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Abstract. Optimization in sports is a field of increasing interest. Com-
binatorial optimization techniques have been applied e.g. to game schedul-
ing and playoff elimination. A common problem usually found in sports
management is the assignment of referees to games already scheduled.
There are a number of rules and objectives that should be taken into ac-
count when referees are assigned to games. We address a simplified ver-
sion of a referee assignment problem common to many amateur leagues
of sports such as soccer, baseball, and basketball. The problem is for-
mulated by integer programming and its decision version is proved to be
NP-complete. To tackle real-life large instances of the referee assignment
problem, we propose a three-phase heuristic approach based on a con-
structive procedure, a repair heuristic to make solutions feasible, and a
local search heuristic to improve feasible solutions. Numerical results on
realistic instances are presented and discussed.

1 Introduction

Optimization in sports is a field of increasing interest. Some applications
have been reviewed by Ribeiro and Urrutia [15]. Combinatorial opti-
mization techniques have been applied e.g. to the traveling tournament
problem [1, 5, 14, 17], to playoff elimination [16], and to the scheduling of
a college basketball conference [13]. Easton et al. [6] reviewed scheduling
problems in sports.

A common problem usually found in amateur sports management is the
assignment of referees to games already scheduled. Sport games are regu-
lated by rules that depend on the sport and tournament. The officiating
crew is a group of referees that is responsible to ensure that all rules
are respected in a game. The number of referees compounding a crew
may vary, depending on the sport, league, and tournament: soccer games
usually require three referees, while basketball games require two. Each
member of an officiating crew is said to occupy a refereeing position in a



game. For example, in a regular soccer game, there are one head umpire
and two side judges, totalizing three refereeing positions to be filled with
referees. In some applications, managers make pre-assignments to satisfy
some specific requirements. The referee assignment problem consists in
assigning referees to the empty refereeing positions (not yet assigned) for
all games of a league or tournament.

There are a number of rules and objectives that should be taken into
account when referees are assigned to games. Games in higher divisions
may require higher-skilled referees. Since referees may officiate several
games during the day, travel feasibility and travel times between the
facilities where the games take place have to be considered. Additionally,
and especially in some amateur children leagues, some of the referees are
players or their relatives. In this case, a natural constraint is that a
referee cannot officiate a game in which he/she or a relative is scheduled
to play.

Real-life versions of this problem appear in regional amateur leagues in
the United States. Amateur leagues of several sports, such as baseball,
basketball and soccer, have hundreds of games every weekend in different
divisions. In a single league in California there might be up to 500 soccer
games in a weekend, to be refereed by hundreds of certified referees. In
the MOSA (Monmouth & Ocean Counties Soccer Association) league,
New Jersey, boys and girls of ages 8 to 18 make up six divisions per age
and gender group with six teams per division, totalizing 396 games every
Sunday.

Referee assignment problems in other contexts have been addressed in [7,
8, 18]. Dinitz and Stinson [4] considered a problem involving referee as-
signment to tournament schedules, connecting room squares and bal-
anced tournament designs. We address a basic version of a referee as-
signment problem common to many amateur leagues of sports such as
soccer, basketball, and baseball, among others. In the next section, we
state the problem considered in this work. Section 3 presents an integer
programming formulation to this referee assignment problem. The deci-
sion version of the problem is proved to be NP-complete in Section 4. The
proposed solution strategy is described in Section 5. In Section 6, com-
putational results illustrating the application of the proposed approach
to solve real-size randomly generated instances are shown. Concluding
remarks and further extensions of this work are reported in the last Sec-
tion.

2 Problem statement

We consider the general problem, in which each game has a number of
refereeing positions to be assigned to referees. The games are previously
scheduled and the facilities and the time in which each game takes place
are known beforehand. In our approach, referees are assigned to empty



(i.e., not pre-assigned) refereeing positions, not to games. This allows not
only to handle referee assignment problems in sports requiring different
numbers of referees, but also in tournaments where games of the same
sport may need different numbers of referees due to the game division
or importance. Games with pre-assigned referees to some refereeing po-
sitions can also be handled by this approach. Each refereeing position to
be filled by a referee is called an empty refereeing slot.

Let S = {1, . . . , n} be the set of refereeing slots. Each refereeing slot
j ∈ S has to be filled by a referee with a previously determined minimum
skill level qj . Let R = {1, . . . , m} be the set of referees, represented by
their indices. Each referee i ∈ R has a certain skill level, denoted by pi,
defining the refereeing slots in which he/she can officiate. Referees may
declare their unavailability to officiate at certain time slots. Furthermore,
each referee i ∈ R establishes Mi as the maximum number of games
he/she is able to officiate and Ti as the target number of games he/she
is willing to officiate. Travels are not allowed, i.e. referees that officiate
more than one game in the same day must be assigned to games that
take place at the same facility. Moreover, referees that are also players
have a hard facility assignment constraint: they must officiate at the
same facility where they play.

The Referee Assignment Problem (RAP) consists in assigning referees to
all refereeing slots associated to games scheduled in a given time interval
(typically, a day or a weekend), minimizing the sum over all referees of
the absolute value of the difference between the target and the actual
number of games assigned to each referee and satisfying a set of hard
constraints listed below:

(a) all refereeing slots must be filled for all games;
(b) referees cannot officiate more than one game in overlapping time

slots;
(c) referees cannot officiate games in time slots where they declared to

be unavailable;
(d) referees must meet the minimum skill level established for each ref-

ereeing slot;
(e) referees cannot officiate more than a given maximum number of

games; and
(f) each referee can officiate in only one facility.

3 Integer programming model

The problem described in the previous section can be formulated by
integer programming. We denote by di the absolute value of the difference
between the target and the actual numbers of games assigned to referee
i ∈ R. The following variables are used in the formulation:

xij =

{

1, if referee i ∈ R is assigned to slot j ∈ S
0, otherwise.



Furthermore, C(j) ⊆ S denotes the set of refereeing slots conflicting with
slot j ∈ S, i.e. refereeing slots that take place at different facilities than
or overlapping with j. Also, U(i) ⊆ S represents the set of refereeing
slots to which referee i ∈ R cannot be assigned due to a lower skill level
or to his/her unavailability. The RAP integer programming model can
be formulated as:

minimize

m
∑

i=1

di (1)

subject to:

di = |Ti −

n
∑

j=1

xij | ∀i = 1, . . . , m (2)

m
∑

i=1

xij = 1 ∀j = 1, . . . , n (3)

n
∑

j=1

xij ≤Mi ∀i = 1, . . . , m (4)

xij + xij′ ≤ 1 ∀i = 1, . . . , m, ∀j = 1, . . . , n, ∀j′ ∈ C(j) (5)
∑

j∈U(i)

xij = 0 ∀i = 1, . . . , m (6)

xij ∈ {0, 1} ∀i = 1, . . . , m, ∀j = 1, . . . , n. (7)

The objective function (1) states that the sum over all referees of the
slack between their target and actual numbers of scheduled games is
minimized. Constraints (2) enforce that di is equal to the absolute value
of the difference between the target and actual numbers of games as-
signed to referee i ∈ R. Constraints (3) ensure that every refereeing slot
must be assigned to exactly one referee. Constraints (4) establish the
upper bound to the number of refereeing slots that can be assigned to
each referee. Constraints (5) ensure that refereeing slots with timetabling
conflicts or taking place at different facilities cannot be assigned to the
same referee. Constraints (6) prevent assignments that violate minimum
skill level and unavailability restrictions (alternatively, all variables xij

with j ∈ U(i) may simply be removed from the model). Constraints (7)
establish the integrality of the decision variables. We notice that con-
straints (3) and (4) are those characterizing a generalized assignment
problem [9].

4 NP-completeness

We consider the following feasibility decision problem (DRAP):
Problem: REFEREE ASSIGNMENT
Input: Set S of refereeing slots, set R of referees, and the maximum



number of games to be officiated by each referee.
Question: Is there an assignment of referees in R to refereeing slots in
S satisfying constraints (a) to (f)?

Theorem 1. DRAP is NP-complete.

Proof. DRAP is clearly in NP, since the feasibility of any assignment
can be checked in time polynomial in |R| and |S|. To prove its NP-
completeness, we use a transformation from the problem of Partition
into Bounded Independent Sets on interval graphs (PBIS). Given an
undirected graph G = (V, E) and integer numbers k and k′, this pro-
blem consists in deciding whether there exists a partition of V into k
independent sets I1, . . . , Ik, with |Ii| ≤ k′ for 1 ≤ i ≤ k. PBIS is NP-
complete even if G is an interval graph, see [2].

We build an instance of DRAP where the set S = {1, . . . , |V |} has ex-
actly |V | refereeing slots, each of them associated with a different game.
All games take place at the same date and facility. The minimum skill
level associated to each refereeing slot j ∈ S is set as qj = 1. Let
R = {1, . . . , k} be the set of available referees and set Mi = k′, pi = 1,
and U(i) = ∅ for every i ∈ R. The linear time recognition algorithm of
Corneil et al. [3] is used to build an interval representation of G. Each
interval of the latter is mapped to one refereeing slot, whose starting
and ending times coincide with the starting and ending points of the
corresponding interval.

We now prove that given the interval graph G and the integer numbers
k, k′ ∈ N , there is a partition of V into independent sets I1, ..., Ik with
|Ii| ≤ k′ for 1 ≤ i ≤ k if, and only if, there is a feasible assignment of
the referees in R to the set of refereeing slots S built as above, subject
to constraints (a) to (f), with qj = 1 for all j ∈ S, Mi = k′ and pi = 1
for all i ∈ R.

First, suppose we have a partition of G = (V, E) into independent sets
I1, . . . , Ik, with |Ii| ≤ k′ for 1 ≤ i ≤ k. The slots assigned to referee i ∈ R
are exactly those corresponding to the vertices in Ii. This association
guarantees that constraints (a) and (b) are satisfied. Constraints (c) and
(f) are trivially satisfied, since U(i) = ∅, for all i ∈ R, and all games take
place at the same facility. Since pi = 1, for all i ∈ R, and qj = 1, for all
j ∈ S, constraint (d) is also trivially satisfied. Finally, constraint (e) is
satisfied since |Ii| ≤ k′ = Mi for all i ∈ R.

We now consider a feasible solution to an instance of DRAP. We con-
struct the interval graph G = (V, E) by assigning each refereeing slot
j ∈ S to a vertex j ∈ V . There is an edge (j, j′) ∈ E for each pair j
and j′ of overlapping refereeing slots. The partition of V into the inde-
pendent sets I1, . . . , Ik is such that vertex j belongs to the independent
set Ii if referee i is assigned to refereeing slot j. As the number of slots
assigned to each referee is bounded by k′, this partition into bounded
independent sets is feasible. ⊓⊔



5 Solution approach

We propose a three-phase heuristic approach to tackle real-life large ins-
tances of the referee assignment problem. The first phase consists in
applying a greedy heuristic to find an initial solution, possibly violating
some constraints. The second phase is a repair heuristic, which is applied
whenever necessary to make the initial solution feasible. Finally, another
heuristic is used in the third phase to improve the feasible solution. The
algorithms used in the second and third phases are based on principles
similar to the Iterated Local Search (ILS) metaheuristic [10–12]. Algo-
rithm 1 shows the general scheme of this approach.

The next subsection presents the constructive algorithm used to build ini-
tial solutions to the subsequent phases (repair and improvement). Section
5.2 describes the ILS scheme which is the basis for both the repair and
improvement phases. Details of the local search procedure used within
the ILS scheme are commented in Section 5.3. Sections 5.4 and 5.5 dis-
cuss some issues of the ILS scheme that are particular to each of the
repair or improvement heuristics.

Algorithm1

RefereeAssignmentHeuristic(MaxIterations1, MaxIterations2)
Solution← BuildGreedySolution();2

if not isFeasible(Solution) then3

Solution← RepairHeuristic(Solution, MaxIterations1);4

end5

if isFeasible(Solution) then6

Solution←7

ImprovementHeuristic(Solution, MaxIterations2);
return Solution;8

else9

return no feasible solution was found ;10

end11

Algorithm 1: Referee assignment heuristic.

5.1 Greedy constructive heuristic

The first phase of our approach attempts to build a feasible solution.
Its main principle consists in assigning first the referees that are also
players to the facilities where they have a game. Next, while there are
unassigned refereeing slots and unassigned referees, the heuristic greedily
selects a facility with unassigned refereeing slots, obtains an unassigned
referee and assigns refereeing slots to this referee without violating any
constraint. Finally, if any refereeing slot remains unassigned, the solution
is completed with infeasible assignments.



Algorithm BuildGreedySolution()1

Su ← {j = 1, . . . , n :
∑m

i=1
xij = 0};2

RHF ← {i = 1, . . . , m : referee i plays at least one game};3

RNHF ← R−RHF ;4

while RHF 6= ∅ do5

Randomly select a referee i ∈ RHF ;6

RHF ← RHF − {i};7

Let f be the facility where referee i plays a game;8

forall j ∈ Su : refereeing slot j takes place at facility f do9

if referee i can be assigned to refereeing slot j then10

xij ← 1;11

Su ← Su − {j};12

end13

end14

end15

while Su 6= ∅ and RNHF 6= ∅ do16

p← maxi∈RNHF {pi};17

Let f be the facility with the strongest need for referees with18

skill level equal to p;
Randomly select a referee i ∈ RNHF with pi = p;19

RNHF ← RNHF − {i};20

forall j ∈ Su : refereeing slot j takes place at facility f do21

if referee i can be assigned to refereeing slot j then22

xij ← 1;23

Su ← Su − {j};24

end25

end26

end27

if Su 6= ∅ then28

forall sj ∈ Su do29

Let f be the facility where sj takes place;30

Randomly select a referee i ∈ R officiating at facility f ;31

xij ← 1;32

Su ← Su − {j};33

end34

end35

return Solution : referee i ∈ R is assigned to refereeing slot j ∈36

S if and only if xij = 1;

Algorithm 2: Greedy constructive heuristic.

The pseudo-code of this heuristic is presented in Algorithm 2. We denote
by Su the set of all unassigned refereeing slots, by RHF the set of referees
associated with a hard facility constraint, and by RNHF the set of referees
with no hard facility constraint, i.e. R = RHF ∪ RNHF . These sets are
initialized respectively in lines 2, 3, and 4. The loop in lines 5 to 15
is performed until all referees associated with hard facility constraints



have been examined and assigned to as many refereeing slots as possible.
Next, the loop in lines 16 to 27 attempts to fill the remaining unassigned
refereeing slots with referees without hard facility constraints.

A greedy criterion is applied in line 18 to select a facility f with the
strongest need for referees with a certain skill level p computed in line
17. The computation of the greedy criterion is based on two measures: (a)
an estimate of the minimum number of referees with skill level p needed
to officiate at facility f and (b) the number of unassigned refereeing slots
in facility f with minimum skill level less than or equal to p. Finally, if
unassigned refereeing slots still remain at line 28, then the loop in lines
29 to 34 makes infeasible assignments to complete the solution.

5.2 ILS-based scheme

Both the repair and the improvement heuristics use similar ILS schemes.
They start by applying a first improving local search to the initial so-
lution. Since the local search involves moves that change referee assign-
ments for only one facility at a time, it should be applied to every facility.

Then, for a given number of iterations, a perturbation involving one
pair of facilities is applied to the current solution. Each perturbation is
followed by two applications of the local search procedure, once to each
of the facilities of the pair involved in the perturbation. The solution
obtained by local search is accepted if it satisfies a given acceptance
criterion. This scheme is illustrated by the pseudo-code of Algorithm 3.

Algorithm ILS Scheme(Solution, MaxIterations)1

foreach facility f do2

Solution← LocalSearch(f, Solution);3

end4

for i = 1, . . . , MaxIterations do5

NewSolution← Perturbation(Solution);6

Let f1 and f2 be the facilities involved in the perturbation;7

NewSolution← LocalSearch(f1, NewSolution);8

NewSolution← LocalSearch(f2, NewSolution);9

Solution← AcceptanceCriterion(Solution, NewSolution);10

end11

return Solution;12

Algorithm 3: ILS-based scheme.

We describe next the local search procedure and its associated neighbor-
hoods, followed by the repair and improvement heuristics.



5.3 Local search and neighborhoods

Solutions built by the constructive heuristic are not necessarily optimal
or even feasible. A local search algorithm successively replaces the current
solution by a better one in a neighborhood of the first, terminating at
a local optimum. In a first improving strategy, the current solution is
replaced by the first neighbor whose cost function value improves that
of the current solution. We consider two neighborhoods for local search:

– swap moves: referees assigned to two refereeing slots are swapped
(such moves do not change the number of games assigned to each
referee) and

– replace moves: the referee assigned to a refereeing slot is replaced by
another referee (such moves increase by one the number of games
assigned to one referee and decrease by one the number of games
assigned to the other).

As referees cannot be assigned to games at different facilities (hard con-
straint), only moves involving referees that officiate at the same facility
(or do not officiate at all) are allowed (otherwise, and unless two referees
were assigned to exactly one game each, a move involving referees that
officiate at different facilities would imply at least one constraint viola-
tion). Such restricted neighborhoods considering only moves involving
the same facility allow the acceleration of the local search.

The local search procedure performed within the ILS scheme is divided
into two phases, both of them using a first improving strategy. In the
first phase, only improving moves are accepted. The second phase also
accepts moves leading to solutions at least as good as the current one,
using a list of forbidden moves to prevent cycles. Each phase is separated
in two parts: first, only swap moves are considered; next, only replace
moves.

5.4 Repair heuristic

The repair heuristic follows the ILS scheme in Algorithm 3, based on local
search and perturbations. It attempts to make feasible the initial solu-
tion obtained by the greedy constructive heuristic. Constraint violations
in the initial solution may concern time conflicts, referee unavailabili-
ties, inadequate skill levels, or maximum numbers of games. The repair
heuristic minimizes the number of constraint violations of an infeasible
initial solution. A modified solution is feasible if and only if it has no
constraint violations.

Solutions built by the constructive heuristic have the property that all
referees officiate in at most one facility. Therefore, the local search con-
siders only moves involving referees that officiate at the same facility
(or do not officiate at all) and attempts to find a feasible solution by



minimizing the number of constraint violations. Ties with respect to the
number of constraint violations are broken in favor of the solution with
the smaller objective function value (i.e., the absolute value of the dif-
ference between the target and the actual number of games assigned to
each referee involved in a move).

The perturbation procedure within the repair heuristic changes the facil-
ity where one of the referees officiates, according to the following steps:

1. select a facility f with infeasible referee assignments;
2. select the highest minimum skill level ℓ∗ over all refereeing slots in

facility f assigned to referees with at least one violation;
3. determine a referee r that officiates at another facility f ′ (or does

not officiate at all) whose skill level is greater than or equal to ℓ∗;
4. randomly select referees other than r that officiate at facility f ′ and

assign them to the refereeing slots currently assigned to r;
5. assign referee r to any refereeing slot at facility f currently assigned

to a referee with at least one violation.

The solution NewSolution obtained after a perturbation followed by local
search is accepted by procedure AcceptanceCriterion if and only if it has
fewer constraint violations or the same number of violations and a smaller
objective function value than the current solution.

5.5 Improvement heuristic

Once a feasible solution is known, the improvement heuristic is performed
as an attempt to reduce the current value of the objective function, i.e. to
minimize the sum over all referees of the absolute value of the difference
between the target and the actual number of games assigned to each
of them. The improvement heuristic is also based on the ILS scheme
presented in Section 5.2.

The local search used in the improvement heuristic differs slightly from
that used in the repair heuristic: swap moves are not performed (be-
cause they cannot improve the objective function) and only moves and
perturbations that preserve feasibility are considered.

The perturbations applied to the current solution within the improve-
ment heuristic select two referees that officiate at different facilities and
swap all their assignments, according to the following steps:

1. Choose a possible perturbation: select two referees officiating at dif-
ferent facilities. If the swap of all their assignments does not preserve
feasibility, then go to the final step. Otherwise, temporarily perform
the swap of all assignments of the two selected referees.

2. Look ahead: for each of the two selected referees whose target number
of games is greater than the new (after the swap) number of games
he/she will officiate, check if there are other refereeing slots in which



he/she could officiate at the new facility. This look ahead procedure
only checks refereeing slots that are currently assigned to referees
officiating more games than their targets and only until the referee
under investigation does not officiate more games than his/her tar-
get. Whenever possible, temporarily replace the previously assigned
referee by the new referee involved in the perturbation.

3. Accept the perturbation: if the perturbation applied to the two ref-
erees (swap of all their assignments), followed by all possible re-
place moves in the destination facility for each referee, decreases the
objective function value, then the perturbation is accepted and all
temporary changes are made final. Otherwise, go to step 4.

4. Return: if all pairs of referees have already been considered, then
perform the swap of all assignments of the pair of referees that in-
creases the least the objective function, while preserving feasibility.
Otherwise, return to the first step to select a new pair of referees.

Solution NewSolution obtained after a perturbation followed by local
search is always accepted, because the heuristic chooses either an im-
proving perturbation or the one that deteriorates the least the current
solution.

6 Computational results

Only very small instances with up to 40 games and 60 referees could
be exactly solved by a commercial solver such as CPLEX 9.0, applied
directly to the integer programming model presented in Section 3. In this
section, we report computational results obtained on realistic, real-size
randomly generated instances.

6.1 Test problems

Since the RAP is a new problem, no benchmark instances are available.
Test instances have been randomly generated, following patterns similar
to those observed in real-life soccer instances. They have up to 500 games
and up to 1000 referees, with different numbers of referees, different
numbers of facilities, and different patterns of the target number of games
each referee is willing to officiate.

Each game lasts for two hours and is scheduled to start at any hour from
8 AM to 7 PM. A facility and a starting time are randomly assigned to
each game. There are three refereeing slots to be assigned to referees in
each game: one of them requires a higher skill level (the head umpire),
while the two other require less skilled referees (the two side judges).

The skill level pi and the maximum number of games Mi for each referee
i ∈ R are randomly generated in {1, . . . , 8} and {2, . . . , 8}, respectively.



Two different patterns were used to generate the target number of games
Ti for each referee i ∈ R. According to pattern P0, Ti is randomly selected
from {0, . . . , Mi}. In the case of pattern P1, Ti is proportional to 1/pi:
the higher the referee skill level is, the lower his/her target number of
games is. This reasoning allows to create some challenging instances in
which the more qualified a referee is, the lower is the number of games
he/she wants to officiate.

Table 1 presents the parameter values used to generate the test problems.
Five different instances were generated for each of the 36 parameter com-
binations, in a total of 180 test problems. All test problems are available
upon request to the authors.

Games Referees Facilities Patterns

300 450, 525, 600 40, 50 P0, P1

400 600, 700, 800 55, 65 P0, P1

500 750, 875, 1000 65, 85 P0, P1

Table 1. Instances dimensions combinations.

6.2 Numerical results

The experimental results reported in this section were obtained on a 2.0
GHz Pentium IV processor with 512 Mbytes of RAM memory running
Windows 2000TM. All codes were implemented in C. The maximum num-
ber of iterations performed by the repair and the improvement heuristics
was set at 1000 and 200, respectively.

Tables 2 to 7 summarize the results obtained for some classes of test prob-
lems by the heuristic approach. We only report results for the hardest
problems, in which the number of games (500) is large and the number of
referees is limited (problems with 1,000 referees have been discarded). Ini-
tial solutions are computed by the greedy heuristic. Computation times
(in seconds) and objective function values are average results over ten
runs for each instance. For each phase of the heuristic (construction, re-
pair, improvement), we present its computation time (in seconds) and
the objective function value of the solutions found. For the construction
and repair phases, we also report the number of runs where a feasible
solution was found.

The constructive heuristic ran in less than 0.1 second for all instances and
found feasible solutions for most of them. The repair heuristic found a
feasible solution in less than 20 seconds in almost all cases when the con-
structive heuristic failed. This is due to the effectiveness of the construc-
tive algorithm. Table 8 depicts some illustrative results on instances with
500 games, 750 referees, and 85 facilities to support this claim. For each
instance, we show that the total times to build feasible solutions starting



from randomly generated assignments are much larger than those ob-
served when the initial solution is computed by the greedy constructive
algorithm. We also observed that the repair phase failed to build feasible
solutions from randomly generated initial solutions for some instances,
even after 10,000 iterations, but always succeeded when starting from
a solution built by the constructive heuristic. We stress the importance
of quick procedures for finding initial solutions for hard combinatorial
problems in sports, as already noticed by Ribeiro and Urrutia [17].

The improvement phase improved the objective function value of feasible
initial solutions by up to 63%. Instances with more facilities or fewer
referees were harder in terms of computation times and building feasible
solutions.

Construction Repair Improvement

Instance time (s) value feas. time (s) value feas. time (s) value

I1 0.02 1286.20 10 — — — 32.34 619.60
I2 0.02 1360.00 5 0.47 1338.00 10 31.81 623.40
I3 0.02 1269.00 2 0.60 1247.00 10 33.87 621.60
I4 0.03 — — 1.14 1303.20 10 30.28 627.20
I5 0.03 1302.67 3 1.40 1259.14 10 33.73 654.00

Table 2. 500 games, 750 referees, 65 facilities, and pattern P0.

Construction Repair Improvement

Instance time (s) value feas. time (s) value feas. time (s) value

I1 0.02 1752.75 8 0.66 1709.00 10 31.59 1022.60
I2 0.02 1669.57 7 0.02 1675.67 10 30.34 888.60
I3 0.02 — — 5.91 1569.80 10 29.55 942.00
I4 0.03 1777.00 1 1.53 1725.00 10 31.81 1033.80
I5 0.02 1704.80 5 0.49 1704.80 10 28.17 952.00

Table 3. 500 games, 750 referees, 65 facilities, and pattern P1.

Construction Repair Improvement

Instance time (s) value feas. time (s) value feas. time (s) value

I1 0.03 — — 11.27 1111.60 10 22.74 612.60
I2 0.03 — — 6.69 1231.60 10 24.18 715.20
I3 0.03 — — 11.33 1182.40 10 22.29 672.60
I4 0.03 — — 4.61 1229.00 10 23.45 692.80
I5 0.03 — — 3.39 1234.60 10 19.50 646.00
Table 4. 500 games, 750 referees, 85 facilities, and pattern P0.



Construction Repair Improvement

Instance time (s) value feas. time (s) value feas. time (s) value

I1 0.03 — — 2.75 1670.60 10 25.85 1043.80
I2 0.02 — — 19.29 1649.50 8 26.15 1147.00
I3 0.03 — — 14.77 1586.60 10 24.65 1107.60
I4 0.03 — — 1.22 1602.80 10 25.59 1007.40
I5 0.03 — — 2.69 1611.20 10 24.60 1002.80
Table 5. 500 games, 750 referees, 85 facilities, and pattern P1.

Construction Repair Improvement

Instance time (s) value feas. time (s) value feas. time (s) value

I1 0.03 1582.80 10 — — — 45.07 574.40
I2 0.02 1627.40 10 — — — 42.92 609.20
I3 0.03 1535.40 10 — — — 44.62 558.20
I4 0.03 1655.60 10 — — — 43.28 576.60
I5 0.02 1626.00 10 — — — 43.31 619.20
Table 6. 500 games, 875 referees, 65 facilities, and pattern P0.

Construction Repair Improvement

Instance time (s) value feas. time (s) value feas. time (s) value

I1 0.03 2195.20 10 — — — 39.64 1091.80
I2 0.03 2040.20 10 — — — 42.33 955.40
I3 0.02 2153.40 10 — — — 41.34 1032.20
I4 0.03 2173.40 10 — — — 42.54 1069.00
I5 0.03 2137.60 10 — — — 39.73 1035.00
Table 7. 500 games, 875 referees, 65 facilities, and pattern P1.

Greedy Random

Instance pattern const. (s) repair (s) feas. repair (s) feas.

I1 P0 0.03 11.27 10 79.8 9
I2 P0 0.03 6.69 10 80.8 10
I3 P0 0.03 11.33 10 86.2 8
I4 P0 0.03 4.61 10 30.6 10
I5 P0 0.03 3.39 10 29.1 10

I1 P1 0.03 2.75 10 33.5 10
I2 P1 0.02 19.29 10 134.6 2
I3 P1 0.03 14.77 10 135.1 8
I4 P1 0.03 1.22 10 38.0 10
I5 P1 0.03 2.69 10 32.9 10
Table 8. Greedy vs. randomly generated initial solutions.

In another experiment, we compared the results obtained by the heuristic
with those found by CPLEX 9.0 when applied to formulation (1)-(7) for
some small instances that could be exactly solved within reasonable com-
putation time. The heuristic always received the same computation time



that CPLEX took to find the optimal solution. Some numerical results
are summarized in Table 9. For each instance, we first give its identi-
fication and the pattern used for its generation. The two next columns
display the optimal solution value and the computation time in seconds
taken by CPLEX (and, consequently, given to the heuristic). Next, the
table shows the average and the best solution values found by the heuris-
tic over ten runs. The last column gives the time taken to find the best
solution in the corresponding run. These results show that the heuris-
tic was able to find the optimal solution for three out of the five test
instances considered in this table. Furthermore, the times taken by the
heuristic are significantly smaller than those observed with CPLEX, even
for the small instances that the latter was able to solve to optimality.

CPLEX Heuristic

Instance pattern optimum time (s) average best time (s)

I2 P0 43 164.00 47.00 44 18.99
I3 P0 18 200.00 20.80 18 3.05
I5 P0 44 137.00 45.20 44 11.45
I2 P1 65 128.00 67.20 65 15.32
I5 P1 72 47.00 82.40 75 8.83

Table 9. 33 games, 57 referees, 5 facilities, patterns P0 and P1.

In the last computational experiment, we replaced the linear objective
function by a quadratic penalization. Table 10 details the differences be-
tween the target and the actual numbers of games assigned to each referee
in the solutions obtained with the linear and quadratic cost functions for
instance I3 with 500 games, 750 referees, 85 facilities, and pattern P1. It
shows that more balanced solutions can be obtained when the quadratic
cost function is used, in which the occurrences of larger differences are re-
placed by those of smaller differences concentrated at only one unit. The
computation times of the constructive, repair, and improvement heuris-
tics were not affected by the change of the objective function. We observe
that 76 extremely privileged referees (i.e., those officiating exactly their
target number of games) in the solution obtained with the linear cost
function lose their privileges in the solution obtained with the quadratic
cost function. Also, 23 referees that were far from their targets are now
very close to them (i.e., their differences are now equal to one). The new
solution obtained with the quadratic cost function is certainly more fair
than that associated with the linear costs.

7 Concluding remarks

We introduced in this paper the referee assignment problem, a new op-
timization problem in sports. The problem was formulated as an integer
model and the NP-completeness of its decision version was proved.



Number of referees

Difference from target Linear penalties Quadratic penalties

0 255 179
1 182 281
2 156 149
3 67 66
4 50 43
5 23 18
6 13 10
7 3 3

Table 10. Linear vs. quadratic objective functions.

A three-phase heuristic was proposed and implemented. Computational
results on realistic instances showed the effectiveness of the greedy con-
structive heuristic combined with the repair heuristic to build feasible
solutions. The improvement procedure used in the third phase was able
to substantially improve solution quality. We also illustrated the impor-
tance of a quick construction procedure to build initial solutions.

We also compared the solutions obtained by the heuristic with those
produced by CPLEX for some small instances that could be solved to
optimality in reasonable computation times. The heuristic not only was
able to find the optimal solutions for several instances, but also the com-
putation times to find the best solution were significantly smaller than
those observed with CPLEX.

Finally, we investigated and compared the behavior of an alternative
quadratic objective function, which was able to find more fair solutions
than the formulation with a linear cost function.

We are currently working on some extensions addressing further con-
straints of real-life applications, such as the existence of hard and soft
links between some referees. In these situations, some referees may want
to work with the same referees as partners in every game they officiate.
This is the case when they are more confident to officiate together, but
also when they want to travel in car pools or to officiate with relatives.
Decision makers may also want referee assignments matching preferences
regarding the facilities, divisions, and time slots where the referees offi-
ciate.

Another extension occurs when referees are able to officiate games in
different facilities. In this case, travel times between facilities should also
be considered for feasibility matters. They can also be incorporated to
the objective function, so as that the minimization of the total traveling
time turns out to be another objective. The minimization of the waiting
times between consecutive games assigned to the same referee is also
relevant.



The referee assignment problem has clearly the flavor of a multi-criteria
optimization application. We are also investigating the use of multi-
criteria methods coupled with a decision support system for its solution
in practice.
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