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Abstract GRASP is a multi-start metaheuristic for combinatorial optimization prob-
lems, in which each iteration consists basically of two phases: construction and local
search. The construction phase builds a feasible solution,whose neighborhood is in-
vestigated until a local minimum is found during the local search phase. The best
overall solution is kept as the result. In this chapter, we first describe the basic com-
ponents of GRASP. Successful implementation techniques are discussed and illus-
trated by numerical results obtained for different applications. Enhanced or alterna-
tive solution construction mechanisms and techniques to speed up the search are also
described: alternative randomized greedy construction schemes, Reactive GRASP,
cost perturbations, bias functions, memory and learning, local search on partially
constructed solutions, hashing, and filtering. We also discuss implementation strate-
gies of memory-based intensification and post-optimization techniques using path-
relinking. Hybridizations with other metaheuristics, parallelization strategies, and
applications are also reviewed.

1 Introduction

We consider in this chapter a combinatorial optimization problem, defined by a
finite ground setE = {1, . . . ,n}, a set of feasible solutionsF ⊆ 2E, and an objective
function f : 2E → R. In its minimization version, we search an optimal solution
S∗ ∈ F such thatf (S∗)≤ f (S), ∀S∈ F. The ground setE, the cost functionf , and
the set of feasible solutionsF are defined for each specific problem. For instance,
in the case of the traveling salesman problem, the ground setE is that of all edges
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connecting the cities to be visited,f (S) is the sum of the costs of all edges inS, and
F is formed by all edge subsets that determine a Hamiltonian cycle.

GRASP (Greedy Randomized Adaptive Search Procedure) [68, 69] is a multi-
start or iterative metaheuristic, in which each iteration consists of two phases: con-
struction and local search. The construction phase builds asolution. If this solution
is not feasible, then it is necessary to apply a repair procedure to achieve feasibility.
Once a feasible solution is obtained, its neighborhood is investigated until a local
minimum is found during the local search phase. The best overall solution is kept as
the result. Extensive literature surveys are presented in [78, 79, 80, 156, 157, 160].
The pseudo-code in Figure 1 illustrates the main blocks of a GRASP procedure for
minimization, in whichMax Iterations iterations are performed andSeed is
used as the initial seed for the pseudo-random number generator.

procedure GRASP(Max Iterations,Seed)
1 Read Input();
2 for k = 1, . . .,Max Iterations do
3 Solution← Greedy Randomized Construction(Seed);
4 if Solution is not feasiblethen
5 Solution← Repair(Solution);
6 end;
7 Solution← Local Search(Solution);
8 Update Solution(Solution,Best Solution);
9 end;
10 return Best Solution;
end GRASP.

Fig. 1 Pseudo-code of the GRASP metaheuristic.

Figure 2 illustrates the construction phase with its pseudo-code. At each itera-
tion of this phase, let the set of candidate elements be formed by all elements of
the ground setE that can be incorporated into the partial solution being built, with-
out impeding the construction of a feasible solution with the remaining ground set
elements. The selection of the next element for incorporation is determined by the
evaluation of all candidate elements according to a greedy evaluation function. This
greedy function usually represents the incremental increase in the cost function due
to the incorporation of this element into the solution underconstruction. The evalu-
ation of the elements by this function leads to the creation of a restricted candidate
list (RCL) formed by the best elements, i.e. those whose incorporation to the current
partial solution results in the smallest incremental costs(this is the greedy aspect of
the algorithm). The element to be incorporated into the partial solution is randomly
selected from those in the RCL (this is the probabilistic aspect of the heuristic).
Once the selected element is incorporated into the partial solution, the candidate list
is updated and the incremental costs are reevaluated (this is the adaptive aspect of
the heuristic). The above steps are repeated while there exists at least one candi-
date element. This strategy is similar to the semi-greedy heuristic proposed by Hart
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and Shogan [97], which is also a multi-start approach based on greedy randomized
constructions, but without local search.

procedure Greedy Randomized Construction(Seed)
1 Solution← /0;
2 Initialize the set of candidate elements;
3 Evaluate the incremental costs of the candidate elements;
4 while there exists at least one candidate elementdo
5 Build the restricted candidate list (RCL);
6 Select an elements from the RCL at random;
7 Solution← Solution∪{s};
8 Update the set of candidate elements;
9 Reevaluate the incremental costs;
10 end;
11 return Solution;
end Greedy Randomized Construction.

Fig. 2 Pseudo-code of the construction phase.

Not always is a randomized greedy construction procedure able to produce a
feasible solution. In case this occurs, it may be necessary to apply a repair procedure
to achieve feasibility. Examples of repair procedures can be found in [60, 61, 129].

The solutions generated by a greedy randomized construction are not necessarily
optimal, even with respect to simple neighborhoods. The local search phase usu-
ally improves the constructed solution. A local search algorithm works in an iter-
ative fashion by successively replacing the current solution by a better solution in
its neighborhood. It terminates when no better solution is found in the neighbor-
hood. The pseudo-code of a basic local search algorithm starting from the solution
Solution constructed in the first phase (and possibly made feasible bythe repair
heuristic) and using a neighborhoodN is given in Figure 3.

procedure Local Search(Solution)
1 while Solution is not locally optimaldo
2 Finds′ ∈ N(Solution) with f (s′) < f (Solution);
3 Solution← s′;
4 end;
5 return Solution;
end Local Search.

Fig. 3 Pseudo-code of the local search phase.

The speed and the effectiveness of a local search procedure depend on several
aspects, such as the neighborhood structure, the neighborhood search technique, the
strategy used for the evaluation of the cost function value at the neighbors, and the
starting solution itself. The construction phase plays a very important role with re-
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spect to this last aspect, building high-quality starting solutions for the local search.
Simple neighborhoods are usually used. The neighborhood search may be imple-
mented using either abest-improvingor afirst-improvingstrategy. In the case of the
best-improving strategy, all neighbors are investigated and the current solution is
replaced by the best neighbor. In the case of a first-improving strategy, the current
solution moves to the first neighbor whose cost function value is smaller than that
of the current solution. In practice, we observed on many applications that quite
often both strategies lead to the same final solution, but in smaller computation
times when the first-improving strategy is used. We also observed that premature
convergence to a bad local minimum is more likely to occur with a best-improving
strategy.

2 Construction of the restricted candidate list

An especially appealing characteristic of GRASP is the easewith which it can be
implemented. Few parameters need to be set and tuned. Therefore, development can
focus on implementing appropriate data structures for efficient construction and lo-
cal search algorithms. GRASP has two main parameters: one related to the stopping
criterion and the other to the quality of the elements in the restricted candidate list.

The stopping criterion used in the pseudo-code described inFigure 1 is deter-
mined by the numberMax Iterations of iterations. Although the probability of
finding a new solution improving the incumbent (current bestsolution) decreases
with the number of iterations, the quality of the incumbent may only improve with
the latter. Since the computation time does not vary much from iteration to iteration,
the total computation time is predictable and increases linearly with the number of
iterations. Consequently, the larger the number of iterations, the larger will be the
computation time and the better will be the solution found.

For the construction of the RCL used in the first phase we consider, without
loss of generality, a minimization problem as the one formulated in Section 1. We
denote byc(e) the incremental cost associated with the incorporation of element
e∈ E into the solution under construction. At any GRASP iteration, let cmin and
cmax be, respectively, the smallest and the largest incrementalcosts.

The restricted candidate list RCL is made up of the elementse∈ E with the
best (i.e., the smallest) incremental costsc(e). This list can be limited either by the
number of elements (cardinality-based) or by their quality(value-based). In the first
case, it is made up of thep elements with the best incremental costs, wherep is a pa-
rameter. In this chapter, the RCL is associated with a threshold parameterα ∈ [0,1].
The restricted candidate list is formed by all elementse∈ E which can be inserted
into the partial solution under construction without destroying feasibility and whose
quality is superior to the threshold value, i.e.,c(e) ∈ [cmin,cmin + α(cmax− cmin)].
The caseα = 0 corresponds to a pure greedy algorithm, whileα = 1 is equiva-
lent to a random construction. The pseudo code in Figure 4 is arefinement of the



GRASP: Advances, hybridizations, and applications 5

greedy randomized construction pseudo-code shown in Figure 2. It shows that the
parameterα controls the amounts of greediness and randomness in the algorithm.

procedure Greedy Randomized Construction(α ,Seed)
1 Solution← /0;
2 Initialize the candidate set:C← E;
3 Evaluate the incremental costc(e) for all e∈C;
4 while C 6= /0 do
5 cmin←min{c(e) | e∈C};
6 cmax←max{c(e) | e∈C};
7 RCL←{e∈C | c(e) ≤ cmin+α(cmax−cmin)};
8 Select an elements from the RCL at random;
9 Solution← Solution∪{s};
10 Update the candidate setC;
11 Reevaluate the incremental costc(e) for all e∈C;
12 end;
13 return Solution;
end Greedy Randomized Construction.

Fig. 4 Refined pseudo-code of the construction phase.

GRASP may be viewed as a repetitive sampling technique. Eachiteration pro-
duces a sample solution from an unknown distribution, whosemean and variance
are functions of the restrictive nature of the RCL. For example, if the RCL is re-
stricted to a single element, then the same solution will be produced at all iterations.
The variance of the distribution will be zero and the mean will be equal to the value
of the greedy solution. If the RCL is allowed to have more elements, then many dif-
ferent solutions will be produced, implying a larger variance. Since greediness plays
a smaller role in this case, the average solution value should be worse than that of
the greedy solution. However, the value of the best solutionfound outperforms the
average value and very often is optimal. It is unlikely that GRASP will find an opti-
mal solution if the average solution value is high, even if there is a large variance in
the overall solution values. On the other hand, if there is little variance in the overall
solution values, it is also unlikely that GRASP will find an optimal solution, even
if the average solution is low. What often leads to good solutions are relatively low
average solution values in the presence of a relatively large variance, such as is the
case forα = 0.2.

Another interesting observation is that the distances between the solutions ob-
tained at each iteration and the best solution found increase as the construction phase
moves from more greedy to more random. This causes the average time taken by the
local search to increase. Very often, many GRASP solutions may be generated in the
same amount of time required for the local search procedure to converge from a sin-
gle random start. In these cases, the time saved by starting the local search from
good initial solutions can be used to improve solution quality by performing more
GRASP iterations.
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These results are illustrated in Table 1 and Figure 5, for an instance of the
MAXSAT problem where 1000 iterations were run. For each value of α ranging
from 0 (purely random construction for maximization problems) to 1 (purely greedy
construction for maximization problems), we give in Table 1the average Hamming
distance between each solution built during the construction phase and the corre-
sponding local optimum obtained after local search, the average number of moves
from the first to the latter, the local search time in seconds,and the total processing
time in seconds. Figure 5 summarizes the values observed forthe total processing
time and the local search time. We notice that both time measures considerably
decrease asα tends to 1, approaching the purely greedy choice. In particular, we
observe that the average local search time taken byα = 0 (purely random) is ap-
proximately 2.5 times that taken in the caseα = 0.9 (almost greedy). In this exam-
ple, two to three greedily constructed solutions can be investigated in the same time
needed to apply local search to one single randomly constructed solution. The ap-
propriate choice of the value of the RCL parameterα is clearly critical and relevant
to achieve a good balance between computation time and solution quality.

Table 1 Average number of moves and local search time as a function ofthe RCL parameterα for
a maximization problem.

α avg. distance avg. moves local search time (s) total time (s)
0.0 12.487 12.373 18.083 23.378
0.1 10.787 10.709 15.842 20.801
0.2 10.242 10.166 15.127 19.830
0.3 9.777 9.721 14.511 18.806
0.4 9.003 8.957 13.489 17.139
0.5 8.241 8.189 12.494 15.375
0.6 7.389 7.341 11.338 13.482
0.7 6.452 6.436 10.098 11.720
0.8 5.667 5.643 9.094 10.441
0.9 4.697 4.691 7.753 8.941
1.0 2.733 2.733 5.118 6.235

Prais and Ribeiro [142] have shown that using a single fixed value for the value
of the RCL parameterα very often hinders finding a high-quality solution, which
could be found if another value was used. They proposed an extension of the basic
GRASP procedure, which they callReactiveGRASP, in which the parameterα
is self-tuned and its value is periodically modified according with the quality of
the solutions obtained along the search. In particular, computational experiments
on the problem of traffic assignment in communication satellites [143] have shown
that Reactive GRASP found better solutions than the basic algorithm for many test
instances. These results motivated the study of the behavior of GRASP for different
strategies for the variation of the value of the RCL parameter α:

(R) α self tuned according with the Reactive GRASP procedure;
(E) α randomly chosen from a uniform discrete probability distribution;
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Fig. 5 Total CPU time and local search CPU time as a function of the RCL parameterα for a
maximization problem (1000 repetitions for each value ofα).

(H) α randomly chosen from a decreasing non-uniform discrete probability distri-
bution; and

(F) fixed value ofα, close to the purely greedy choice.

We summarize the results obtained by the experiments reported in [141, 142].
These four strategies were incorporated into the GRASP procedures developed
for four different optimization problems: (P-1) matrix decomposition for traf-
fic assignment in communication satellite [143], (P-2) set covering [68], (P-3)
weighted MAX-SAT [153, 154], and (P-4) graph planarization[155, 161]. Let
Ψ = {α1, . . . ,αm} be the set of possible values for the parameterα for the first three
strategies. The strategy for choosing and self-tuning the value ofα in the case of
the Reactive GRASP procedure (R) is described later in Section 3. In the case of the
strategy (E) based on using the discrete uniform distribution, all choice probabilities
are equal to 1/m. The third case corresponds to the a hybrid strategy (H), in which
the authors consideredp(α = 0.1) = 0.5, p(α = 0.2) = 0.25, p(α = 0.3) = 0.125,
p(α = 0.4) = 0.03, p(α = 0.5) = 0.03, p(α = 0.6) = 0.03, p(α = 0.7) = 0.01,
p(α = 0.8) = 0.01, p(α = 0.9) = 0.01, andp(α = 1.0) = 0.005. Finally, in the last
strategy (F), the value ofα is fixed as recommended in the original references of
problems P-1 to P-4 cited above, where this parameter was tuned for each problem.
A subset of the literature instances was considered for eachclass of test problems.
The results reported in [142] are summarized in Table 2. For each problem, we first
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list the number of instances considered. Next, for each strategy, we give the num-
ber of times it found the best solution (hits), as well as the average CPU time (in
seconds) on an IBM 9672 model R34. The number of iterations was fixed at 10,000.

Table 2 Computational results for different strategies for the variation of parameterα .

R E H F
Problem Instances hits time hits time hits time hits time

P-1 36 34 579.0 35 358.2 32 612.6 24 642.8
P-2 7 7 1346.8 6 1352.0 6 668.2 5 500.7
P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2
P-4 37 28 6363.1 21 7292.9 24 6326.5 19 5972.0

Total 124 91 85 78 59

Strategy (F) presented the shortest average computation times for three out the
four problem types. It was also the one with the least variability in the constructed
solutions and, in consequence, found the best solution the fewest times. The reactive
strategy (R) is the one which most often found the best solutions, however, at the
cost of computation times that are longer than those of some of the other strategies.
The high number of hits observed by strategy (E) also illustrates the effectiveness
of strategies based on the variation of the RCL parameter.

3 Alternative construction mechanisms

A possible shortcoming of the standard GRASP framework is the independence of
its iterations, i.e., the fact that it does not learn from thesearch history or from
solutions found in previous iterations. This is so because the basic algorithm dis-
cards information about any solution previously encountered that does not improve
the incumbent. Information gathered from good solutions can be used to imple-
ment memory-based procedures to influence the constructionphase, by modifying
the selection probabilities associated with each element of the RCL or by enforcing
specific choices. Another possible shortcoming of the greedy randomized construc-
tion is its complexity. At each step of the construction, each yet unselected candidate
element has to be evaluated by the greedy function. In cases where the difference
between the number of elements in the ground set and the number of elements that
appear in a solution large, this may not be very efficient.

In this section, we consider enhancements and alternative techniques for the con-
struction phase of GRASP. They include random plus greedy, sampled greedy, Re-
active GRASP, cost perturbations, bias functions, memory and learning, and local
search on partially constructed solutions.
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3.1 Random plus greedy and sampled greedy construction

In Section 2, we described the semi-greedy construction scheme used to build ran-
domized greedy solutions that serve as starting points for local search. Two other
randomized greedy approaches were proposed in [158], with smaller worst-case
complexities than the semi-greedy algorithm.

Instead of combining greediness and randomness at each stepof the construction
procedure, therandom plus greedyscheme applies randomness during the firstp
construction steps to produce a random partial solution. Next, the algorithm com-
pletes the solution with one or more pure greedy construction steps. The resulting
solution is randomized greedy. One can control the balance between greediness and
randomness in the construction by changing the value of the parameterp. Larger
values ofp are associated with solutions that are more random, while smaller val-
ues result in greedier solutions.

Similar to the random plus greedy procedure, thesampled greedyconstruction
also combines randomness and greediness but in a different way. This procedure
is also controlled by a parameterp. At each step of the construction process, the
procedure builds a restricted candidate list by sampling min{p, |C|} elements of the
candidate setC. Each element of the RCL is evaluated by the greedy function.The
element with the smallest greedy function value is added to the partial solution.
This two-step process is repeated until there are no more candidate elements. The
resulting solution is also randomized greedy. The balance between greediness and
randomness can be controlled by changing the value of the parameterp, i.e. the
number of candidate elements that are sampled. Small samplesizes lead to more
random solutions, while large sample sizes lead to greediersolutions.

3.2 Reactive GRASP

The first strategy to incorporate a learning mechanism in thememoryless construc-
tion phase of the basic GRASP was the Reactive GRASP procedure introduced in
Section 2. In this case, the value of the RCL parameterα is not fixed, but instead
is randomly selected at each iteration from a discrete set ofpossible values. This
selection is guided by the solution values found along the previous iterations. One
way to accomplish this is to use the rule proposed in [143]. Let Ψ = {α1, . . . ,αm}
be a set of possible values forα. The probabilities associated with the choice of
each value are all initially made equal topi = 1/m, for i = 1, . . . ,m. Furthermore,
let z∗ be the incumbent solution and letAi be the average value of all solutions found
usingα = αi , for i = 1, . . . ,m. The selection probabilities are periodically reevalu-
ated by takingpi = qi/∑m

j=1q j , with qi = z∗/Ai for i = 1, . . . ,m. The value ofqi

will be larger for values ofα = αi leading to the best solutions on average. Larger
values ofqi correspond to more suitable values for the parameterα. The probabil-
ities associated with the more appropriate values will thenincrease when they are
reevaluated.
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The reactive approach leads to improvements over the basic GRASP in terms of
robustness and solution quality, due to greater diversification and less reliance on pa-
rameter tuning. In addition to the applications in [141, 142, 143], this approach has
been used in power system transmission network planning [41], job shop schedul-
ing [40], channel assignment in mobile phone networks [93],rural road network
development [171], capacitated location [57], strip-packing [11], and a combined
production-distribution problem [43].

3.3 Cost perturbations

The idea of introducing some noise into the original costs issimilar to that in the so-
called “noising” method of Charon and Hudry [48, 49]. It addsmore flexibility into
algorithm design and may be even more effective than the greedy randomized con-
struction of the basic GRASP procedure in circumstances where the construction
algorithms are not very sensitive to randomization. This isindeed the case for the
shortest-path heuristic of Takahashi and Matsuyama [175],used as one of the main
building blocks of the construction phase of the hybrid GRASP procedure proposed
by Ribeiro et al. [165] for the Steiner problem in graphs. Another situation where
cost perturbations can be very effective appears when no greedy algorithm is avail-
able for straightforward randomization. This happens to bethe case of the hybrid
GRASP developed by Canuto et al. [46] for the prize-collecting Steiner tree prob-
lem, which makes use of the primal-dual algorithm of Goemansand Williamson
[92] to build initial solutions using perturbed costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described
in [46], a new solution is built at each iteration using node prizes updated by a per-
turbation function, according to the structure of the current solution. Two different
prize perturbation schemes were used. Inperturbation by eliminations, the primal-
dual algorithm used in the construction phase is driven to build a new solution with-
out some of the nodes that appeared in the solution constructed in the previous
iteration. Inperturbation by prize changes, some noise is introduced into the node
prizes to change the objective function, similarly to what is proposed in [48, 49].

The cost perturbation methods used in the GRASP for the minimum Steiner tree
problem described in [165] incorporate learning mechanisms associated with inten-
sification and diversification strategies. Three distinct weight randomization meth-
ods were applied. At a given GRASP iteration, the modified weight of each edge
is randomly selected from a uniform distribution from an interval which depends
on the selected weight randomization method applied at thatiteration. The differ-
ent weight randomization methods use frequency information and may be used to
enforce intensification and diversification strategies. The experimental results re-
ported in [165] show that the strategy combining these threeperturbation methods
is more robust than any of them used in isolation, leading to the best overall results
on a quite broad mix of test instances with different characteristics. The GRASP
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heuristic using this cost perturbation strategy is among the most effective heuristics
currently available for the Steiner problem in graphs.

3.4 Bias functions

In the construction procedure of the basic GRASP, the next element to be introduced
in the solution is chosen at random from the candidates in theRCL. The elements of
the RCL are assigned equal probabilities of being chosen. However, any probabil-
ity distribution can be used to bias the selection toward some particular candidates.
Another construction mechanism was proposed by Bresina [44], where a family of
such probability distributions is introduced. They are based on the rankr(σ) as-
signed to each candidate elementσ , according to its greedy function value. Several
bias functions were proposed, such as:

• random bias:bias(r) = 1;
• linear bias:bias(r) = 1/r;
• log bias:bias(r) = log−1(r +1);
• exponential bias:bias(r) = e−r ; and
• polynomial bias of ordern: bias(r) = r−n.

Let r(σ) denote the rank of elementσ and letbias(r(σ)) be one of the bias
functions defined above. Once these values have been evaluated for all elements in
the candidate setC, the probabilityπ(σ) of selecting elementσ is

π(σ) =
bias(r(σ))

∑σ ′∈Cbias(r(σ ′))
. (1)

The evaluation of these bias functions may be restricted to the elements of the
RCL. Bresina’s selection procedure restricted to elementsof the RCL was used in
[40]. The standard GRASP uses a random bias function.

3.5 Intelligent construction: memory and learning

Fleurent and Glover [82] observed that the basic GRASP does not use long-term
memory (information gathered in previous iterations) and proposed a long-term
memory scheme to address this issue in multi-start heuristics. Long-term memory
is one of the fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used inthe construction
phase. To become an elite solution, a solution must be eitherbetter than the best
member of the pool, or better than its worst member and sufficiently different from
the other solutions in the pool. For example, one can count identical solution vector
components and set a threshold for rejection.
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A strongly determined variableis one that cannot be changed without eroding
the objective or changing significantly other variables. Aconsistent variableis one
that receives a particular value in a large portion of the elite solution set. LetI(e)
be a measure of the strong determination and consistency features of a solution
elemente∈ E. Then,I(e) becomes larger ase appears more often in the pool of
elite solutions. The intensity functionI(e) is used in the construction phase as fol-
lows. Recall thatc(e) is the greedy function, i.e. the incremental cost associated
with the incorporation of elemente∈ E into the solution under construction. Let
K(e) = F(c(e), I(e)) be a function of the greedy and the intensification functions.
For example,K(e) = λc(e)+ I(e). The intensification scheme biases selection from
the RCL to those elementse∈ E with a high value ofK(e) by setting its selection
probability to bep(e) = K(e)/∑s∈RCL K(s).

The functionK(e) can vary with time by changing the value ofλ . For example,
λ may be set to a large value that is decreased when diversification is called for.
Procedures for changing the value ofλ are given by Fleurent and Glover [82] and
Binato et al. [40].

3.6 POP in construction

The Proximate Optimality Principle (POP) is based on the idea that “good solutions
at one level are likely to be found ‘close to’ good solutions at an adjacent level” [90].
Fleurent and Glover [82] provided a GRASP interpretation ofthis principle. They
suggested that imperfections introduced during steps of the GRASP construction
can be “ironed-out” by applying local search during (and notonly at the end of) the
GRASP construction phase.

Because of efficiency considerations, a practical implementation of POP to
GRASP consists in applying local search a few times during the construction phase,
but not at every construction iteration. Local search was applied by Binato et al. [40]
after 40% and 80% of the construction moves have been taken, as well as at the end
of the construction phase.

4 Path-relinking

Path-relinking is another enhancement to the basic GRASP procedure, leading to
significant improvements in both solution quality and running times. This tech-
nique was originally proposed by Glover [88] as an intensification strategy to
explore trajectories connecting elite solutions obtainedby tabu search or scatter
search [89, 90, 91].

We consider the undirected graph associated with the solution spaceG = (S,M),
where the nodes inS correspond to feasible solutions and the edges inM corre-
spond to moves in the neighborhood structure, i.e.(i, j) ∈ M if and only if i ∈ S,
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j ∈ S, j ∈N(i), andi ∈N( j), whereN(s) denotes the neighborhood of a nodes∈ S.
Path-relinking is usually carried out between two solutions: one is called theinitial
solution, while the other is theguiding solution. One or more paths in the solution
space graph connecting these solutions are explored in the search for better solu-
tions. Local search is applied to the best solution in each ofthese paths, since there
is no guarantee that the latter is locally optimal.

Let s∈ Sbe a node on the path between an initial solution and a guidingsolution
g∈ S. Not all solutions in the neighborhoodN(s) are allowed to be the next on the
path froms to g. We restrict the choice only to those solutions that are moresimilar
to g thans. This is accomplished by selecting moves froms that introduce attributes
contained in the guiding solutiong. Therefore, path-relinking may be viewed as a
strategy that seeks to incorporate attributes of high quality solutions (i.e. the guiding
elite solutions), by favoring these attributes in the selected moves.

The use of path-relinking within a GRASP procedure, as an intensification strat-
egy applied to each locally optimal solution, was first proposed by Laguna and
Martı́ [106]. It was followed by several extensions, improvements, and successful
applications [6, 7, 18, 46, 75, 130, 146, 156, 158, 159, 163, 165, 171]. A survey of
GRASP with path-relinking can be found in [157].

Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Figure 6 shows time-to-target plots for GRASP
and GRASP with path-relinking implementations for four different applications.
These time-to-target plots show the empirical cumulative probability distributions of
thetime-to-targetrandom variable when using pure GRASP and GRASP with path-
relinking, i.e., the time needed to find a solution at least asgood as a prespecified
target value. For all problems, the plots show that GRASP with path-relinking is
able to find target solutions faster than GRASP.

GRASP with path-relinking makes use of anelite setto collect a diverse pool
of high-quality solutions found during the search. This pool is limited in size, i.e. it
can have at mostMax Elite solutions. Several schemes have been proposed for
the implementation of path-relinking, which may be appliedas:

• an intensification strategy, between each local optimum obtained after the local
search phase and one or more elite solutions;

• a post-optimization step, between every pair of elite solutions;
• an intensification strategy, periodically (after a fixed number of GRASP iterations

since the last intensification phase) submitting the pool ofelite solutions to an
evolutionary process (see Subsection 4.7);

• a post-optimization phase, submitting the pool of elite solutions to an evolution-
ary process; or

• any other combination of the above schemes.

The pool of elite solutions is initially empty. Each locallyoptimal solution ob-
tained by local search and each solution resulting from path-relinking is considered
as a candidate to be inserted into the pool. If the pool is not yet full, the candidate is
simply added to the pool. Otherwise, if the candidate is better than the incumbent,
it replaces an element of the pool. In case the candidate is better than the worst ele-
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Fig. 6 Time to target plots comparing running times of pure GRASP and GRASP with path-
relinking on four instances of distinct problem types: three index assignment, maximum satisfia-
bility, bandwidth packing, and quadratic assignment.
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ment of the pool but not better than the best element, then it replaces some element
of the pool if it is sufficiently different from every other solution currently in the
pool. To balance the impact on pool quality and diversity, the element selected to
be replaced is the one that is most similar to the entering solution among those elite
solutions of quality no better than the entering solution [158].

Given a local optimums1 produced at the end of a GRASP iteration, we need
to select at random from the pool a solutions2 to be path-relinked withs1. In prin-
ciple, any pool solution could be selected. However, we may want to avoid pool
solutions that are too similar tos1, because relinking two solutions that are simi-
lar limits the scope of the path-relinking search. If the solutions are represented by
|E|−dimensional incidence vectors, we should privilege pairs of solutions for which
the Hamming distance (i.e., the number of components that take on different values
in each solution) between them is high. A strategy introduced in [158] is to select a
pool elements2 at random with probability proportional to the Hamming distance
between the pool element and the local optimums1. Since the number of paths be-
tween two solutions grows exponentially with their Hammingdistance, this strategy
favors pool elements that have a large number of paths connecting them to and from
s1.

After determining which solution (s1 or s2) will be designated the initial solution
i and which will be the guiding solutiong, the algorithm starts by computing the
set∆(i,g) of components in whichi andg differ. This set corresponds to the moves
which should be applied toi to reachg. Starting from the initial solution, the best
move in∆(i,g) still not performed is applied to the current solution, until the guid-
ing solution is reached. By best move, we mean the one that results in the highest
quality solution in the restricted neighborhood. The best solution found along this
trajectory is submitted to local search and returned as the solution produced by the
path-relinking algorithm.

Several alternatives have been considered and combined in recent implementa-
tions. These include forward, backward, back and forward, mixed, truncated, greedy
randomized adaptive, and evolutionary path-relinking. All these alternatives involve
trade-offs between computation time and solution quality.

4.1 Forward path-relinking

In forward path-relinking, the GRASP local optimum is designated as the initial
solution and the pool solution is made the guiding solution.This is the original
scheme proposed by Laguna and Martı́ [106].
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4.2 Backward path-relinking

In backwardpath-relinking, the pool solution is designated as the initial solution
and the GRASP local optimum is made the guiding one. This scheme was orig-
inally proposed in Aiex et al. [7] and Resende and Ribeiro [156]. The main ad-
vantage of this approach over forward path-relinking comesfrom the fact that, in
general, there are more high-quality solutions near pool elements than near GRASP
local optima. Backward path-relinking explores more thoroughly the neighborhood
around the pool solution, whereas forward path-relinking explores more the neigh-
borhood around the GRASP local optimum. Experiments in [7, 156] have shown
that backward path-relinking usually outperforms forwardpath-relinking.

4.3 Back and forward path-relinking

Back and forwardpath-relinking combines forward and backward path-relinking.
As shown in [7, 156], it finds solutions at least as good as forward path-relinking
or backward path-relinking, but at the expense of taking about twice as long to
run. The reason that back and forward path-relinking often finds solutions of better
quality than simple backward or forward path-relinking stems from the fact that it
thoroughly explores the neighborhoods of both solutionss1 ands2.

4.4 Mixed path-relinking

Mixed path-relinking shares the benefits of back and forward path-relinking, i.e.
it thoroughly explores both neighborhoods, but does so in about the same time as
forward or backward path-relinking alone. This is achievedby interchanging the
roles of the initial and guiding solutions at each step of thepath-relinking pro-
cedure. Therefore, two paths are generated, one starting ats1 and the other ats2.
The paths evolve and eventually meet at some solution about half way betweens1

ands2. The joined path relinks these two solutions. Mixed path-relinking was sug-
gested by Glover [88] and was first implemented and tested by Ribeiro and Rosseti
[163], where it was shown to outperform forward, backward, and back and forward
path-relinking. Figure 7 shows a comparison of pure GRASP and four variants of
path-relinking: forward, backward, back and forward, and mixed. The time-to-target
plots show that GRASP with mixed path-relinking has the bestrunning time profile
among the variants compared.
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Fig. 8 Average number of best solutions found at different depths of the path from the initial
solution to the guiding solution on instances of the max-mindiversity problem.

4.5 Truncated path-relinking

Since good-quality solutions tend to be near other good-quality solutions, one would
expect to find the best solutions with path-relinking near the initial or guiding so-
lution. Indeed, Resende et al. [151] showed that this is the case for instances of the
max-min diversity problem, as shown in Figure 8. In that experiment, a back and
forward path-relinking scheme was tested. The figure shows the average number of
best solutions found by path-relinking taken over several instances and several ap-
plications of path-relinking. The 0-10% range in this figurecorresponds to subpaths
near the initial solutions for the forward path-relinking phase as well as the back-
ward phase, while the 90-100% range are subpaths near the guiding solutions. As the
figure indicates, exploring the subpaths near the extremities may produce solutions
about as good as those found by exploring the entire path. There is a higher concen-
tration of better solutions close to the initial solutions explored by path-relinking.

Truncatedpath-relinking can be applied to either forward, backward,backward
and forward, or mixed path-relinking. Instead of exploringthe entire path, truncated
path-relinking only explores a fraction of the path and, consequently, takes a fraction
of the time to run. Truncated path-relinking has been applied in [18, 151].
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4.6 Greedy randomized adaptive path-relinking

In path-relinking, the best not yet performed move in set∆(i,g) is applied to the
current solution, until the guiding solution is reached. Ifties are broken determin-
istically, this strategy will always produce the same path between the initial and
guiding solutions. Since the number of paths connectingi andg is exponential in
|∆(i,g)|, exploring a single path can be somewhat limiting.

Greedy randomized adaptivepath-relinking, introduced by Binato et al. [39], is
a semi-greedy version of path-relinking. Instead of takingthe best move in∆(i,g)
still not performed, a restricted candidate list of good moves still not performed is
set up and a randomly selected move from the latter is applied. By applying this
strategy several times between the initial and guiding solutions, several paths can be
explored. Greedy randomized adaptive path-relinking has been applied in [18, 63,
151].

4.7 Evolutionary path-relinking

GRASP with path-relinking maintains a pool of elite solutions. Applying path-
relinking between pairs of pool solutions may result in an even better pool of solu-
tions. Aiex et al. [7] applied path-relinking between all pairs of elite solutions as an
intensification scheme to improve the quality of the pool andas a post-optimization
step. The application of path-relinking was repeated untilno further improvement
was possible.

Resende and Werneck [158, 159] described anevolutionarypath-relinking scheme
applied to pairs of elite solutions and used as a post-optimization step. The pool re-
sulting from the GRASP with path-relinking iterations is referred to as population
P0. At stepk, all pairs of elite set solutions of populationPk are relinked and the
resulting solutions made candidates for inclusion in population Pk+1 of the next
generation. The same rules for acceptance into the pool during GRASP with path-
relinking are used for acceptance intoPk+1. If the best solution inPk+1 is better
than the best inPk, thenk is incremented by one and the process is repeated. Re-
sende et al. [151] describe another way to implement evolutionary path-relinking,
where a single population is maintained. Each pair of elite solutions is relinked and
the resulting solution is a candidate to enter the elite set.If accepted, it replaces an
existing elite solution. The process is continued while there are still pairs of elite
solutions that have not yet been relinked.

Andrade and Resende [17] used this evolutionary scheme as anintensification
process every 100 GRASP iterations. During the intensification phase, every solu-
tion in the pool is relinked with the two best ones. Since two elite solutions might
be relinked more than once in different calls to the intensification process, greedy
randomized adaptive path-relinking was used.
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Resende et al. [151] showed that a variant of GRASP with evolutionary path-
relinking outperformed several other heuristics using GRASP with path-relinking,
simulated annealing, and tabu search for the max-min diversity problem.

5 Extensions

In this section, we comment on some extensions, implementation strategies, and
hybridizations of GRASP.

The use of hashing tables to avoid cycling in conjunction with tabu search was
proposed by Woodruff and Zemel [178]. A similar approach waslater explored by
Ribeiro et al. [162] in their tabu search algorithm for queryoptimization in relational
databases. In the context of GRASP implementations, hashing tables were first used
by Martins et al. [122] in their multi-neighborhood heuristic for the Steiner problem
in graphs, to avoid the application of local search to solutions already visited in
previous iterations.

Filtering strategies have also been used to speed up the iterations of GRASP,
see e.g. [70, 122, 143]. In these cases, local search is not applied to all solutions
obtained at the end of the construction phase, but instead only to some promising
unvisited solutions, defined by a threshold with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-
struction phase. Local search stops at the first local optimum. On the other hand,
strategies such as VNS (Variable Neighborhood Search), proposed by Hansen and
Mladenović [96, 125], rely almost entirely on the randomization of the local search
to escape from local optima. With respect to this issue, GRASP and variable neigh-
borhood strategies may be considered as complementary and potentially capable of
leading to effective hybrid methods. A first attempt in this direction was made by
Martins et al. [122]. The construction phase of their hybridheuristic for the Steiner
problem in graphs follows the greedy randomized strategy ofGRASP, while the
local search phase makes use of two different neighborhood structures as a VND
(variable neighborhood descent) procedure [96, 125]. Their heuristic was later im-
proved by Ribeiro et al. [165], one of the key components of the new algorithm
being another strategy for the exploration of different neighborhoods. Ribeiro and
Souza [164] also combined GRASP with VND in a hybrid heuristic for the degree-
constrained minimum spanning tree problem. Festa et al. [81] studied different vari-
ants and combinations of GRASP and VNS for the MAX-CUT problem, finding
and improving the best known solutions for some open instances from the literature.

GRASP has also been used in conjunction with genetic algorithms. Basically, the
greedy randomized strategy used in the construction phase of a GRASP heuristic is
applied to generate the initial population for a genetic algorithm. We may cite e.g.
the genetic algorithm of Ahuja et al. [5] for the quadratic assignment problem, which
makes use of the GRASP heuristic proposed by Li et al. [108] tocreate the initial
population of solutions. A similar approach was used by Armony et al. [27], with
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the initial population made up by both randomly generated solutions and those built
by a GRASP algorithm.

The hybridization of GRASP with tabu search was first studiedby Laguna and
González-Velarde [105]. Delmaire et al. [57] considered two approaches. In the
first, GRASP is applied as a powerful diversification strategy in the context of a
tabu search procedure. The second approach is an implementation of the Reac-
tive GRASP algorithm presented in Section 3.2, in which the local search phase is
strengthened by tabu search. Results reported for the capacitated location problem
show that the hybrid approaches perform better than the isolated methods previously
used. Two two-stage heuristics are proposed in [1] for solving the multi-floor facil-
ity layout problem. GRASP/TS applies a GRASP to find the initial layout and tabu
search to refine it.

Iterated Local Search (ILS) iteratively builds a sequence of solutions generated
by the repeated application of local search and perturbation of the local optima
found by local search [37]. Lourenço et al. [112] point out that ILS has been re-
discovered many times and is also known as iterated descent [35, 36], large step
Markov chains [120], iterated Lin-Kernighan [100], and chained local optimization
[119]. ILS can be hybridized with GRASP by replacing the standard local search.
The GRASP construction produces a solution which is passed to the ILS proce-
dure. Ribeiro and Urrutia [166] presented a hybrid GRASP with ILS heuristic for
the mirrored traveling tournament problem, in which perturbations are achieved by
randomly generating solutions in the game rotation ejection chain [86, 87] neigh-
borhood.

6 Parallel GRASP

Cung et al. [55] noted that parallel implementations of metaheuristics not only ap-
pear as quite natural alternatives to speed up the search forgood approximate so-
lutions, but also facilitate solving larger problems and finding improved solutions,
with respect to their sequential counterparts. This is due to the partitioning of the
search space and to the increased possibilities for search intensification and diversi-
fication. As a consequence, parallelism can improve the effectiveness and robustness
of metaheuristic-based algorithms. Parallel metaheuristic-based algorithms are less
dependent on time consuming parameter tuning experiments and their success is not
limited to a few or small classes of problems.

Recent years have witnessed huge advances in computer technology and commu-
nication networks. The growing computational power requirements of large scale
applications and the high costs of developing and maintaining supercomputers has
fueled the drive for cheaper high performance computing environments. With the
considerable increase in commodity computers and network performance, cluster
computing and, more recently, grid computing [83, 84] have emerged as real alter-
natives to traditional super-computing environments for executing parallel applica-
tions that require significant amounts of computing power.
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6.1 Cluster computing

A computing cluster generally consists of a fixed number of homogeneous re-
sources, interconnected on a single administrative network, which together execute
one parallel application at a time.

Most parallel implementations of GRASP follow themultiple-walk independent
threadstrategy, based on the distribution of the iterations over the processors [12,
13, 70, 108, 121, 123, 128, 134, 135]. In general, each searchthread has to per-
form Max Iterations/p iterations, wherep andMax Iterations are, re-
spectively, the number of processors and the total number ofiterations. Each pro-
cessor has a copy of the sequential algorithm, a copy of the problem data, and an
independent seed to generate its own pseudo-random number sequence. A single
global variable is required to store the best solution foundover all processors. One
of the processors acts as the master, reading and distributing problem data, gen-
erating the seeds which will be used by the pseudo-random number generators at
each processor, distributing the iterations, and collecting the best solution found by
each processor. Since the iterations are completely independent and very little in-
formation is exchanged, linear speedups are easily obtained provided that no major
load imbalance problems occur. The iterations may be evenlydistributed over the
processors or according with their demands, to improve loadbalancing.

Martins et al. [123] implemented a parallel GRASP for the Steiner problem in
graphs. Parallelization is achieved by the distribution ofthe iterations over the pro-
cessors, with the value of the RCL parameterα randomly chosen in the interval
[0.0,0.3] at each iteration. Almost-linear speedups were observed onbenchmark
problems from the OR-Library [38] for 2, 4, 8, and 16 processors, with respect to
the sequential implementation. Path-relinking may be usedin conjunction with par-
allel implementations of GRASP. Almost-linear speedups were also obtained with
the multiple-walk independent-thread implementation of Aiex et al. [7] for the 3-
index assignment problem, in which each processor applies path-relinking to pairs
of elite solutions stored in a local pool.

Alvim and Ribeiro [12, 13] have shown that multiple-walk independent-thread
approaches for the parallelization of GRASP may benefit muchfrom load balanc-
ing techniques, whenever heterogeneous processors are used or if the parallel ma-
chine is simultaneously shared by several users. In this case, almost-linear speedups
may be obtained with a heterogeneous distribution of the iterations over thep
processors inq packets, withq > p. Each processor starts performing one packet
of ⌈Max Iterations/q⌉ iterations and informs the master when it finishes its
packet of iterations. The master stops the execution of eachworker processor when
there are no more iterations to be performed and collects thebest solution found.
Faster or less loaded processors will perform more iterations than the others. In the
case of the parallel GRASP heuristic implemented for the problem of traffic assign-
ment described in [143], this dynamic load balancing strategy allowed reductions
in the elapsed times of up to 15% with respect to the times observed for the static
strategy, in which the iterations were uniformly distributed over the processors.
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Fig. 9 Superimposed empirical and theoretical distributions (times to target solution values mea-
sured in seconds on an SGI Challenge computer with 28 processors).

For a given problem instance and a target valuelook4, let time-to-targetbe
a random variable representing the time taken by a GRASP implementation to
find a solution whose cost is at least as good aslook4 for this instance. Aiex
et al. [8] have shown experimentally that this random variable fits an exponential
distribution or, in the case where the setup times are not negligible, a shifted (two-
parameter) exponential distribution. The probability density function p(t) of the
random variable time-to-target is given byp(t) = (1/λ ) ·e−t/λ in the first case or by
p(t) = (1/λ ) ·e−(t−µ)/λ in the second, with the parametersλ ∈ IR+ andµ ∈ IR+ be-
ing associated with the shape and the shift of the exponential function, respectively.

Figure 9 illustrates this result, depicting the superimposed empirical and theo-
retical distributions observed for one of the cases studiedalong the computational
experiments reported in [8], which involved 2400 runs of GRASP procedures for
each of five different problem types: maximum independent set [70, 150], quadratic
assignment [108, 152], graph planarization [155, 161], maximum weighted satisfia-
bility [154], and maximum covering [148].

We now assume thatp identical processors are available and used to search in
parallel for the same target valuelook4. Let Xi be the time taken by processor
i = 1, . . . , p to find a solution whose cost is at least as good aslook4 and consider
the random variableY = min{X1, . . . ,Xp}. Since all processors are independent and
fit the same exponential distribution with average equal toλ , the random variable
Y fits an exponential distribution whose average isλ/p. Therefore, linear speedups
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can be achieved if multiple identical processors are used independently to search in
parallel for the same target value.

However, we notice that if path-relinking is applied as an intensification step at
the end of each GRASP iteration (see e.g. [46, 157]), then theiterations are no longer
independent and the memoryless characteristic of GRASP maybe destroyed. Con-
sequently, the time-to-target random variable may not fit anexponential distribution.
Aiex et al. [7] have shown experimentally that, even in this case, the time-to-target
random variable may be reasonably approximated by a shifted(two-parameter) ex-
ponential distribution in some circumstances.

In the case ofmultiple-walk cooperative-threadstrategies, the search threads run-
ning in parallel exchange and share information collected along the trajectories they
investigate. One expects not only to speed up the convergence to the best solution
but, also, to find better solutions than independent-threadstrategies. The most dif-
ficult aspect to be set up is the determination of the nature ofthe information to
be shared or exchanged to improve the search, without takingtoo much additional
memory or time to be collected. Cooperative-thread strategies may be implemented
using path-relinking, by combining elite solutions storedin a central pool with the
local optima found by each processor at the end of each GRASP iteration.

Ribeiro and Rosseti [163] applied this scheme to implement aparallel GRASP
heuristic for the 2-path network design problem. One of the processors acts as the
master and handles a centralized pool of elite solutions, collecting and distributing
them upon request. The other processors act as workers and exchange the elite so-
lutions found along their search trajectories. Cooperation between the processors is
implemented via path-relinking using the centralized poolof elite solutions. In this
implementation, each worker may send up to three different solutions to the master
at each GRASP iteration: the solution obtained by local search and the solutions
obtained by forward and backward path-relinking. The performance of the parallel
implementation is quite uniform over all problem instances.

Computational results illustrating the behavior of the independent and coopera-
tive parallel implementations for an instance with 100 nodes, 4950 edges, and 1000
origin-destination pairs are presented below. The plots inFigure 10 display the em-
pirical probability distribution of the time-to-target random variable for both the
independent and the cooperative parallel implementationsin C and MPI, for 200
runs on 2, 4, 8, and 16 processors of a 32-machine Linux cluster, with thelook4
target value set at 683. We notice that the independent strategy performs better when
only two processors are used. This is so because the independent strategy makes use
of the two processors to perform GRASP iterations, while thecooperative strategy
makes use of one processor to perform iterations and the other to handle the pool.
However, as the number of processors increases, the gain obtained through cooper-
ation becomes more important than the loss of one processor to perform iterations.
The cooperative implementation is already faster than the independent one for eight
processors. These plots establish the usefulness and the efficiency of the cooper-
ative implementation. Other implementations of multiple-walk cooperative-thread
GRASP heuristics can be found e.g. in Aiex et al. [6, 7].
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cooperative parallelizations on 2, 4, 8, and 16 processors (target value set at 683).
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6.2 Grid computing

Grids aim to harness available computing power from a diverse pool of resources
available over the Internet to execute a number of applications simultaneously. Grids
aggregate geographically distributed collections (or sites) of resources which typi-
cally have different owners and thus are shared between multiple users. The fact that
these resources are distributed, heterogeneous, and non-dedicated requires careful
consideration when developing grid enabled applications and makes writing parallel
grid-aware heuristics very challenging [83].

Araújo et al. [22] described some strategies based on the master-worker paradigm
for the parallelization in grid environments of the hybrid GRASP with ILS heuristic
for the mirrored traveling tournament problem proposed in [166]. In the best of
these strategies, PAR-MP, the master is dedicated to managing a centralized pool of
elite solutions, including collecting and distributing them upon request. The workers
start their searches from different initial solutions and exchange elite solutions found
along their trajectories. Although it lead to improvementsin the results obtained by
the sequential implementation, it was not able to make full use of the characteristics
of grid environments.

Araújo [21] proposed an autonomic hierarchical distributed strategy for the im-
plementation of cooperative metaheuristics in grids, in which local pools of elite
solutions internal to each site support intensification strategies, while a global pool
is used to ensure diversification. This autonomic strategy is much more adapted to
grid computations and leads to better results with respect to both the master-worker
PAR-MP parallel strategy for the mirrored traveling tournament problem and the
sequential hybrid heuristic combining GRASP and ILS for thediameter constrained
minimum spanning tree problem [114].

Table 3 displays comparative results reported in [21] for large National Football
League instances of the mirrored traveling tournament problem with the number of
teams ranging from 16 to 32. For each instance, we give the costs of the solutions
obtained by the sequential implementation and by the hierarchical strategy running
on ten processors. The running times range from approximately three to ten hours,
as observed for instancesnfl18 andnfl24, respectively. We notice that the hi-
erarchical strategy improved the solutions obtained by thesequential heuristic for
eight out of the nine test instances.

Figure 11 displays time-to-target plots obtained after 100runs of the hierarchical
distributed implementation of the GRASP with ILS heuristicfor the diameter con-
strained minimum spanning tree on a typical instance with 100 nodes, using 15, 30,
and 60 processors. These plots show that the approach scalesappropriately when
the number of processors increase. We display in Table 4 someresults obtained by
the sequential and the hierarchical distributed implementations of the GRASP with
ILS heuristic for this problem. The distributed strategy runs on ten processors. The
sequential heuristic is allowed to run by as much as ten timesthe time taken by
the grid implementation. We give the number of nodes and edges for each instance,
together with the costs of the best solutions found by each implementation and the
time given to the sequential heuristic. These results illustrate the robustness of the
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Table 3 Solution costs found by the sequential and grid implementations of the hybrid GRASP
with ILS heuristic for the mirrored traveling tournament problem.

Instance Sequential Grid
nfl16 251289 249806
nfl18 299903 299112
nfl20 359748 359748
nfl22 418086 418022
nfl24 467135 465491
nfl26 554670 548643
nfl28 618801 609788
nfl30 740458 739697
nfl32 924559 914620
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Fig. 11 Time-to-target plots for the hierarchical distributed implementation of the GRASP with
ILS heuristic for the diameter constrained minimum spanning tree on an instance with 100 nodes
running on a grid environment using 15, 30, and 60 processors.

hierarchical distributed strategy (due to the effectiveness of the cooperation through
the pools in two different levels), since it was able to systematically find better solu-
tions than those obtained by the sequential strategy in computation times ten times
larger.
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Table 4 Best solutions found by the sequential heuristic and by the grid implementation running
on ten processors. The sequential heuristic is allowed to run by as much as ten times the time taken
by the grid implementation.

Nodes Edges Grid Sequential Time (seconds)
60 600 738.000 740.000 2300.00
60 600 150.000 152.000 400.00
70 2415 6.981 6.983 230.00
70 2415 7.486 7.499 3000.00
70 2415 7.238 7.245 690.00

100 4950 7.757 7.835 1400.00
100 4950 7.930 7.961 5000.00
100 4950 8.176 8.204 3400.00

7 Applications

The first application of GRASP described in the literature concerned the set covering
problem [68]. Since then, GRASP has been applied to a wide range of problems. The
main applications areas are summarized below with links to specific references:

• routing [25, 29, 34, 45, 47, 53, 103, 110]
• logic [58, 75, 135, 149, 153, 154]
• covering and partitioning [10, 23, 26, 68, 85, 94]
• location [50, 54, 95, 1, 98, 57, 101, 132, 176, 177]
• minimum Steiner tree [46, 121, 122, 123, 165]
• optimization in graphs [2, 3, 4, 28, 70, 76, 77, 99, 104, 107, 116, 117, 122, 133,

137, 148, 150, 155, 161, 165, 173]
• assignment [5, 7, 67, 82, 108, 111, 113, 124, 127, 128, 130, 134, 136, 139, 143,

144, 152, 169]
• timetabling, scheduling, and manufacturing [6, 9, 11, 16, 18, 20, 31, 32, 33, 40,

43, 52, 56, 59, 64, 65, 66, 71, 72, 102, 105, 109, 126, 145, 166,167, 168, 170,
179, 180]

• transportation [25, 30, 64, 67, 172]
• power systems [41, 42, 63]
• telecommunications [2, 15, 14, 16, 18, 27, 51, 101, 111, 138,140, 143, 147, 148,

156, 174]
• graph and map drawing [54, 73, 106, 115, 116, 118, 131, 155, 161]
• biology [19, 62, 74]
• VLSI [23, 24]

The reader is referred to Festa and Resende [80] for a complete annotated bibliog-
raphy of GRASP applications.
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Fig. 12 Performance of GW approximation algorithm, a single GRASP iteration (GW followed
by local search), 500 iterations of GRASP with path-relinking, and 500 iterations of GRASP with
path-relinking followed by VNS for series C prize-collecting Steiner tree problems.

8 Concluding remarks

The results described in this chapter reflect successful applications of GRASP to a
large number of classical combinatorial optimization problems, as well as to those
that arise in real-world situations in different areas of business, science, and tech-
nology.

We underscore the simplicity of implementation of GRASP, which makes use of
simple building blocks (solution construction proceduresand local search methods)
that are often readily available. Contrary to what occurs with other metaheuristics,
such as tabu search or genetic algorithms, which make use of alarge number of
parameters in their implementations, the basic version of GRASP requires the ad-
justment of a single parameter.

Recent developments, presented in this chapter, show that different extensions of
the basic procedure allow further improvements in the solutions found by GRASP.
Among these, we highlight reactive GRASP, which automates the adjustment of
the restricted candidate list parameter; variable neighborhoods, which permit accel-
erated and intensified local search; and path-relinking, which beyond allowing the
implementation of intensification strategies based on the memory of elite solutions,
opens the way for the development of very effective cooperative parallel strategies.

These and other extensions make up a set of tools that can be added to sim-
pler heuristics to find better-quality solutions. To illustrate the effect of additional
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extensions on solution quality, Figure 12 shows some results obtained for the prize-
collecting Steiner tree problem, as discussed in [46]. We consider the 40 instances
of series C. The figure shows results for eleven different levels of solution accu-
racy (varying from optimal to ten percent from optimal). Foreach level of solu-
tion accuracy, the figure shows the number of instances for which each component
found solutions within the accuracy level. The components were the primal-dual
constructive algorithm (GW) of Goemans and Williamson [92], GW followed by
local search (GW+LS), corresponding to the first GRASP iteration, 500 iterations of
GRASP with path-relinking (GRASP+PR), and the complete algorithm, using vari-
able neighborhood search as a post-optimization procedure(GRASP+PR+VNS).
For example, we observe that the number of optimal solutionsfound goes from six,
using only the constructive algorithm, to a total of 36, using the complete algorithm
described in [46]. The largest relative deviation with respect to the optimal value
decreases from 36.4% in the first case, to only 1.1% for the complete algorithm. It
is easy to notice the contribution made by each additional extension.

Parallel implementations of GRASP are quite robust and leadto linear speedups
both in independent and cooperative strategies. Cooperative strategies are based on
the collaboration between processors through path-relinking and a global pool of
elite solutions. This allows the use of more processors to find better solutions in less
computation time.
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