faster
equivalent communication link under the assumption of UB
as an upper bound to the optimal makespan. Processors
that cannot be activated in the remaining time due to their
latencies are eliminated from the computations in lines 11 to
13. For the others, their loads and their equivalent Geq are
computed in lines 15 and 16. The next processor j∗ to be
activated is updated in lines 17 to 23. Processor j∗ is inserted
in the current solution as the next to be activated in lines 27
to 29 and the remaining time is updated in line 30. In line 33
the makespan UB associated with the new activation order
is computed by Algorithm 1. A new solution is computed
if the new makespan improves the current best, otherwise
the algorithm stops (line 34). We notice that each solution is
computed in time O(n2).

VII. COMPUTATIONAL EXPERIMENTS

All computational experiments were performed on a Pen-
tium 4 computer with a 3 GHz processor and 512 Mbytes
of RAM memory running under the Microsoft Windows
XP operating system. The heuristics were executed in a
single user environment with the highest execution priority.
All algorithms were coded in Microsoft Visual C++(R) 6.0
configured to maximize speed. CPLEX version 8.0 was
used to solve the exact single-installment mixed integer
programming model, configured to search for the solution
for up to one hour, timing out otherwise.

We have generated 120 configurations for the grids in-
volved in the experiments, varying the number n (10, 20,
40, 80, and 160) of processors and considering eight com-
binations of their parameter values wi, Gi, and gi, with low

Algorithm 2 Feedback heuristic
Ensure: Optimal activation order and minimum makespan

1: Let π define the initial activation order, with Gπ[1] ≤
. . . ≤ Gπ[n].

2: Compute the makespan UB using Algorithm 1.
3: repeat
4: BestOrder ← π
5: MinimumMakespan← UB
6: activated(j)← .FALSE.,∀j = 1, . . . , n
7: for i← 1 to n do
8: j∗ ← 0
9: for j ← 1 to n do

10: if .NOT.activated(j) then
11: if gj ≥ UB then
12: αj ← 0
13: Geqj ←∞
14: else
15: αj ← (UB − gj)/(wj +Gj)
16: Geqj ← Gj + gj/αj
17: if j∗ = 0 then
18: j∗ ← j
19: else
20: if Geqj ≤ G

eq
j∗ then

21: j∗ ← j
22: end if
23: end if
24: end if
25: end if
26: end for
27: if j∗ 6= 0 then
28: π[i]← j∗

29: activated(j∗)← .TRUE.
30: UB ← UB −Geqj∗αj∗
31: end if
32: end for
33: Compute the new makespan UB using Algorithm 1.
34: until UB ≥MinimumMakespan

assignments ranging in the interval [1, 100] and high ones in
the interval [1000, 100000]. Three instances were generated
for each combination of n, wi, Gi, and gi. Six different
values of the load W (100, 200, 400, 800, 1600, and 3200)
were considered for each grid configuration, corresponding
to 18 instances for each combination of parameters wi, Gi,
and gi and to a total of 720 test instances.

We first report numerical results obtained with the use of
CPLEX to solve the exact single-installment mixed integer
programming model. A time limit of 3600 seconds is im-
posed to each CPLEX run. Table I presents the number of
optimal solutions found by CPLEX over the 18 instances
associated with each grid configuration. It also gives the av-
erage running time over the 18 instances, whenever CPLEX
was able to found optimal solutions to all of them.

These results show that the computation times depend
not only on the number of processors, but also on the grid

TABLE I
OPTIMAL SOLUTIONS AND RUNNING TIMES IN SECONDS

n = 10 n = 20 n = 40 n = 80 n = 160
wi gi Gi opt. time opt. time opt. time opt. time opt. time
low low low 18 0.25 18 0.81 18 43.81 5 – 1 –
low low high 18 0.05 18 0.08 18 0.36 18 1.37 18 4.94
low high low 18 0.08 18 0.20 18 0.46 18 2.78 18 9.27
low high high 18 0.14 18 0.25 18 0.50 18 1.20 18 3.57
high low low 18 14.64 0 – 0 – 0 – 0 –
high low high 18 0.06 18 9.37 16 – 0 – 0 –
high high low 18 2.85 5 – 1 – 2 – 0 –
high high high 18 0.13 18 0.68 18 52.52 8 – 2 –

Fig. 5. Percent deviation of non-optimal makespans

characteristics. The exact solver found 490 optimal solutions
over the 720 test instances. Although all instances with ten
processors have been solved within the one-hour time limit,
already 31 over the 144 instances with 20 processors could
not be solved within this time limit. Furthermore, instances
with high wi and low Gi seem to be particularly hard,
showing that the use of exact solution does not seem to be
feasible for solving real life problems.

The heuristic described in Algorithm 2 was applied to
all test instances in the second experiment. It found the
optimal solutions for 398 out of the 490 instances for which
CPLEX was able to prove optimality, as shown in Table II.
The average and maximum percent deviations from the
optimal value were never greater than 0.60% and 8.62%,
respectively, for the remaining 92 instances. Figure 5 displays
the distribution of the percent deviation of the non-optimal
makespans obtained by the heuristic for these instances, with
respect to the optimal schedules found by CPLEX. The
feedback heuristic is very quick and never required more
than four iterations to find the best solution. It took 3 ms of
computation time on average, and no more than 32 ms for
the hardest instance.

The average relative gap (over all 720 test instances)

TABLE II
PROVABLE OPTIMAL SOLUTIONS FOUND BY THE FEEDBACK HEURISTIC

Processors (n)
wi gi Gi 10 20 40 80 160
low low low 11 10 4 1 0
low low high 18 18 18 18 17
low high low 13 17 17 11 13
low high high 18 18 18 18 14
high low low 18 – – – –
high low high 18 18 16 – –
high high low 16 1 0 1 –
high high high 14 14 5 3 2

between the best solution value found by the feedback
heuristic and the optimal value of the linear relaxation is only
17%, which is an additional indication of the high quality of
the solutions provided by Algorithm 2.

VIII. MULTIPLE-INSTALLMENT MODEL

In this section, we address the formulation of the multi-
installment problem as an integer linear program. Given an
upper bound p, the proposed model determines the optimal
number of installments, instead of heuristically fixing the
latter as e.g. in [2], [16]. Furthermore, the new model also
determines the best processor activation order, instead of
choosing some activation sequence using a heuristics like
that in [16].

Let the new binary variable xkij be equal to 1 if processor
Pi is the jth to be activated and receive data in round k,
0 otherwise. As noticed above, the model allows different
activation sequences within each installment. Accordingly,
let αkij > 0 be the amount of data sent to processor Pi if it is
the jth to be activated in installment k (αkij = 0 otherwise),
tkj be the time instant in which the jth processor to be
activated starts receiving data in installment k, and T be the
makespan, as before. Model 2 is an appropriate formulation
for the multi-installment divisible load scheduling problem.

Constraints (19) imply that at most one processor can be
the jth to receive data at each round k. Constraints (20) imply
that each processor can be chosen at most once to receive
data at each round k. Constraints (21) guarantee that there
must be j previously activated processors when the (j+1)th

is activated at each round k. Constraint (22) ensures that the
total load W is divided over the processors.

For each round k, constraints (23) ensure that processor
i can only be the jth to receive data if it was chosen to
be the jth in the activation order for that round. Constraint
(24) establishes that the first processor to be activated will
start to receive data at instant zero. Constraints (25) are used
to enforce that, for each round k, the jth processor to be
activated will start to receive data after the previous processor
finishes receiving its data. For each round k, constraints
(26) imply that the jth processor in the activation order can
only start processing data after it has finished processing all
the data it has received in the previous round. Constraints
(27) imply that, for each round k, the first processor in
the activation order can only start to receive data after the
last processor of the previous round has finished receiving
data. Constraints (28) imply that for the last round all active
processors must finish processing data at the same time.

Small instances with up to ten processors could be solved
to optimality with the above model by CPLEX 8.0. Prelim-
inary results indicate that significant improvements in the
makespans are possible, with respect to those obtained by
single-installment schedulings and by several heuristics for
multi-installment scheduling. This fact illustrates the need
for more powerful heuristics for scheduling divisible loads,
based on intelligent search procedures. Furthermore, the
above model provides a framework for comparing the quality
of different heuristics with respect to the exact optimal
solutions.

IX. CONCLUDING REMARKS

Divisible load applications occur in many fields of science
and engineering and can be parallelized following the master-
worker paradigm. However, they pose several scheduling
challenges and require fast, effective algorithms.

New mixed integer linear programming formulations for
finding single-round and multi-round schedules minimizing
the makespan were presented in this work. A linear-time
exact algorithm was proposed for the special case in which
the processor activation order is known beforehand, improv-
ing the O(n log n) complexity of the best algorithm to date.
This algorithm is embedded within a greedy-with-feedback
heuristic for finding good solutions for the single-round
problem.

Numerical results on randomly generated instances illus-
trate the effectiveness of the heuristic. The algorithm is very
fast and ran in no more than 32 ms for the hardest and
largest test instances, with 160 processors. The speed of the
proposed algorithm makes it a good candidate to be used as
an on-line scheduler.

The heuristic is currently being improved by the hybridiza-
tion of a randomized multistart version of Algorithm 2 with
local search and path-relinking. It is also being extended to
handle the general multi-installment case.

Model 2 Multiple-installment mixed integer program

T ∗ = minimum T (18)
subject to:∑n

i=1 xkij ≤ 1 j = 1, . . . , n,
k = 1, . . . , p (19)∑n

j=1 xkij ≤ 1 i = 1, . . . , n,

k = 1, . . . , p (20)∑n
i=1 xkij ≥

∑n
i=1 xki,j+1 j = 1, . . . , n− 1,

k = 1, . . . , p (21)∑p
k=1

∑n
i=1

∑n
j=1 αkij = W (22)

αkij ≤Wxkij i, j = 1, . . . , n,
k = 1, . . . , p (23)

t11 = 0 (24)
tkj ≥ tk,j−1+∑n

i=1 (gixki,j−1 +Giαki,j−1) j = 2, . . . , n,
k = 1, . . . , p (25)

tk,j +
∑n
i=1 (gixkij +Giαkij) ≥

tk−1,j+∑n
i=1(gixk−1,ij + (Gi + wi)αk−1,ij) j = 1, . . . , n,

k =, . . . , p (26)
tk1 ≥ tk−1,n+∑n

i=1 (gixk−1,in +Giαk−1,in) k = 2, . . . , p (27)
tpj+∑n

i=1 (gixpij + (Gi + wi)αpij) = T j = 1, . . . , n (28)
xkij ∈ {0, 1} i, j = 1, . . . , n,

k = 1, . . . , p (29)
αkij ≥ 0 i, j = 1, . . . , n,

k = 1, . . . , p.
(30)

REFERENCES

[1] W. Alda, W. Dzwinel, J. Kitowski, J. Moscinski, and D. A. Yuen.
Penetration mechanics via molecular dynamics. Research Report
UMSI 93/58, University of Minnesota Supercomputing Institute, 1993.

[2] O. Beaumont, H. Casanova, A. Legr, Y. Robert, and Y. Yang. Schedul-
ing divisible loads on star and tree networks: Results and open
problems. IEEE Transactions on Parallel and Distributed Systems,
16:207–218, 2005.

[3] O. Beaumont, A. Legrand, and Y. Robert. Optimal algorithms
for scheduling divisible workloads on heterogeneous systems. In
Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, page 98.2, Washington, 2003. IEEE Computer
Society Press.

[4] V. Bharadwaj, D. Ghose, V. Mani, and T. G Robertazzi. Scheduling
divisible loads in parallel and distributed Systems. IEEE Computer
Society Press, 1996.

[5] J.-Y. Blanc and D. Trystram. Implementation of parallel numerical
routines using broadcast communication schemes. In Joint Interna-
tional Conference on Vector and Parallel Processing, volume 457 of
Lecture Notes in Computer Science, pages 467–478. Springer-Verlag,
1990.

[6] J. Blazewicz and M. Drozdowski. Scheduling divisible jobs on
hypercubes. Parallel Computing, 21:1945–1956, 1995.

[7] J. Blazewicz and M. Drozdowski. Distributed processing of divisible
jobs with communication startup costs. Discrete Applied Mathematics,
76:21–41, 1997.

[8] W. J. Camp, S. J. Plimpton, B. A. Hendrickson, and R. W. Leland.
Massively parallel methods for engineering and science problems.
Communications of the ACM, 37:30–41, 1994.

[9] Y. C. Cheng and T. G Robertazzi. Distributed computation with
communication delay. IEEE Transactions on Aerospace and Electronic
Systems, 24:700–712, 1988.

[10] M. Drozdowski. Selected problems of scheduling tasks in multiproces-
sor computing systems. PhD thesis, Poznan University of Technology,
Poznan, 1997.

[11] M. Drozdowski and P. Wolniewicz. Experiments with scheduling
divisible tasks in clusters of workstations. In A. Bode, T. Ludwig
II, W. Karl, and R. Wismüller, editors, 6th International Euro-Par
Conference, volume 1900 of Lecture Notes in Computer Science, pages
311–319. Springer-Verlag, 2000.

[12] J. Hu and R. Klefstad. Scheduling divisible loads on bus networks
with start-up costs by utilizing multiple data transfer streams: PORI.
In International Conference on Parallel Processing, page 23, 2007.

[13] D. Turgay Altilar and P. Yakup. Optimal scheduling algorithms for
communication constrained parallel processing. In B. Monien and
R. Feldmann, editors, 8th International Euro-Par Conference, volume
2400 of Lecture Notes in Computer Science, pages 197–206. Springer-
Verlag, 2002.

[14] P. Wolniewicz. Divisible job scheduling in systems with limited
memory. PhD thesis, Poznan University of Technology, Poznan, 2003.

[15] Y. Yang and H. Casanova. RUMR: Robust scheduling for divisible
workloads. In Proceedings of the 12th IEEE International Symposium
on High Performance Distributed Computing, pages 114–125, Seattle,
2003.

[16] Y. Yang and H. Casanova. UMR: A multi-round algorithm for
scheduling divisible workloads. In Proceedings of the 17th Interna-
tional Symposium on Parallel and Distributed Processing, page 24.2,
Washington, 2003. IEEE Computer Society.

[17] Y. Yang, K. van der Raadt, and H. Casanova. Multiround algorithms
for scheduling divisible loads. IEEE Transactions on Parallel and
Distributed Systems, 16:1092–1102, 2005.

