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Abstract GRASP is a multi-start metaheuristic for combinatoriaimy#ation prob-
lems, in which each iteration consists basically of two glsasonstruction and local
search. The construction phase builds a feasible solwtibose neighborhood is in-
vestigated until a local minimum is found during the locadred phase. The best
overall solution is kept as the result. In this chapter, wat flescribe the basic com-
ponents of GRASP. Successful implementation technigquediacussed and illus-
trated by numerical results obtained for different apiares. Enhanced or alterna-
tive solution construction mechanisms and techniquesdedpp the search are also
described: alternative randomized greedy constructiberses, Reactive GRASP,
cost perturbations, bias functions, memory and learnimegllsearch on partially
constructed solutions, hashing, and filtering. We alsoudisémplementation strate-
gies of memory-based intensification and post-optimizati@hniques using path-
relinking. Hybridizations with other metaheuristics, pigelization strategies, and
applications are also reviewed.

1 Introduction

We consider in this chapter a combinatorial optimizatioalgem, defined by a
finite ground seE = {1,...,n}, a set of feasible solutiorfs C 25, and an objective
function f : 28 — R. In its minimization version, we search an optimal solution
S* € F such thatf (S") < f(S), VSe F. The ground seE, the cost functiorf, and
the set of feasible solutiorfs are defined for each specific problem. For instance,
in the case of the traveling salesman problem, the groundl s&ethat of all edges
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connecting the cities to be visiteti(S) is the sum of the costs of all edgesSnand
F is formed by all edge subsets that determine a Hamiltonialecy

GRASP (Greedy Randomized Adaptive Search Procedure) Bj8s @& multi-
start or iterative metaheuristic, in which each iterationgists of two phases: con-
struction and local search. The construction phase buitddLaion. If this solution
is not feasible, then it is necessary to apply a repair praeed achieve feasibility.
Once a feasible solution is obtained, its neighborhoodvsstigated until a local
minimum is found during the local search phase. The besathsmiution is kept as
the result. Extensive literature surveys are presenteddni9, 80, 156, 157, 160].
The pseudo-code in Figure 1 illustrates the main blocks oRASP procedure for
minimization, in whichMax_| t er at i ons iterations are performed argked is
used as the initial seed for the pseudo-random number genera

procedure GRASP(Max_| t er at i ons, Seed)

1 Read_I nput ();

2 fork=1,...,Max_l terati ons do

3 Sol uti on «— G eedy_Random zed_Const ructi on(Seed);
4 if Sol ut i on is not feasiblehen

5 Sol uti on <« Repai r (Sol ution) ;

6 end;

7 Sol uti on < Local _Sear ch(Sol uti on);

8 Updat e_Sol uti on(Sol uti on, Best _Sol uti on);
9 end;

10 return Best _Sol uti on;

end GRASP.

Fig. 1 Pseudo-code of the GRASP metaheuristic.

Figure 2 illustrates the construction phase with its psecmite. At each itera-
tion of this phase, let the set of candidate elements be finyeall elements of
the ground seE that can be incorporated into the partial solution beindt bwith-
out impeding the construction of a feasible solution witl thmaining ground set
elements. The selection of the next element for incorponat determined by the
evaluation of all candidate elements according to a greealyation function. This
greedy function usually represents the incremental isgr@athe cost function due
to the incorporation of this element into the solution undarstruction. The evalu-
ation of the elements by this function leads to the creaticmrestricted candidate
list (RCL) formed by the best elements, i.e. those whoserpamation to the current
partial solution results in the smallest incremental c@sis is the greedy aspect of
the algorithm). The element to be incorporated into theigiasblution is randomly
selected from those in the RCL (this is the probabilisticeasf the heuristic).
Once the selected element is incorporated into the padiiatisn, the candidate list
is updated and the incremental costs are reevaluated gtttie iadaptive aspect of
the heuristic). The above steps are repeated while thestseadi least one candi-
date element. This strategy is similar to the semi-greedyistic proposed by Hart
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and Shogan [97], which is also a multi-start approach basegteedy randomized
constructions, but without local search.

procedure G eedy_Randoni zed_Const ruct i on(Seed)
Sol ution « 0;
Initialize the set of candidate elements;
Evaluate the incremental costs of the candidate elements;
whilethere exists at least one candidate elengent
Build the restricted candidate list (RCL);
Select an elemestfrom the RCL at random;
Sol uti on < Sol uti onuU{s};
Update the set of candidate elements;
Reevaluate the incremental costs;

O©CoO~NOULAWNPRE

10 end;
11 return Sol uti on;
end G eedy_Randoni zed_Const r uct i on.

Fig. 2 Pseudo-code of the construction phase.

Not always is a randomized greedy construction procedule tabproduce a
feasible solution. In case this occurs, it may be neceseapiily a repair procedure
to achieve feasibility. Examples of repair procedures @afolind in [60, 61, 129].

The solutions generated by a greedy randomized constnentéonot necessarily
optimal, even with respect to simple neighborhoods. Thalleearch phase usu-
ally improves the constructed solution. A local search atgm works in an iter-
ative fashion by successively replacing the current smiuliy a better solution in
its neighborhood. It terminates when no better solutioroisnfl in the neighbor-
hood. The pseudo-code of a basic local search algorithtirgtdrom the solution
Sol ut i on constructed in the first phase (and possibly made feasibileebsepair
heuristic) and using a neighborholds given in Figure 3.

procedure Local _Sear ch(Sol uti on)

1 while Sol ut i on is not locally optimado

2 Finds € N(Solution) with f(s') < f(Sol uti on);
3 Sol ution «¢;

4 end;

5 return Sol uti on;

end Local _Sear ch.

Fig. 3 Pseudo-code of the local search phase.

The speed and the effectiveness of a local search procedpend on several
aspects, such as the neighborhood structure, the neighdmbsglearch technique, the
strategy used for the evaluation of the cost function vatubeneighbors, and the
starting solution itself. The construction phase playsrg ireportant role with re-
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spect to this last aspect, building high-quality startinlysons for the local search.
Simple neighborhoods are usually used. The neighborhcardtsenay be imple-

mented using eitherlaest-improvingr afirst-improvingstrategy. In the case of the
best-improving strategy, all neighbors are investigated! the current solution is
replaced by the best neighbor. In the case of a first-impgpsirategy, the current
solution moves to the first neighbor whose cost function eadusmaller than that
of the current solution. In practice, we observed on manyliegions that quite

often both strategies lead to the same final solution, butrialler computation

times when the first-improving strategy is used. We also mfeskthat premature
convergence to a bad local minimum is more likely to occuhwitbest-improving

strategy.

2 Construction of therestricted candidate list

An especially appealing characteristic of GRASP is the @asgewhich it can be
implemented. Few parameters need to be set and tuned. dresr@évelopment can
focus on implementing appropriate data structures foriefftcconstruction and lo-
cal search algorithms. GRASP has two main parameters: tateddo the stopping
criterion and the other to the quality of the elements in #stricted candidate list.

The stopping criterion used in the pseudo-code describé&dgiure 1 is deter-
mined by the numbevbx_| t er at i ons of iterations. Although the probability of
finding a new solution improving the incumbent (current kxdtition) decreases
with the number of iterations, the quality of the incumbetynonly improve with
the latter. Since the computation time does not vary muah fteration to iteration,
the total computation time is predictable and increaseslily with the number of
iterations. Consequently, the larger the number of itenati the larger will be the
computation time and the better will be the solution found.

For the construction of the RCL used in the first phase we densivithout
loss of generality, a minimization problem as the one foated in Section 1. We
denote byc(e) the incremental cost associated with the incorporationlehent
e € E into the solution under construction. At any GRASP itenatiet c™" and
cM®pe, respectively, the smallest and the largest incremeosas.

The restricted candidate list RCL is made up of the elemem<sE with the
best (i.e., the smallest) incremental cagis). This list can be limited either by the
number of elements (cardinality-based) or by their quéligtue-based). In the first
case, itis made up of theelements with the best incremental costs, whpdeea pa-
rameter. In this chapter, the RCL is associated with a tloldgarametea € [0, 1].
The restricted candidate list is formed by all elema4sE which can be inserted
into the partial solution under construction without deging feasibility and whose
quality is superior to the threshold value, i.e(g) € [c™", c™N + a(cM&X— cMiny).
The casex = 0 corresponds to a pure greedy algorithm, wiaile= 1 is equiva-
lent to a random construction. The pseudo code in Figure 4édirement of the
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greedy randomized construction pseudo-code shown in &igult shows that the
parameten controls the amounts of greediness and randomness in thethig.

procedure G eedy_Randoni zed_Const ructi on(a, Seed)
1 Sol uti on < 0;

2 Initialize the candidate set. — E;

3 Evaluate the incremental case) for all e € C;

4  whileC#0do

5 c"n . min{c(e) | ec C};

6 c".— max{c(e) | e€ C};

7 RCL« {e€C|c(e) < ™4 a(c™™— M)},
8 Select an elemestfrom the RCL at random;

9 Sol uti on < Sol uti onU{s};

10 Update the candidate set

11 Reevaluate the incremental cog) for all ec C;
12 end;

13 return Sol uti on;

end G eedy_Random zed_Const ructi on.

Fig. 4 Refined pseudo-code of the construction phase.

GRASP may be viewed as a repetitive sampling technique. Eattion pro-
duces a sample solution from an unknown distribution, whnean and variance
are functions of the restrictive nature of the RCL. For eximni the RCL is re-
stricted to a single element, then the same solution willdoeyced at all iterations.
The variance of the distribution will be zero and the meahbélequal to the value
of the greedy solution. If the RCL is allowed to have more edats, then many dif-
ferent solutions will be produced, implying a larger vadanSince greediness plays
a smaller role in this case, the average solution value ghoeilworse than that of
the greedy solution. However, the value of the best soldtond outperforms the
average value and very often is optimal. It is unlikely th&ASP will find an opti-
mal solution if the average solution value is high, evenéfrhis a large variance in
the overall solution values. On the other hand, if theretie variance in the overall
solution values, it is also unlikely that GRASP will find antiopal solution, even
if the average solution is low. What often leads to good $ohstare relatively low
average solution values in the presence of a relativelelaagiance, such as is the
case fora = 0.2.

Another interesting observation is that the distances &etvthe solutions ob-
tained at each iteration and the best solution found ineraashe construction phase
moves from more greedy to more random. This causes the agnagtaken by the
local search to increase. Very often, many GRASP soluticmslme generated in the
same amount of time required for the local search procedureriverge from a sin-
gle random start. In these cases, the time saved by stahintptal search from
good initial solutions can be used to improve solution dudly performing more
GRASP iterations.
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These results are illustrated in Table 1 and Figure 5, forrstance of the
MAXSAT problem where 1000 iterations were run. For each eafia ranging
from O (purely random construction for maximization probi to 1 (purely greedy
construction for maximization problems), we give in Tablihné average Hamming
distance between each solution built during the constangihase and the corre-
sponding local optimum obtained after local search, theaenumber of moves
from the first to the latter, the local search time in secoadd,the total processing
time in seconds. Figure 5 summarizes the values observabddotal processing
time and the local search time. We notice that both time nreasconsiderably
decrease ag tends to 1, approaching the purely greedy choice. In pdaticwe
observe that the average local search time takeo byO (purely random) is ap-
proximately 2.5 times that taken in the case= 0.9 (almost greedy). In this exam-
ple, two to three greedily constructed solutions can bestigated in the same time
needed to apply local search to one single randomly coristitsolution. The ap-
propriate choice of the value of the RCL parametés clearly critical and relevant
to achieve a good balance between computation time andaoyality.

Table1l Average number of moves and local search time as a functitred®CL parameten for
a maximization problem.

a avg. distance avg. moves local search time (s) total time (s)
0.0 12.487 12.373 18.083 23.378
0.1 10.787 10.709 15.842 20.801
0.2 10.242 10.166 15.127 19.830
0.3 9.777 9.721 14.511 18.806
0.4 9.003 8.957 13.489 17.139
0.5 8.241 8.189 12.494 15.375
0.6 7.389 7.341 11.338 13.482
0.7 6.452 6.436 10.098 11.720
0.8 5.667 5.643 9.094 10.441
0.9 4.697 4.691 7.753 8.941
1.0 2.733 2.733 5.118 6.235

Prais and Ribeiro [142] have shown that using a single fixéaevior the value
of the RCL parametesr very often hinders finding a high-quality solution, which
could be found if another value was used. They proposed amgxin of the basic
GRASP procedure, which they cdReactiveGRASP, in which the parameter
is self-tuned and its value is periodically modified accogdvith the quality of
the solutions obtained along the search. In particular,mdational experiments
on the problem of traffic assignment in communication si&sl[143] have shown
that Reactive GRASP found better solutions than the bagarighm for many test
instances. These results motivated the study of the behaf@®RASP for different
strategies for the variation of the value of the RCL paramete

(R) a self tuned according with the Reactive GRASP procedure;
(E) a randomly chosen from a uniform discrete probability dizition;



GRASP: Advances, hybridizations, and applications 7

20 g -

15 total CPU time 4

\X\

10 local search CPU time

time (seconds) for 1000 iterations

1 1 1 1
0 0.2 0.4 0.6 0.8 1
RCL parameter alpha

Fig. 5 Total CPU time and local search CPU time as a function of thé R&ametera for a
maximization problem (1000 repetitions for each valuerpf

(H) a randomly chosen from a decreasing non-uniform discretbaiitity distri-
bution; and
(F) fixed value ofa, close to the purely greedy choice.

We summarize the results obtained by the experiments egpart[141, 142].
These four strategies were incorporated into the GRASPepiwes developed
for four different optimization problems: (P-1) matrix agoposition for traf-
fic assignment in communication satellite [143], (P-2) se¥ecing [68], (P-3)
weighted MAX-SAT [153, 154], and (P-4) graph planarizatid®5, 161]. Let
W ={a,...,am} be the set of possible values for the parametéar the first three
strategies. The strategy for choosing and self-tuning tdeevofa in the case of
the Reactive GRASP procedure (R) is described later in @e8tiln the case of the
strategy (E) based on using the discrete uniform distidloytll choice probabilities
are equal to Im. The third case corresponds to the a hybrid strategy (H) hiichv
the authors considergria = 0.1) = 0.5, p(a = 0.2) = 0.25, p(a = 0.3) = 0.125,
p(a =0.4) =0.03, p(a = 0.5) = 0.03, p(a = 0.6) = 0.03, p(a = 0.7) = 0.01,
p(a =0.8)=0.01,p(a =0.9) =0.01, andp(a = 1.0) = 0.005. Finally, in the last
strategy (F), the value af is fixed as recommended in the original references of
problems P-1 to P-4 cited above, where this parameter wasl tion each problem.
A subset of the literature instances was considered for elasls of test problems.
The results reported in [142] are summarized in Table 2. Boh@roblem, we first
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list the number of instances considered. Next, for eaclegfyawe give the num-
ber of times it found the best solution (hits), as well as therage CPU time (in
seconds) on an IBM 9672 model R34. The number of iteratiorssfiwad at 10,000.

Table2 Computational results for different strategies for theatéwn of parametea.

R E H F
Problem Instances hits time hits time hits time hits time
P-1 36 34 579.0 35 3582 32 6126 24 6428
P-2 7 7 1346.8 6 1352.0 6 668.2 5 500.7
P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2
P-4 37 286363.1 2172929 246326.5 19 5972.0
Total 124 91 85 T~ 78 )

Strategy (F) presented the shortest average computati@s fior three out the
four problem types. It was also the one with the least vditglin the constructed
solutions and, in consequence, found the best solutiorethedt times. The reactive
strategy (R) is the one which most often found the best smiatihowever, at the
cost of computation times that are longer than those of sdrtfeemther strategies.
The high number of hits observed by strategy (E) also ilaies the effectiveness
of strategies based on the variation of the RCL parameter.

3 Alternative construction mechanisms

A possible shortcoming of the standard GRASP frameworkesridependence of
its iterations, i.e., the fact that it does not learn from #earch history or from
solutions found in previous iterations. This is so becahsebasic algorithm dis-
cards information about any solution previously encowedéhat does not improve
the incumbent. Information gathered from good solutions lba used to imple-
ment memory-based procedures to influence the constryatiase, by modifying
the selection probabilities associated with each elemighedRCL or by enforcing
specific choices. Another possible shortcoming of the greaddomized construc-
tion is its complexity. At each step of the construction feget unselected candidate
element has to be evaluated by the greedy function. In caBegevthe difference
between the number of elements in the ground set and the mwuhelements that
appear in a solution large, this may not be very efficient.

In this section, we consider enhancements and alternatitmiques for the con-
struction phase of GRASP. They include random plus greeayped greedy, Re-
active GRASP, cost perturbations, bias functions, memodylearning, and local
search on partially constructed solutions.



GRASP: Advances, hybridizations, and applications 9

3.1 Random plus greedy and sampled greedy construction

In Section 2, we described the semi-greedy constructioaraetused to build ran-
domized greedy solutions that serve as starting pointsofal Isearch. Two other
randomized greedy approaches were proposed in [158], witidller worst-case
complexities than the semi-greedy algorithm.

Instead of combining greediness and randomness at eactif stepconstruction
procedure, theandom plus greedgcheme applies randomness during the first
construction steps to produce a random partial solutiont,Niee algorithm com-
pletes the solution with one or more pure greedy construaieps. The resulting
solution is randomized greedy. One can control the balaateden greediness and
randomness in the construction by changing the value of #nanpeterp. Larger
values ofp are associated with solutions that are more random, whidlenval-
ues result in greedier solutions.

Similar to the random plus greedy procedure, shenpled greedgonstruction
also combines randomness and greediness but in a diffeegntThis procedure
is also controlled by a parametpr At each step of the construction process, the
procedure builds a restricted candidate list by sampling miC|} elements of the
candidate sef. Each element of the RCL is evaluated by the greedy funciibe.
element with the smallest greedy function value is addedé¢opiartial solution.
This two-step process is repeated until there are no mordidatie elements. The
resulting solution is also randomized greedy. The balamteden greediness and
randomness can be controlled by changing the value of thenperp, i.e. the
number of candidate elements that are sampled. Small sasizele lead to more
random solutions, while large sample sizes lead to gresdiations.

3.2 Reactive GRASP

The first strategy to incorporate a learning mechanism imtemoryless construc-
tion phase of the basic GRASP was the Reactive GRASP proeéutuoduced in
Section 2. In this case, the value of the RCL parameté& not fixed, but instead
is randomly selected at each iteration from a discrete spbséible values. This
selection is guided by the solution values found along tlewipus iterations. One
way to accomplish this is to use the rule proposed in [143].%e= {a1,...,0m}

be a set of possible values far. The probabilities associated with the choice of
each value are all initially made equalpp=1/m, for i = 1,...,m. Furthermore,
letz* be the incumbent solution and itbe the average value of all solutions found
usinga = a;j, fori =1,....m. The selection probabilities are periodically reevalu-
ated by takingpi = q;/ 3L, qj, with g = z*/A for i = 1,...,m. The value ofg;

will be larger for values ofr = a; leading to the best solutions on average. Larger
values ofg; correspond to more suitable values for the parametd&rhe probabil-
ities associated with the more appropriate values will timenease when they are
reevaluated.
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The reactive approach leads to improvements over the b&kSPB in terms of
robustness and solution quality, due to greater diversificand less reliance on pa-
rameter tuning. In addition to the applications in [141, 18423], this approach has
been used in power system transmission network plannirg jgti shop schedul-
ing [40], channel assignment in mobile phone networks [83jal road network
development [171], capacitated location [57], strip-pagK11], and a combined
production-distribution problem [43].

3.3 Cost perturbations

The idea of introducing some noise into the original cossénslar to that in the so-
called “noising” method of Charon and Hudry [48, 49]. It adagre flexibility into
algorithm design and may be even more effective than thedgnesmdomized con-
struction of the basic GRASP procedure in circumstancegsevtie construction
algorithms are not very sensitive to randomization. Thigmdeed the case for the
shortest-path heuristic of Takahashi and Matsuyama [1i8g]d as one of the main
building blocks of the construction phase of the hybrid GRASocedure proposed
by Ribeiro et al. [165] for the Steiner problem in graphs. fkmav situation where
cost perturbations can be very effective appears when reglgr@gorithm is avail-
able for straightforward randomization. This happens tdhgecase of the hybrid
GRASP developed by Canuto et al. [46] for the prize-colregtbteiner tree prob-
lem, which makes use of the primal-dual algorithm of Goemeams Williamson
[92] to build initial solutions using perturbed costs.

In the case of the GRASP for the prize-collecting Steiner pblem described
in [46], a new solution is built at each iteration using nodiegs updated by a per-
turbation function, according to the structure of the corsolution. Two different
prize perturbation schemes were usedpénturbation by eliminationghe primal-
dual algorithm used in the construction phase is driven il lBunew solution with-
out some of the nodes that appeared in the solution constructthe previous
iteration. Inperturbation by prize changesome noise is introduced into the node
prizes to change the objective function, similarly to wisgpioposed in [48, 49].

The cost perturbation methods used in the GRASP for the nuimirgteiner tree
problem described in [165] incorporate learning mechasiassociated with inten-
sification and diversification strategies. Three distinetghit randomization meth-
ods were applied. At a given GRASP iteration, the modifiedgiveof each edge
is randomly selected from a uniform distribution from areivial which depends
on the selected weight randomization method applied atitiwation. The differ-
ent weight randomization methods use frequency informadiod may be used to
enforce intensification and diversification strategiese Eiperimental results re-
ported in [165] show that the strategy combining these ther&urbation methods
is more robust than any of them used in isolation, leadingéddest overall results
on a quite broad mix of test instances with different chamastics. The GRASP
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heuristic using this cost perturbation strategy is amoegbst effective heuristics
currently available for the Steiner problem in graphs.

3.4 Biasfunctions

In the construction procedure of the basic GRASP, the nerteht to be introduced
in the solution is chosen at random from the candidates iR®le. The elements of
the RCL are assigned equal probabilities of being choseweier, any probabil-
ity distribution can be used to bias the selection towardesparticular candidates.
Another construction mechanism was proposed by Bresinadere a family of
such probability distributions is introduced. They aredshsn the rank (o) as-
signed to each candidate elementaccording to its greedy function value. Several
bias functions were proposed, such as:

random biasbias(r) = 1;

linear biasbias(r) =1/r;

log biasbias(r) =log~(r +1);
exponential biasvias(r) =€ '; and
polynomial bias of orden: bias(r) =r—".

Let r(o) denote the rank of elemewot and letbias(r(o)) be one of the bias
functions defined above. Once these values have been eafoall elements in
the candidate s&, the probabilityrr(o) of selecting element is

(o) = blas'(r(G)) _
Yoecbias(r(a’))
The evaluation of these bias functions may be restrictetidcetements of the

RCL. Bresina’s selection procedure restricted to elemehtse RCL was used in
[40]. The standard GRASP uses a random bias function.

(1)

3.5 Intelligent construction: memory and learning

Fleurent and Glover [82] observed that the basic GRASP doesse long-term
memory (information gathered in previous iterations) amdppsed a long-term
memory scheme to address this issue in multi-start hetgidtong-term memory
is one of the fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be usdddrconstruction
phase. To become an elite solution, a solution must be ditbier than the best
member of the pool, or better than its worst member and seffilyi different from
the other solutions in the pool. For example, one can coemtidal solution vector
components and set a threshold for rejection.
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A strongly determined variablis one that cannot be changed without eroding
the objective or changing significantly other variablexdhsistent variablés one
that receives a particular value in a large portion of theeeolution set. Let(e)
be a measure of the strong determination and consistentyrésaof a solution
elemente € E. Then,l(e) becomes larger asappears more often in the pool of
elite solutions. The intensity functidife) is used in the construction phase as fol-
lows. Recall that(e) is the greedy function, i.e. the incremental cost assatiate
with the incorporation of elemerg e E into the solution under construction. Let
K(e) = F(c(e),l(e)) be a function of the greedy and the intensification functions
For exampleK (e) = Ac(e) + 1 (e). The intensification scheme biases selection from
the RCL to those elemenésc E with a high value oK (e) by setting its selection
probability to bep(e) = K(e)/ S screL K(9)-

The functionK (e) can vary with time by changing the value df For example,

A may be set to a large value that is decreased when diverisifidatcalled for.
Procedures for changing the valueofre given by Fleurent and Glover [82] and
Binato et al. [40].

3.6 POP in construction

The Proximate Optimality Principle (POP) is based on tha tthat “good solutions
atone level are likely to be found ‘close to’ good solutioharaadjacent level” [90].
Fleurent and Glover [82] provided a GRASP interpretatiothig principle. They
suggested that imperfections introduced during steps@fIRASP construction
can be “ironed-out” by applying local search during (andardy at the end of) the
GRASP construction phase.

Because of efficiency considerations, a practical implaatem of POP to
GRASP consists in applying local search a few times duriegtinstruction phase,
but not at every construction iteration. Local search wadieg by Binato et al. [40]
after 40% and 80% of the construction moves have been takevelhas at the end
of the construction phase.

4 Path-relinking

Path-relinking is another enhancement to the basic GRA8SPepure, leading to
significant improvements in both solution quality and rumntimes. This tech-
nigue was originally proposed by Glover [88] as an intenaffan strategy to
explore trajectories connecting elite solutions obtaibgdabu search or scatter
search [89, 90, 91].

We consider the undirected graph associated with the salapacés = (S M),
where the nodes is correspond to feasible solutions and the edgellinorre-
spond to moves in the neighborhood structure,(i.g.) € M if and only ifi € S,



GRASP: Advances, hybridizations, and applications 13

j €S jeN(i),andi € N(j), whereN(s) denotes the neighborhood of a nate S,
Path-relinking is usually carried out between two soluticone is called thanitial
solution while the other is thguiding solution One or more paths in the solution
space graph connecting these solutions are explored iretdretsfor better solu-
tions. Local search is applied to the best solution in eadhede paths, since there
is no guarantee that the latter is locally optimal.

Letse Sbe a node on the path between an initial solution and a gugtihgion
g € S Not all solutions in the neighborhodd(s) are allowed to be the next on the
path fromsto g. We restrict the choice only to those solutions that are rmiondar
to g thans. This is accomplished by selecting moves frethat introduce attributes
contained in the guiding solutiom Therefore, path-relinking may be viewed as a
strategy that seeks to incorporate attributes of high gusdiutions (i.e. the guiding
elite solutions), by favoring these attributes in the seléenoves.

The use of path-relinking within a GRASP procedure, as amsification strat-
egy applied to each locally optimal solution, was first pregoh by Laguna and
Marti [106]. It was followed by several extensions, impeavents, and successful
applications [6, 7, 18, 46, 75, 130, 146, 156, 158, 159, 168, 171]. A survey of
GRASP with path-relinking can be found in [157].

Enhancing GRASP with path-relinking almost always impsotree performance
of the heuristic. As an illustration, Figure 6 shows timetdoget plots for GRASP
and GRASP with path-relinking implementations for fourfeliént applications.
These time-to-target plots show the empirical cumulatiedpbility distributions of
thetime-to-targetrandom variable when using pure GRASP and GRASP with path-
relinking, i.e., the time needed to find a solution at leasj@sd as a prespecified
target value. For all problems, the plots show that GRASI with-relinking is
able to find target solutions faster than GRASP.

GRASP with path-relinking makes use of alite setto collect a diverse pool
of high-quality solutions found during the search. Thislpsdimited in size, i.e. it
can have at modvax _El i t e solutions. Several schemes have been proposed for
the implementation of path-relinking, which may be apphesd

e an intensification strategy, between each local optimurainbd after the local
search phase and one or more elite solutions;

e a post-optimization step, between every pair of elite $ohs;

e anintensification strategy, periodically (after a fixed toemof GRASP iterations
since the last intensification phase) submitting the podalidé solutions to an
evolutionary process (see Subsection 4.7);

e a post-optimization phase, submitting the pool of eliteisohs to an evolution-
ary process; or

e any other combination of the above schemes.

The pool of elite solutions is initially empty. Each locathptimal solution ob-
tained by local search and each solution resulting from-palihking is considered
as a candidate to be inserted into the pool. If the pool is abtull, the candidate is
simply added to the pool. Otherwise, if the candidate iseoe¢ktan the incumbent,
it replaces an element of the pool. In case the candidatdtisrlilean the worst ele-
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Fig. 6 Time to target plots comparing running times of pure GRASE &RASP with path-
relinking on four instances of distinct problem types: thiredex assignment, maximum satisfia-
bility, bandwidth packing, and quadratic assignment.
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ment of the pool but not better than the best element, thepliaces some element
of the pool if it is sufficiently different from every other lsion currently in the
pool. To balance the impact on pool quality and diversitg, ¢hement selected to
be replaced is the one that is most similar to the enteringisol among those elite
solutions of quality no better than the entering solutidsgjL

Given a local optimuns; produced at the end of a GRASP iteration, we need
to select at random from the pool a solutignto be path-relinked witls;. In prin-
ciple, any pool solution could be selected. However, we maptvio avoid pool
solutions that are too similar tg, because relinking two solutions that are simi-
lar limits the scope of the path-relinking search. If theusions are represented by
|E|—dimensional incidence vectors, we should privilege pdisptutions for which
the Hamming distance (i.e., the number of components tkatda different values
in each solution) between them is high. A strategy introdund158] is to select a
pool element, at random with probability proportional to the Hamming diste
between the pool element and the local optimgnSince the number of paths be-
tween two solutions grows exponentially with their Hamméhigtance, this strategy
favors pool elements that have a large number of paths cting¢leem to and from
s.

After determining which solutions{ or ;) will be designated the initial solution

i and which will be the guiding solutiog, the algorithm starts by computing the
setA(i,g) of components in whichandg differ. This set corresponds to the moves
which should be applied tbto reachg. Starting from the initial solution, the best
move inA(i,g) still not performed is applied to the current solution, Litite guid-
ing solution is reached. By best move, we mean the one thaltses the highest
quality solution in the restricted neighborhood. The beitson found along this
trajectory is submitted to local search and returned asdhgisn produced by the
path-relinking algorithm.

Several alternatives have been considered and combinedéntrimplementa-
tions. These include forward, backward, back and forwaided truncated, greedy
randomized adaptive, and evolutionary path-relinkindti#ése alternatives involve
trade-offs between computation time and solution quality.

4.1 Forward path-relinking

In forward path-relinking, the GRASP local optimum is designated a&sitiitial
solution and the pool solution is made the guiding solutibhis is the original
scheme proposed by Laguna and Marti [106].
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4.2 Backward path-relinking

In backwardpath-relinking, the pool solution is designated as theaahgolution
and the GRASP local optimum is made the guiding one. Thisreeheas orig-
inally proposed in Aiex et al. [7] and Resende and Ribeiro6[13he main ad-
vantage of this approach over forward path-relinking cofm@s the fact that, in
general, there are more high-quality solutions near p@shehts than near GRASP
local optima. Backward path-relinking explores more thugtaly the neighborhood
around the pool solution, whereas forward path-relinkixgieres more the neigh-
borhood around the GRASP local optimum. Experiments in 8] have shown
that backward path-relinking usually outperforms forwpadh-relinking.

4.3 Back and forward path-relinking

Back and forwardpath-relinking combines forward and backward path-rétigk

As shown in [7, 156], it finds solutions at least as good as &odnpath-relinking

or backward path-relinking, but at the expense of takingualtice as long to
run. The reason that back and forward path-relinking oftedsfisolutions of better
quality than simple backward or forward path-relinkingnssefrom the fact that it
thoroughly explores the neighborhoods of both solutgrends,.

4.4 Mixed path-relinking

Mixed path-relinking shares the benefits of back and forward palthking, i.e.
it thoroughly explores both neighborhoods, but does so outthe same time as
forward or backward path-relinking alone. This is achiebgdinterchanging the
roles of the initial and guiding solutions at each step of pla¢h-relinking pro-
cedure. Therefore, two paths are generated, one startiigaaid the other as,.
The paths evolve and eventually meet at some solution aladiuivhy betweers,
andsp. The joined path relinks these two solutions. Mixed patinkéng was sug-
gested by Glover [88] and was first implemented and testedilbgif® and Rosseti
[163], where it was shown to outperform forward, backward] back and forward
path-relinking. Figure 7 shows a comparison of pure GRAS#faar variants of
path-relinking: forward, backward, back and forward, aridad. The time-to-target
plots show that GRASP with mixed path-relinking has the bashing time profile
among the variants compared.
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Fig. 8 Average number of best solutions found at different depfhthe path from the initial
solution to the guiding solution on instances of the max-diersity problem.

4.5 Truncated path-relinking

Since good-quality solutions tend to be near other gooditgjsalutions, one would
expect to find the best solutions with path-relinking neay ititial or guiding so-
lution. Indeed, Resende et al. [151] showed that this is #ise ¢or instances of the
max-min diversity problem, as shown in Figure 8. In that eipent, a back and
forward path-relinking scheme was tested. The figure shbevaverage number of
best solutions found by path-relinking taken over seversthinces and several ap-
plications of path-relinking. The 0-10% range in this figaogresponds to subpaths
near the initial solutions for the forward path-relinkinggse as well as the back-
ward phase, while the 90-100% range are subpaths near tiageolutions. As the
figure indicates, exploring the subpaths near the extregiitiay produce solutions
about as good as those found by exploring the entire pathreTi®i@ higher concen-
tration of better solutions close to the initial solutioxpkred by path-relinking.

Truncatedpath-relinking can be applied to either forward, backwaiatkward
and forward, or mixed path-relinking. Instead of explorihg entire path, truncated
path-relinking only explores a fraction of the path and,ssmuently, takes a fraction
of the time to run. Truncated path-relinking has been agptig18, 151].
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4.6 Greedy randomized adaptive path-relinking

In path-relinking, the best not yet performed move inAgt g) is applied to the
current solution, until the guiding solution is reachectiés are broken determin-
istically, this strategy will always produce the same patween the initial and
guiding solutions. Since the number of paths connedtiagdg is exponential in
|A(i,9)|, exploring a single path can be somewhat limiting.

Greedy randomized adaptiymth-relinking, introduced by Binato et al. [39], is
a semi-greedy version of path-relinking. Instead of takimgbest move id\(i,g)
still not performed, a restricted candidate list of good ew®still not performed is
set up and a randomly selected move from the latter is apfigdapplying this
strategy several times between the initial and guidingtsmig, several paths can be
explored. Greedy randomized adaptive path-relinking e applied in [18, 63,
151].

4.7 Evolutionary path-relinking

GRASP with path-relinking maintains a pool of elite solaso Applying path-

relinking between pairs of pool solutions may result in aareletter pool of solu-
tions. Aiex et al. [7] applied path-relinking between alinsaf elite solutions as an
intensification scheme to improve the quality of the pool as@ post-optimization
step. The application of path-relinking was repeated unatifurther improvement
was possible.

Resende and Werneck [158, 159] describeehatutionarypath-relinking scheme
applied to pairs of elite solutions and used as a post-opétian step. The pool re-
sulting from the GRASP with path-relinking iterations igered to as population
Po. At stepk, all pairs of elite set solutions of populatiéh are relinked and the
resulting solutions made candidates for inclusion in papoih P, ; of the next
generation. The same rules for acceptance into the podlglBRASP with path-
relinking are used for acceptance irff, 1. If the best solution iR ; is better
than the best i, thenk is incremented by one and the process is repeated. Re-
sende et al. [151] describe another way to implement ewwiaty path-relinking,
where a single population is maintained. Each pair of ebitat®ns is relinked and
the resulting solution is a candidate to enter the elitelsatcepted, it replaces an
existing elite solution. The process is continued whilerghare still pairs of elite
solutions that have not yet been relinked.

Andrade and Resende [17] used this evolutionary scheme ademsification
process every 100 GRASP iterations. During the intensifingthase, every solu-
tion in the pool is relinked with the two best ones. Since tWte esolutions might
be relinked more than once in different calls to the intecaffon process, greedy
randomized adaptive path-relinking was used.
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Resende et al. [151] showed that a variant of GRASP with ¢ewiary path-
relinking outperformed several other heuristics using GRAvith path-relinking,
simulated annealing, and tabu search for the max-min diygmoblem.

5 Extensions

In this section, we comment on some extensions, implementatrategies, and
hybridizations of GRASP.

The use of hashing tables to avoid cycling in conjunctiorhwétbu search was
proposed by Woodruff and Zemel [178]. A similar approach \edsr explored by
Ribeiro et al. [162] in their tabu search algorithm for quepgimization in relational
databases. In the context of GRASP implementations, hgsalies were first used
by Martins et al. [122] in their multi-neighborhood heuigdor the Steiner problem
in graphs, to avoid the application of local search to sohgialready visited in
previous iterations.

Filtering strategies have also been used to speed up tlatidies of GRASP,
see e.g. [70, 122, 143]. In these cases, local search is pbeadpo all solutions
obtained at the end of the construction phase, but instegdt@some promising
unvisited solutions, defined by a threshold with respedi¢éancumbent.

Almost all randomization effort in the basic GRASP algamitinvolves the con-
struction phase. Local search stops at the first local optin@n the other hand,
strategies such as VNS (Variable Neighborhood Searchposed by Hansen and
Mladenovic [96, 125], rely almost entirely on the randoatian of the local search
to escape from local optima. With respect to this issue, GRAS&d variable neigh-
borhood strategies may be considered as complementaryoaetially capable of
leading to effective hybrid methods. A first attempt in thigedtion was made by
Martins et al. [122]. The construction phase of their hyltwédiristic for the Steiner
problem in graphs follows the greedy randomized strateg@RASP, while the
local search phase makes use of two different neighborhimoctsres as a VND
(variable neighborhood descent) procedure [96, 125].rTheiristic was later im-
proved by Ribeiro et al. [165], one of the key components efrilew algorithm
being another strategy for the exploration of differenighéiorhoods. Ribeiro and
Souza [164] also combined GRASP with VND in a hybrid heuifti the degree-
constrained minimum spanning tree problem. Festa et disf8died different vari-
ants and combinations of GRASP and VNS for the MAX-CUT prahléinding
and improving the best known solutions for some open ingmfrom the literature.

GRASP has also been used in conjunction with genetic algost Basically, the
greedy randomized strategy used in the construction pHfas&BRASP heuristic is
applied to generate the initial population for a genetiogtgm. We may cite e.g.
the genetic algorithm of Ahuja et al. [5] for the quadratisigament problem, which
makes use of the GRASP heuristic proposed by Li et al. [108}¢ate the initial
population of solutions. A similar approach was used by Amgnet al. [27], with
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the initial population made up by both randomly generatdagtgms and those built
by a GRASP algorithm.

The hybridization of GRASP with tabu search was first studigd.aguna and
Gonzalez-Velarde [105]. Delmaire et al. [57] considered @approaches. In the
first, GRASP is applied as a powerful diversification strgteégthe context of a
tabu search procedure. The second approach is an impleinanté the Reac-
tive GRASP algorithm presented in Section 3.2, in which ttal search phase is
strengthened by tabu search. Results reported for the itagaiclocation problem
show that the hybrid approaches perform better than thatesdbmethods previously
used. Two two-stage heuristics are proposed in [1] for agltihe multi-floor facil-
ity layout problem. GRASP/TS applies a GRASP to find theahityout and tabu
search to refine it.

Iterated Local Search (ILS) iteratively builds a sequenfcgotutions generated
by the repeated application of local search and pertunbatifathe local optima
found by local search [37]. Lourenco et al. [112] point chattILS has been re-
discovered many times and is also known as iterated des8BnBp], large step
Markov chains [120], iterated Lin-Kernighan [100], and icteal local optimization
[119]. ILS can be hybridized with GRASP by replacing the did local search.
The GRASP construction produces a solution which is passedet ILS proce-
dure. Ribeiro and Urrutia [166] presented a hybrid GRASH WIS heuristic for
the mirrored traveling tournament problem, in which pdrations are achieved by
randomly generating solutions in the game rotation ejactioain [86, 87] neigh-
borhood.

6 Parallel GRASP

Cung et al. [55] noted that parallel implementations of metaistics not only ap-
pear as quite natural alternatives to speed up the seargoéat approximate so-
lutions, but also facilitate solving larger problems andliity improved solutions,
with respect to their sequential counterparts. This is dutae partitioning of the
search space and to the increased possibilities for seaeafsification and diversi-
fication. As a consequence, parallelism can improve the@fess and robustness
of metaheuristic-based algorithms. Parallel metahecHiigtsed algorithms are less
dependent on time consuming parameter tuning experimedthair success is not
limited to a few or small classes of problems.

Recent years have witnessed huge advances in computeotegiand commu-
nication networks. The growing computational power regiients of large scale
applications and the high costs of developing and maintgisupercomputers has
fueled the drive for cheaper high performance computindgrenments. With the
considerable increase in commodity computers and netwerfopnance, cluster
computing and, more recently, grid computing [83, 84] havered as real alter-
natives to traditional super-computing environments faogiting parallel applica-
tions that require significant amounts of computing power.
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6.1 Cluster computing

A computing cluster generally consists of a fixed humber ahbgeneous re-
sources, interconnected on a single administrative nétwdrich together execute
one parallel application at a time.

Most parallel implementations of GRASP follow theultiple-walk independent
threadstrategy, based on the distribution of the iterations olergrocessors [12,
13, 70, 108, 121, 123, 128, 134, 135]. In general, each sdhrehd has to per-
form Max_l t er ati ons/p iterations, wherep andMax_l t er ati ons are, re-
spectively, the number of processors and the total numbigeraitions. Each pro-
cessor has a copy of the sequential algorithm, a copy of thielgmn data, and an
independent seed to generate its own pseudo-random nuedpggree. A single
global variable is required to store the best solution foowet all processors. One
of the processors acts as the master, reading and distigbptoblem data, gen-
erating the seeds which will be used by the pseudo-randonbeugenerators at
each processor, distributing the iterations, and cohigdtie best solution found by
each processor. Since the iterations are completely imdipe: and very little in-
formation is exchanged, linear speedups are easily olat@irevided that no major
load imbalance problems occur. The iterations may be ewdistyibuted over the
processors or according with their demands, to improve hadancing.

Martins et al. [123] implemented a parallel GRASP for theirg&eproblem in
graphs. Parallelization is achieved by the distributiothefiterations over the pro-
cessors, with the value of the RCL parameterandomly chosen in the interval
[0.0,0.3] at each iteration. Almost-linear speedups were observebenochmark
problems from the OR-Library [38] for 2, 4, 8, and 16 processwith respect to
the sequential implementation. Path-relinking may be irsednjunction with par-
allel implementations of GRASP. Almost-linear speedupsawaso obtained with
the multiple-walk independent-thread implementation a#xfet al. [7] for the 3-
index assignment problem, in which each processor appdigrsielinking to pairs
of elite solutions stored in a local pool.

Alvim and Ribeiro [12, 13] have shown that multiple-walk ependent-thread
approaches for the parallelization of GRASP may benefit nitarin load balanc-
ing techniques, whenever heterogeneous processors ar®ugahe parallel ma-
chine is simultaneously shared by several users. In thes eémost-linear speedups
may be obtained with a heterogeneous distribution of thetittns over thep
processors i packets, withg > p. Each processor starts performing one packet
of [Max_l t er ati ons/q] iterations and informs the master when it finishes its
packet of iterations. The master stops the execution of wacker processor when
there are no more iterations to be performed and collectbéise solution found.
Faster or less loaded processors will perform more itaratiban the others. In the
case of the parallel GRASP heuristic implemented for thélgra of traffic assign-
ment described in [143], this dynamic load balancing sgatlowed reductions
in the elapsed times of up to 15% with respect to the timesrgbddor the static
strategy, in which the iterations were uniformly distriédtover the processors.



GRASP: Advances, hybridizations, and applications 23

,-;-;”«’r‘sr"’*"'*gﬂdr *
e
/7
0.8 g
=
3 06
[
Qo
[
o
Qo
2
©
g 04
3
o
0.2
Empirical distribution ~ +
) Theoreticlal distributiqn """"

0 2 4 6 8 10 12
time to target solution value (seconds)

Fig. 9 Superimposed empirical and theoretical distributiormags to target solution values mea-
sured in seconds on an SGI Challenge computer with 28 prasgss

For a given problem instance and a target vdlo@k4, let time-to-targetbe
a random variable representing the time taken by a GRASPeimmghtation to
find a solution whose cost is at least as good ask4 for this instance. Aiex
et al. [8] have shown experimentally that this random vdeidits an exponential
distribution or, in the case where the setup times are ndigielg, a shifted (two-
parameter) exponential distribution. The probability signfunction p(t) of the
random variable time-to-targetis given pft) = (1/A)-e "/? in the first case or by
p(t) = (1/A)-e =H/A in the second, with the parametédrs R™ andu € R™ be-
ing associated with the shape and the shift of the expordumtietion, respectively.

Figure 9 illustrates this result, depicting the superingabsmpirical and theo-
retical distributions observed for one of the cases studiedg the computational
experiments reported in [8], which involved 2400 runs of GZ®Aprocedures for
each of five different problem types: maximum independetri7€e 150], quadratic
assignment [108, 152], graph planarization [155, 161],imar weighted satisfia-
bility [154], and maximum covering [148].

We now assume thai identical processors are available and used to search in
parallel for the same target vall®@ok4. Let X; be the time taken by processor
i=1,...,ptofind a solution whose cost is at least as gootl@sk 4 and consider
the random variabl¥ = min{Xy,...,Xy}. Since all processors are independent and
fit the same exponential distribution with average equal tthe random variable
Y fits an exponential distribution whose averag# i9. Therefore, linear speedups
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can be achieved if multiple identical processors are usgéejiendently to search in
parallel for the same target value.

However, we notice that if path-relinking is applied as ateisification step at
the end of each GRASP iteration (see e.g. [46, 157]), theitetadions are no longer
independent and the memoryless characteristic of GRASPbhmalgstroyed. Con-
sequently, the time-to-target random variable may not feibgronential distribution.
Aiex et al. [7] have shown experimentally that, even in thases the time-to-target
random variable may be reasonably approximated by a sHiftedparameter) ex-
ponential distribution in some circumstances.

In the case omultiple-walk cooperative-threatrategies, the search threads run-
ning in parallel exchange and share information collectedgthe trajectories they
investigate. One expects not only to speed up the conveegertbe best solution
but, also, to find better solutions than independent-thstadegies. The most dif-
ficult aspect to be set up is the determination of the natutheifinformation to
be shared or exchanged to improve the search, without tagmmguch additional
memory or time to be collected. Cooperative-thread strasagay be implemented
using path-relinking, by combining elite solutions stone@ central pool with the
local optima found by each processor at the end of each GRik&RION.

Ribeiro and Rosseti [163] applied this scheme to implemepdrallel GRASP
heuristic for the 2-path network design problem. One of tfteegssors acts as the
master and handles a centralized pool of elite solutiorkatmg and distributing
them upon request. The other processors act as workers ahdrege the elite so-
lutions found along their search trajectories. Coopendaigtween the processors is
implemented via path-relinking using the centralized prfalite solutions. In this
implementation, each worker may send up to three differelntions to the master
at each GRASP iteration: the solution obtained by localdeand the solutions
obtained by forward and backward path-relinking. The panfnce of the parallel
implementation is quite uniform over all problem instances

Computational results illustrating the behavior of thedpendent and coopera-
tive parallel implementations for an instance with 100 d@®50 edges, and 1000
origin-destination pairs are presented below. The ploEgunre 10 display the em-
pirical probability distribution of the time-to-targetmdom variable for both the
independent and the cooperative parallel implementaiiois and MPI, for 200
runs on 2, 4, 8, and 16 processors of a 32-machine Linux cjugith thel ook4
target value set at 683. We notice that the independenggtraerforms better when
only two processors are used. This is so because the indepesichtegy makes use
of the two processors to perform GRASP iterations, whilecth@perative strategy
makes use of one processor to perform iterations and the ttiendle the pool.
However, as the number of processors increases, the gaimebdthrough cooper-
ation becomes more important than the loss of one procesgarform iterations.
The cooperative implementation is already faster thanrttiependent one for eight
processors. These plots establish the usefulness andfitiersly of the cooper-
ative implementation. Other implementations of multiplatk cooperative-thread
GRASP heuristics can be found e.g. in Aiex et al. [6, 7].
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cooperative parallelizations on 2, 4, 8, and 16 processarge( value set at 683).
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6.2 Grid computing

Grids aim to harness available computing power from a dés@sol of resources
available over the Internet to execute a number of applinatsimultaneously. Grids
aggregate geographically distributed collections (@s3ibf resources which typi-
cally have different owners and thus are shared betweerpteuwisers. The fact that
these resources are distributed, heterogeneous, andetticated requires careful
consideration when developing grid enabled applicatioilsaakes writing parallel
grid-aware heuristics very challenging [83].

Araujo et al. [22] described some strategies based on tiseamaorker paradigm
for the parallelization in grid environments of the hybriR&SP with ILS heuristic
for the mirrored traveling tournament problem proposedli6g]. In the best of
these strategies, PARP, the master is dedicated to managing a centralized pool of
elite solutions, including collecting and distributingeth upon request. The workers
start their searches from different initial solutions ardrenge elite solutions found
along their trajectories. Although it lead to improvementthe results obtained by
the sequential implementation, it was not able to make &elof the characteristics
of grid environments.

Aradjo [21] proposed an autonomic hierarchical distrdalistrategy for the im-
plementation of cooperative metaheuristics in grids, incWwhocal pools of elite
solutions internal to each site support intensificatioatstgies, while a global pool
is used to ensure diversification. This autonomic strategyuch more adapted to
grid computations and leads to better results with respdmbth the master-worker
PAR-MP parallel strategy for the mirrored traveling tournamenatotem and the
sequential hybrid heuristic combining GRASP and ILS fordrameter constrained
minimum spanning tree problem [114].

Table 3 displays comparative results reported in [21] fogdaNational Football
League instances of the mirrored traveling tournamentlprohvith the number of
teams ranging from 16 to 32. For each instance, we give ths obshe solutions
obtained by the sequential implementation and by the hibreal strategy running
on ten processors. The running times range from approxiynidiese to ten hours,
as observed for instance$ | 18 andnf | 24, respectively. We notice that the hi-
erarchical strategy improved the solutions obtained bystrguential heuristic for
eight out of the nine test instances.

Figure 11 displays time-to-target plots obtained after 0% of the hierarchical
distributed implementation of the GRASP with ILS heurigtic the diameter con-
strained minimum spanning tree on a typical instance withriddes, using 15, 30,
and 60 processors. These plots show that the approach sgadespriately when
the number of processors increase. We display in Table 4 sesuéts obtained by
the sequential and the hierarchical distributed implestgns of the GRASP with
ILS heuristic for this problem. The distributed strategyswn ten processors. The
sequential heuristic is allowed to run by as much as ten titnegime taken by
the grid implementation. We give the number of nodes and®figesach instance,
together with the costs of the best solutions found by eagieimentation and the
time given to the sequential heuristic. These resultstitais the robustness of the
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Table 3 Solution costs found by the sequential and grid implemantatof the hybrid GRASP
with ILS heuristic for the mirrored traveling tournamenbplem.

Instance Sequential Grid
nfl 16 251289 249806
nfl 18 299903 299112
nfl 20 359748 359748
nfl 22 418086 418022
nfl 24 467135 465491
nfl 26 554670 548643
nfl 28 618801 609788
nfl 30 740458 739697
nfl 32 924559 914620
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Fig. 11 Time-to-target plots for the hierarchical distributed lempentation of the GRASP with
ILS heuristic for the diameter constrained minimum spagriiee on an instance with 100 nodes
running on a grid environment using 15, 30, and 60 processors

hierarchical distributed strategy (due to the effectiwsnef the cooperation through
the pools in two different levels), since it was able to sysiécally find better solu-
tions than those obtained by the sequential strategy in atatipn times ten times

larger.
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Table 4 Best solutions found by the sequential heuristic and by tlteignplementation running
on ten processors. The sequential heuristic is allowedtdylas much as ten times the time taken
by the grid implementation.

Nodes  Edges Grid  Sequential  Time (seconds)
60 600  738.000 740.000 2300.00
60 600  150.000 152.000 400.00
70 2415 6.981 6.983 230.00
70 2415 7.486 7.499 3000.00
70 2415 7.238 7.245 690.00
100 4950 7.757 7.835 1400.00
100 4950 7.930 7.961 5000.00
100 4950 8.176 8.204 3400.00

7 Applications

The first application of GRASP described in the literatuneggrned the set covering
problem [68]. Since then, GRASP has been applied to a widgerafproblems. The
main applications areas are summarized below with linkpéaigic references:

routing [25, 29, 34, 45, 47, 53, 103, 110]

logic [58, 75, 135, 149, 153, 154]

covering and partitioning [10, 23, 26, 68, 85, 94]

location [50, 54, 95, 1, 98, 57, 101, 132, 176, 177]

minimum Steiner tree [46, 121, 122, 123, 165]

optimization in graphs [2, 3, 4, 28, 70, 76, 77, 99, 104, 108B,117, 122, 133,

137, 148, 150, 155, 161, 165, 173]

e assignment[5, 7, 67, 82, 108, 111, 113, 124, 127, 128, 130,113, 139, 143,
144, 152, 169]

e timetabling, scheduling, and manufacturing [6, 9, 11, 18,20, 31, 32, 33, 40,
43, 52, 56, 59, 64, 65, 66, 71, 72, 102, 105, 109, 126, 145, 168, 168, 170,
179, 180]

e transportation [25, 30, 64, 67, 172]

e power systems [41, 42, 63]

e telecommunications [2, 15, 14, 16, 18, 27,51, 101, 111,138, 143, 147, 148,
156, 174]

e graph and map drawing [54, 73, 106, 115, 116, 118, 131, 158, 16

e biology [19, 62, 74]

e VLSI[23, 24]

The reader is referred to Festa and Resende [80] for a coergueiptated bibliog-
raphy of GRASP applications.
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Fig. 12 Performance of GW approximation algorithm, a single GRA®Pation (GW followed
by local search), 500 iterations of GRASP with path-religkiand 500 iterations of GRASP with
path-relinking followed by VNS for series C prize-collewi Steiner tree problems.

8 Concluding remarks

The results described in this chapter reflect successflicagipns of GRASP to a
large number of classical combinatorial optimization peats, as well as to those
that arise in real-world situations in different areas o$ibhess, science, and tech-
nology.

We underscore the simplicity of implementation of GRASPjchmakes use of
simple building blocks (solution construction proceduard local search methods)
that are often readily available. Contrary to what occutthwther metaheuristics,
such as tabu search or genetic algorithms, which make usdas§@ number of
parameters in their implementations, the basic versionRASP requires the ad-
justment of a single parameter.

Recent developments, presented in this chapter, showiffeakdt extensions of
the basic procedure allow further improvements in the smtstfound by GRASP.
Among these, we highlight reactive GRASP, which automatesadjustment of
the restricted candidate list parameter; variable neidiiieds, which permit accel-
erated and intensified local search; and path-relinkindgchvheyond allowing the
implementation of intensification strategies based on temory of elite solutions,
opens the way for the development of very effective cooperaarallel strategies.

These and other extensions make up a set of tools that candeel ol sim-
pler heuristics to find better-quality solutions. To illkege the effect of additional
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extensions on solution quality, Figure 12 shows some resbliained for the prize-
collecting Steiner tree problem, as discussed in [46]. Wesitler the 40 instances
of series C. The figure shows results for eleven differerglfeof solution accu-
racy (varying from optimal to ten percent from optimal). Feach level of solu-
tion accuracy, the figure shows the number of instances fachwdach component
found solutions within the accuracy level. The componergsenthe primal-dual
constructive algorithm (GW) of Goemans and Williamson [93WV followed by
local search (GW+LS), corresponding to the first GRASP itena500 iterations of
GRASP with path-relinking (GRASP+PR), and the complete&tgm, using vari-
able neighborhood search as a post-optimization proc@RASP+PR+VNS).
For example, we observe that the number of optimal solufiomsd goes from six,
using only the constructive algorithm, to a total of 36, gdine complete algorithm
described in [46]. The largest relative deviation with mspto the optimal value
decreases from 36.4% in the first case, to only 1.1% for theptetalgorithm. It
is easy to notice the contribution made by each additiortaleston.

Parallel implementations of GRASP are quite robust andtedidear speedups
both in independent and cooperative strategies. Coopesitiategies are based on
the collaboration between processors through path-ieliné&nd a global pool of
elite solutions. This allows the use of more processors tbifetter solutions in less
computation time.
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