
Noname manuscript No.
(will be inserted by the editor)

An ILS heuristic for the traveling tournament problem with
predefined venues

Fabrı́cio N. Costa · Sebastián Urrutia ·
Celso C. Ribeiro

Received: February 29, 2008

Abstract The Traveling Tournament Problem with Predefined Venues (TTPPV) is a single
round robin variant of the Traveling Tournament Problem, in which the venue of each game
to be played is known beforehand. We propose an Iterated Local Search (ILS) heuristic for
solving real-size instances of the TTPPV, based on two types of moves. Initial solutions are
derived from an edge coloring algorithm applied to complete graphs. We showed that canon-
ical edge colorings should not be used as initial solutions in some situations. Instead, the use
of Vizing’s edge coloring method lead to considerably better results. We also establish that
the solution space defined by some commonly used neighborhoods in the sport scheduling
literature is not connected in the case of single round robin tournaments, which explains
the hardness of finding high quality solutions to some problem instances. Computational re-
sults show that the new ILS heuristic performs much better than heuristics based on integer
programming and that it improves the best known solutions for benchmark instances.

Keywords Traveling tournament problem · Sports scheduling · Iterated local search ·
Metaheuristics · Neighborhoods

1 Introduction and motivation

A round robin tournament is one in which each team plays against every other a fixed num-
ber of times in a given number of rounds. A team faces every other team exactly once (resp.
twice) in a single (resp. double) round robin (SRR) (resp. DRR) tournament. A tournament
is compact if the number of rounds is minimum and every team plays a game in every
round. Every game is played in the venue of one of the opponent teams. Scheduling an SRR
tournament consists in determining in which round and in which venue each game will be
played.

F. N. Costa · S. Urrutia
Department of Computer Science, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627,
Belo Horizonte, MG 31270-010, Brazil
E-mail: {fabrimac,surrutia}@dcc.ufmg.br

C. C. Ribeiro
Department of Computer Science, Universidade Federal Fluminense, Rua Passo da Pátria 156,
Niterói, RJ 24210-240, Brazil
E-mail: celso@ic.uff.br

2

Solution methods for round robin scheduling problems usually consist of two stages
Trick (2000). The construction of the timetable determines the round in which each game is
played. The Home-Away Pattern (HAP) set determines in which condition (home or away)
each team plays in each round. Together, the timetable and the home-away pattern set de-
termine the tournament schedule. Literature reviews may be found in Kendall et al (2010);
Rasmussen and Trick (2008).

Some problems in the literature consider the construction of both the timetable and the
HAP set. The Traveling Tournament Problem (TTP) introduced by Easton et al (2001) may
be described as follows. A double round robin tournament is played by an even number n
of teams indexed by 1, . . . ,n. Each team has its own venue at its home city. All teams are
initially at their home cities, to where they return after their last away game. The distance
di j ≥ 0 from the home city of team i to that of team j is known beforehand. Whenever a team
plays two consecutive away games, it travels directly from the venue of the first opponent
to that of the second. The problem calls for a DRR tournament schedule such that no team
plays more than three consecutive home games or more than three consecutive away games,
there are no consecutive games involving the same pair of teams, and the total distance
traveled by the teams during the tournament is minimized.

In other problems, the timetable or the HAP set may be fixed and known beforehand.
The Breaks Minimization Problem (Régin (2001)) and the Timetable Constrained Distance
Minimization Problem (Rasmussen and Trick (2006)) are examples where the timetable is
fixed and the objective is to find a HAP set that optimizes a certain objective function. The
problem of finding a timetable compatible with a given HAP set appears as a subproblem
in several approaches to tackle real-life league scheduling problems (Nemhauser and Trick
(1998); Ribeiro and Urrutia (2007b)).

The problem of scheduling a single round robin tournament may be decomposed using a
different strategy. Instead of considering a HAP set which determines the playing condition
of each team in each round, a Home-Away Assignment (HAA) is considered. The latter
determines the venue in which the game between each pair of teams takes place. If the
timetable is fixed, the HAP set and HAA provide the same information and determine the
schedule. In the following, we consider that the HAA is fixed and known beforehand.

Melo et al (2009) introduced the Traveling Tournament Problem with Predefined Venues
(TTPPV). This variant of the TTP considers a single round robin tournament, in which the
venues where the games take place are known beforehand. The set of games to be played
is represented by a set J of ordered pairs of teams determined by the HAA. The game
between teams i and j is represented either by (i, j) or by (j, i). In the first case, the game
between i and j takes place at the venue of team i; otherwise, at that of team j. Therefore,
for every two teams i and j, either one of the ordered pairs (i, j) or (j, i) belongs to the set of
games to be played. The TTPPV consists in finding a compact single round robin schedule
compatible with the predefined HAA, such that the total distance traveled by the n teams is
minimized and no team plays more than three consecutive home games or three consecutive
away games. This problem is a natural extension of the Traveling Tournament Problem to
the case of single round robin tournaments.

3

Consider an instance of TTPPV where the set of teams is {1,2,3,4,5,6}. Let Di j be the
distance between each par of teams, where

D =


0 1 2 3 2 1
1 0 1 2 3 2
2 1 0 1 2 3
3 2 1 0 1 2
2 3 2 1 0 1
1 2 3 2 1 0

 .

Let

J = { (1,2),(1,4),(2,4),(2,6),(3,1),
(3,2),(3,6),(4,3),(4,5),(4,6),

(5,1),(5,2),(5,3),(6,1),(6,5)}.

be the home-way assignment. An optimal solution for this instance is given by the schedule
in Figure1. Each line i of the schedule contains the sequence of matches that team i must
play. A negative sign indicates an away game and the absence of sign indicates a home game.
Consider, for example, the distance traveled by team 3. It performs its first two matches at
home against teams 1 and 6. Next, it performs two consecutive away matches , traveling
from its venue to the venue of team 4 and from there to the venue of team 5. Finally, it
returns home to play its last game against team 2. Therefore, the traveled distance of team 3
is equal to d34 +d45 +d53 = 1+1+2 = 4. The total traveled distance in this solution by all
teams is 36.

Teams Rounds
1 2 3 4 5

1 -3 2 -5 -6 4
2 -5 -1 6 4 -3
3 1 6 -4 -5 2
4 6 5 3 -2 -1
5 2 -4 1 3 -6
6 -4 -3 -2 1 5

Fig. 1 An optimal solution.

Variants of this problem find interesting applications in real-life leagues whose DRR
tournaments are divided into two SRR phases. Games in the second phase are exactly the
same as those in the first phase, except for the inversion of their venues. Therefore, the
venues of the games in the second phase are known beforehand and constrained by those
of the games in the first phase. This is the case e.g. of the Chilean soccer professional
league (see Durán et al (2007)) and of the German table tennis federation of Lower Saxony
(see Knust (2010)).

Instances of the TTPPV with up to eight teams were solved to optimality by the integer
programming formulations presented in Melo et al (2009). Since feasible solutions have not
been found by a commercial solver (CPLEX 10.0) in two hours of running time for instances
with 18 or more teams, four heuristics based on the integer programming formulations were
also developed in Melo et al (2009).

4

In this paper, we propose a local search based heuristic for the TTPPV to find good
quality solutions for realistic size instances. The heuristic is shown experimentally to out-
perform previous approximate solution approaches. Besides this new heuristic itself, this
paper presents other contributions: a general method for constructing initial solutions for
round robin scheduling problems is proposed, a clear and formal characterization of the
neighborhoods mostly often used in the literature is given, and we establish that the solution
space defined by these neighborhoods is not connected, which explains the difficulties found
by heuristics based on them to find high quality solutions to some problem instances.

The rest of this paper is organized as follows. Section 2 starts by the description of
strategies used to build initial solutions. Neighborhoods and their properties are presented
next, followed by the local search strategy. The new heuristic, based on the Iterated Local
Search (ILS) metaheuristic, is also described in detail. Section 3 reports the computational
experiments. Concluding remarks are made in the last section.

2 Heuristic approach

In this section we describe a local search based heuristic for solving the TTPPV. First, we
discuss the construction of initial solutions. Next, we describe the properties of the neigh-
borhoods that are used in a local search procedure. Finally, we outline the whole ILS-based
heuristic procedure.

2.1 Initial solutions

An edge coloring of a graph is an assignment of colors to its edges, in such a way that, if two
distinct edges are incident to the same node, they are assigned different colors. It is known,
from Vizing’s theorem Vizing (1964), that the minimum number of colors that can be used
in any edge coloring of a graph is equal to either ∆ or ∆ + 1, where ∆ is the maximum
degree of any node in the graph.

Schedules of an SRR tournament with n (even) teams may be represented by edge col-
orings of the complete graph Kn using exactly ∆ = n− 1 colors. Each node of this graph
represents a team and each color a round. If an edge {i, j} is colored by the k-th color, then
the game between teams i and j is played in the k-th round.

The so called canonical edge coloring of Kn (also called the canonical 1-factorization,
see de Werra (1981)) has been widely used to construct initial solutions for round robin
tournaments. In this coloring, the edge set of each color E i is defined as follows, for i =
1, . . . ,n−1:

E i = {(n, i)}∪{(f1(i,k), f2(i,k)) : k = 1, ...,n/2−1},

with

f1(i,k) =

{
i+ k, if i+ k < n,
i+ k−n+1, if i+ k ≥ n,

and

f2(i,k) =

{
i− k, if i− k > 0,
i− k+n−1, if i− k ≤ 0.

Figure 2 shows the canonical edge coloring of K6.

5

2

1

5

6

4 3

(a) E1

2

1

5

6

4 3

(b) E2

2

1

5

6

4 3

(c) E3

2

1

5

6

4 3

(d) E4

2

1

5

6

4 3

(e) E5

Fig. 2 Canonical edge coloring of K6.

In order to obtain a greater variety of initial solutions, we describe a different method
to construct edge colorings of Kn. We first recall that the number n of teams is even. Using
the constructive algorithm directly derived from the proof of Vizing’s theorem, we color the
edges of the complete graph Kn−1 using n− 1 colors. Since n− 1 is odd, there is a unique
color in this coloring that is not used to color the edges incident to each node. Then, we add
a new node to Kn−1 and a new edge connecting each node v of Kn−1 to the new node. The
new edge incident to each node v of Kn−1 is colored with the color that was not used in the
other edges incident to v. This leads to an edge coloring of Kn using exactly n−1 colors.

In contrast to the procedure used to construct canonical colorings, the method above
described is general in the sense that it is capable to produce any edge coloring of the com-
plete graph Kn using n−1 colors, including the canonical coloring itself. Vizing’s algorithm
colors the edges of the graph one by one. If the nodes are scanned and colored in different
orders, it is able to produce any coloring of Kn−1 using n−1 colors. In consequence, it may
construct any edge coloring of Kn using n−1 colors. In this paper we implemented Vizing’s
algorithm scanning and coloring the edges of the graph in a random order. Although this
procedure is not new in graph theory, to the best of our knowledge it was not used before to
build solutions to round robin scheduling problems.

We notice that both construction procedures may build round robin schedules that vio-
late the limits on the maximum number of consecutive home or away games. Infeasibilities
will be repaired during local search.

2.2 Neighborhoods

Let V = {1, ...,n} be the set of teams and R = {1, ...,n−1} the set of rounds of a schedule
X . We assume that this schedule is represented by a matrix with n rows and n−1 columns,
where X(t,r) denotes the opponent of team t ∈V in round r ∈ R. A negative sign indicates
that team t is playing an away game in round r. Figure 3 shows a schedule for a single round
robin tournament with eight teams.

6

Teams Rounds
1 2 3 4 5 6 7

1 -4 5 6 -2 8 7 -3
2 -6 -8 4 1 3 -5 -7
3 5 -4 -7 -6 -2 8 1
4 1 3 -2 -8 7 -6 -5
5 -3 -1 -8 -7 6 2 4
6 2 -7 -1 3 -5 4 8
7 -8 6 3 5 -4 -1 2
8 7 2 5 4 -1 -3 -6

Fig. 3 Schedule for a single round robin tournament with eight teams.

Different neighborhood structures have been used in local search procedures for schedul-
ing round robin tournaments, see e.g. Anagnostopoulos et al (2006); Gaspero and Schaerf
(2007); Ribeiro and Urrutia (2007a). The basic home-away swap neighborhood used by
Ribeiro and Urrutia (2007a) is not considered in this study, since the home-away assign-
ments are fixed beforehand. We consider four neighborhoods in the context of the TTPPV.

The first neighborhood is team swap (N1). For any two teams t1 ∈ V and t2 ∈ V , with
t1 6= t2, the schedule obtained by swapping the opponents of teams t1 and t2 in all rounds of
the schedule X is a neighbor of the latter in N1.

The second neighborhood is round swap (N2). For any two rounds r1 ∈ R and r2 ∈ R,
with r1 6= r2, the schedule obtained by swapping the games of schedule X in rounds r1 and
r2 is a neighbor of X in N2.

Neighborhoods N1 and N2 are not used by the heuristic proposed in this work and have
only theoretical relevance for this paper.

The third neighborhood is partial team swap (N3). For any round r ∈ R and for any
two teams t1 ∈V and t2 ∈V , with t1 6= t2 and |X(t1,r)| 6= t2, let S be a minimum cardinality
subset of rounds including round r in which the opponents of teams t1 and t2 are the same, i.e.
S = {r1, ...,rk} ⊆ R is minimum and such that r ∈ S and {t ∈V : ∃ j ∈ S such that |X(t, j)|=
t1} = {t ∈ V : ∃ j ∈ S such that |X(t, j)| = t2}. Given a schedule X , a round r, and teams t1
and t2 defined as above, the schedule obtained by swapping the opponents of teams t1 and t2
in all rounds in S is a neighbor of X in N3.

Figure 4 illustrates a move in neighborhood N3 for a tournament with eight teams and
r = 2, t1 = 1, and t2 = 2. In this case, S = {2,5,6,7}. Teams 3, 5, 7, and 8 are the opponents
of teams 1 and 2 in the rounds in S. We notice that the partial team swap neighborhood N3
is a generalization of the team swap neighborhood N1.

The last neighborhood is partial round swap (N4). For any team t ∈ V and for any two
rounds r1 ∈ R and r2 ∈ R, with r1 6= r2, let U be a minimum cardinality subset of teams in-
cluding team t in which the opponents of the teams in U in rounds r1 and r2 are the same, i.e.
U = {t1, ..., tk}⊆V is minimum and such that t ∈U and {i∈V : ∃u∈U such that |X(i,r1)|=
u}= {i ∈V : ∃u ∈U such that |X(i,r2)|= u}. Given a schedule X , a team t, and rounds r1
and r2 defined as above, the schedule obtained by swapping the opponents of each team in
U in rounds r1 and r2 is a neighbor of X in N4.

Figure 5 shows a move in neighborhood N4 for a tournament with ten teams and t = 1,
r1 = 1, and r2 = 4. In this case, U = {1,6,7}. Teams 3, 4, and 8 are the opponents of
teams in U in rounds 1 and 4. We notice that the partial round swap neighborhood N4 is a
generalization of the round swap neighborhood N2.

Moves in neighborhoods N1 and N2 generate solutions whose underlying colorings are
isomorphic to that of the current solution before the move. In some situations, it may happen

7

Teams Rounds
1 r = 2 3 4 5 6 7

t1 = 1 -4 8 6 -2 -3 5 7

t2 = 2 -6 -5 4 1 -8 -7 3

3 5 -4 -7 -6 1 8 -2
4 1 3 -2 -8 7 -6 -5
5 -3 2 -8 -7 6 -1 4
6 2 -7 -1 3 -5 4 8
7 -8 6 3 5 -4 2 -1

8 7 -1 5 4 2 -3 -6
(a) Original schedule X

Teams Rounds
1 r = 2 3 4 5 6 7

t1 = 1 -4 5 6 -2 8 7 -3

t2 = 2 -6 -8 4 1 3 -5 -7

3 5 -4 -7 -6 -2 8 1
4 1 3 -2 -8 7 -6 -5
5 -3 -1 -8 -7 6 2 4
6 2 -7 -1 3 -5 4 8
7 -8 6 3 5 -4 -1 2

8 7 2 5 4 -1 -3 -6
(b) New schedule after move in neighborhood N3

Fig. 4 Move in neighborhood N3 for a tournament with eight teams and r = 2, t1 = 1, and t2 = 2 (highlighted
entries in (a) appear modified in (b) after the move).

that every move in neighborhood N3 be equivalent to a move in neighborhood N1. This
was experimentally observed e.g. for the canonical edge coloring when n ∈ {12,14,20}. In
these cases, for any round r ∈ R and for any two teams t1 ∈ V and t2 ∈ V , the minimum
cardinality subset S differs from the complete set R of rounds exclusively by the round
in which t1 plays against t2. Similarly, moves in neighborhood N4 may be equivalent to
moves in neighborhood N2. Again, it is the case for the canonical edge coloring when n ∈
{12,14,20}. Therefore, if the canonical edge coloring is used as the initial solution in these
situations, any search method using only neighborhoods N1, N2, N3, and N4 will not be able
to visit solutions whose underlying colorings are different from the canonical edge coloring.
However, the same does not hold for other colorings built by the general method, for which
neighborhoods N3 and N4 are not equivalent to N1 and N2, respectively.

In the following, we show that any move in neighbor N2 is equivalent to a sequence of
moves in neighborhood N4.

We first observe that each move in N4 with parameters t, r1, and r2 involves a subset of
the games affected by a move in N2 using parameters r1 and r2. In fact, the teams involved
in the move in N4 are those in the subset U and their opponents in rounds r1 and r2, which
are computed during the move (see above). We also remark that if, instead of using team t
as a move parameter, we use another team t1 ∈U , the subset U1 of teams computed during
the move turns out to be equal to U and, in consequence, it does not change the move. If,
instead of using team t, we use another team t2 that is an opponent of a team in U in round
r1 or r2, the subset U2 of teams computed during the move turns out to be equal to the set of
opponents of teams in U in rounds r1 and r2 and the set of opponents of teams in U2 turns

8

Teams Rounds
r1 = 1 2 3 r2 = 4 5 6 7 8 9

t = 1 -3 10 7 -8 -5 2 4 9 -6
2 9 8 6 -5 -3 -1 10 -4 -7
3 1 -4 9 -6 2 -10 -7 -8 5

4 -6 3 -10 -7 8 5 -1 2 9
5 10 7 8 2 1 -4 -9 -6 -3
6 4 -9 -2 3 -10 -7 -8 5 1

7 -8 -5 -1 4 -9 6 3 -10 2

8 7 -2 -5 1 -4 -9 6 3 -10
9 -2 6 -3 10 7 8 5 -1 -4

10 -5 -1 4 -9 6 3 -2 7 8
(a) Original schedule X

Rounds
Teams r1 = 1 2 3 r2 = 4 5 6 7 8 9

t = 1 -8 10 7 -3 -5 2 4 9 -6
2 9 8 6 -5 -3 -1 10 -4 -7
3 -6 -4 9 1 2 -10 -7 -8 5

4 -7 3 -10 -6 8 5 -1 2 9
5 10 7 8 2 1 -4 -9 -6 -3
6 3 -9 -2 4 -10 -7 -8 5 1

7 4 -5 -1 -8 -9 6 3 -10 2

8 1 -2 -5 7 -4 -9 6 3 -10
9 -2 6 -3 10 7 8 5 -1 -4

10 -5 -1 4 -9 6 3 -2 7 8
(b) New schedule after move in neighborhood N4

Fig. 5 Move in neighborhood N4 for a tournament with ten teams and t = 1, r1 = 1, and r2 = 4 (highlighted
entries in (a) appear modified in (b) after the move).

out to be equal to U . Therefore, once again the move is the same. Finally, if instead of using
team t as a move parameter, we use another team t3 that does not belong to U neither is an
opponent of a team in U in round r1 or r2, the subset U3 of teams computed during the move
turns out to be disjoint to U and to the set of opponents of teams in U in rounds r1 and r2.
Hence, in this case the move involves different games between rounds r1 and r2. Therefore,
the set of teams may be partitioned into subsets P1, . . . ,Pp, so as that for any i = 1, . . . , p the
moves in neighborhood N4 with parameters t, r1, and r2 are the same for every t ∈ Pi. To
conclude, we remark that any sequence of p moves in N4 involving rounds r1 and r2 and
one team from each subset Pi, i = 1, . . . , p, is equivalent to a move in N2 using r1 and r2 as
parameters.

A similar argument shows that a sequence of moves in N3 is equivalent to a move in N1.

2.3 Local search

We have shown in the last section that any solution that can be reached by a move in N1
(resp. N2) can also be reached by a sequence of one or more moves in N3 (resp. N4). There-
fore, the set of solutions connected through neighborhoods N1 and N2 is included in that
connected through neighborhoods N3 and N4. Since neighborhoods N3 and N4 generalize
neighborhoods N1 and N2 and solutions in the two former neighborhoods can be computed

9

as quickly as those in the two latter, we propose a local search procedure exploring only
neighborhoods N3 and N4.

Let v(X) and d(X) be, respectively, the number of constraint violations and the total
traveled distance in the schedule X corresponding to the current solution. All moves in
neighborhoods N3 and N4 are evaluated at each local search iteration, each of them in time
O(n). The number v(X ′) of constraint violations and the total traveled distance d(X ′) are
computed for each neighbor X ′ of the current solution X .

If there is at least one neighbor solution X ′ such that v(X ′) ≤ v(X) and d(X ′) < d(X),
then the current solution X is replaced by its neighbor with minimum traveled distance
among all those satisfying the above condition (i.e., the current solution is replaced by a least
cost neighbor which does not deteriorate the number of constraint violations). Otherwise, if
no move is able to improve the traveled distance of the current solution X without increasing
the number of constraint violations in the latter, then the current solution is replaced by its
neighbor decreasing the most the number of constraint violations. If no such a move exists,
then the local search procedure stops and the current locally optimal solution is returned.

2.4 ILS heuristic

The Iterated Local Search (ILS) metaheuristic (see Lourenço et al (2003)) proposes the use
of perturbations to escape from locally optimal solutions. The method starts by constructing
an initial solution and by applying a local search procedure to it. The current solution is
perturbed at each iteration and local search is applied to the perturbed solution. Next, the
solution resulting from perturbation followed by local search is compared with the current
solution. The former is accepted as the new current solution if some predefined acceptance
criterion is met. Otherwise, a new iteration formed by perturbation followed by local search
is performed. The procedure stops when some stopping criterion is reached. Algorithm 1
depicts the pseudo-code with the main steps of the ILS metaheuristic.

Algorithm 1: Pseudo-code of the ILS metaheuristic.
d∗← ∞ ;1
X ← BuildInitialSolution ;2
X ← LocalSearch(X) ;3
repeat4

if v(X) = 0 and d(X)< d∗ then5
X∗← X ;6
d∗← d(X) ;7

end8
X ′← Perturbation(X) ;9
X ′← LocalSearch(X ′) ;10
X ← AcceptanceCriterion(X ,X ′) ;11

until stopping condition ;12

The traveled distance associated with the best feasible solution found is initialized in line
1. One of the constructive procedures presented in Section 2.1 (i.e., the canonical coloring
or Vizing’s algorithm) is used to build initial solutions in line 2. To build an edge coloring,
teams are randomly associated to nodes. The local search procedure applied in lines 3 and
10 follows the strategy described in Section 2.3. The perturbation in line 9 consists in a ran-
domly generated sequence of two, three, or four moves in N3∪N4. The solution X ′ obtained

10

after the application of local search to the perturbed solution is accepted as the new current
solution X in line 11 if and only if it satisfies one of the conditions below:

1. v(X ′)< v(X) (the new solution X ′ has fewer constraint violations than the current solu-
tion X); or

2. v(X ′) = v(X) and d(X ′)< d(X) (the new solution X ′ has the same number of constraint
violations as the current solution X , but the traveled distance according to schedule X ′

is smaller than that associated with X); or
3. if at least 100 iterations have been performed since the last update of the current so-

lution X , v(X ′) ≤ v(X) (the number of constraint violations in the new solution X ′ is
not greater than that in the current solution X), and d(X ′) ≤ 1.01 · d(X) (the traveled
distance associated with the new schedule X ′ deteriorates by at most 1% the traveled
distance according with the current schedule X).

The acceptance criterion is primarily driven to finding solutions reducing the number of
constraint violations and, secondly, to finding improving solutions which do not deteriorate
the number of constraint violations. The best feasible solution found during the search is
updated in lines 5 to 8 and returned when the stopping condition in line 12 is met.

3 Experimental results

In this section, we report on the computational experiments performed to evaluate the pro-
posed ILS heuristic, which was coded in C++ and compiled with version 4.1.2 of g++ with
the optimization flag -O3. The experiments have been performed on an Intel Core 2 Quad
CPU with a 2.50 GHz processor and 2 Gbytes of RAM, running under the operating system
Debian GNU/Linux 4.0.

The same 40 instances considered by Melo et al (2009) were used in the computational
experiments: 20 instances with 18 teams and 20 instances with 20 teams. Distances are the
same as in instances circ18 and circ20 of the TTP, both of them available from Trick (2009).
For each instance size (i.e., the number n of teams), 20 distinct home-away assignments were
created: ten out of the 20 assignments are balanced (i.e., each team plays at least n/2− 1
home games and at least n/2− 1 away games), while the remaining ten assignments are
unbalanced. Two instances of each size were shown to be infeasible by Melo et al (2009).

In the first experiment, we compare the performance of the heuristic when using the
canonical edge coloring and an edge coloring produced by the general Vizing method to
build the initial solution. Tables 1 and 2 show the numerical results obtained by ten runs of
the ILS heuristic with a time limit of five minutes using each of the edge coloring methods to
build the initial solutions, for instances with 18 and 20 teams, respectively. The first column
in each table shows the instance name. The second, third, and fourth columns give the best,
average, and worst solution values obtained using Vizing’s algorithm to obtain the initial
edge colorings. The next three columns show the same information for the algorithm using
the canonical coloring to build initial solutions. The last column shows the improvement in
the average solution value obtained by using Vizing’s algorithm in the construction phase to
replace the canonical coloring.

The results obtained by the ILS heuristic using any of the two initial edge colorings are
quite similar for the instances with 18 teams. However, the use of Vizing’s edge coloring
method considerably improved the best solution values for the instances with 20 teams. The
solutions obtained by Vizing’s algorithm improved those obtained from canonical colorings
by at least 17.5%, with an average improvement of 19.0%. This is due to the fact that, for n=

11

Instance Canonical Vizing
Average Best Worst Average Best Worst Improvement (%)

circ18abal 824.4 812 844 821.6 782 834 0.3
circ18bbal 824.8 810 842 826.2 800 848 -0.2
circ18cbal 820.8 802 842 820.2 802 846 0.1
circ18dbal 827.0 816 836 816.4 802 828 1.3
circ18ebal 819.8 812 836 823.8 804 836 -0.5
circ18fbal 822.4 800 840 822.4 814 832 0.0
circ18gbal 820.2 806 832 819.6 806 842 0.1
circ18hbal 817.0 804 832 816.2 796 842 0.1
circ18ibal 814.4 798 832 823.0 810 850 -1.1
circ18jbal 816.4 804 832 815.8 798 838 0.1

circ18anonbal 836.4 810 858 827.8 818 838 1.0
circ18dnonbal 836.4 822 848 838.8 812 860 -0.3
circ18enonbal 842.4 814 864 839.2 808 862 0.4
circ18fnonbal 837.2 816 856 842.0 828 854 -0.6
circ18gnonbal 823.4 806 842 840.8 816 864 -2.1
circ18hnonbal 849.2 832 870 835.8 822 870 1.6
circ18inonbal 845.8 828 860 847.6 830 866 -0.2
circ18jnonbal 826.2 808 836 819.2 800 850 0.8

Average 828.0 811.1 844.6 827.6 808.2 847.8 0.1

Table 1 Numerical results obtained by the heuristic (18 teams).

Instance Canonical Vizing
Average Best Worst Average Best Worst Improvement (%)

circ20abal 1381.0 1360 1396 1135.0 1118 1158 17.8
circ20bbal 1365.8 1340 1396 1134.4 1108 1164 16.9
circ20cbal 1371.6 1348 1390 1119.6 1074 1142 18.4
circ20dbal 1380.8 1362 1392 1140.8 1118 1168 17.4
circ20ebal 1379.0 1364 1396 1130.6 1108 1164 18.0
circ20fbal 1374.4 1362 1388 1125.0 1098 1150 18.1
circ20gbal 1373.8 1350 1386 1123.0 1104 1142 18.3
circ20hbal 1380.4 1350 1410 1131.4 1106 1164 18.0
circ20ibal 1376.6 1366 1392 1129.0 1112 1156 18.0
circ20jbal 1377.4 1370 1384 1121.2 1112 1138 18.6

circ20anonbal 1476.0 1430 1512 1150.0 1124 1188 22.1
circ20bnonbal 1420.6 1396 1442 1154.6 1122 1184 18.7
circ20cnonbal 1441.8 1420 1460 1150.2 1132 1170 20.2
circ20dnonbal 1455.6 1412 1478 1155.2 1122 1172 20.6
circ20enonbal 1477.2 1452 1496 1176.2 1156 1198 20.4
circ20gnonbal 1466.2 1434 1500 1159.6 1122 1192 20.9
circ20inonbal 1400.6 1362 1420 1141.8 1122 1166 18.5
circ20jnonbal 1387.4 1362 1408 1134.4 1116 1148 18.2

Average 1404.8 1380.0 1424.8 1139.6 1115.2 1164.7 18.8

Table 2 Numerical results obtained by the heuristic (20 teams).

20, neighborhoods N3 and N4 are equivalent to N1 and N2, respectively, if the canonical edge
coloring is used. Since moves in N1 and N2 do not change the edge coloring associated with
the current schedule, in this case moves in N3 and N4 do not change it either. In consequence,
the ILS heuristic gets stuck by the structure of the canonical edge coloring and explores just
a small portion of the solution space. This phenomenon does not happen when an edge
coloring obtained by Vizing’s algorithm is used.

To conclude, we compare the average result obtained by the ILS heuristic in five minutes
of processing time with those presented in Melo et al (2009) and obtained in a computational
environment similar to the one used in this work. Table 3 displays the numerical results. The

12

first column gives the instance name. The second column shows the best solution value
among those found by the four algorithms described by Melo et al (2009) after two hours of
running time. The next two columns give the average traveled distance in the solutions found
by ten executions of the ILS heuristic for five minutes, together with the corresponding
average improvement over the best result in Melo et al (2009). The ILS heuristic clearly
outperformed the algorithms in Melo et al (2009): the average cost of the solution found
running the ILS heuristic for five minutes improved in the best known solution values by at
least 20.9% for every instance and by 24.5% on average.

Instance Best in Melo et al (2009) ILS Improvement (%)
circ18abal 1106 821.6 25.7
circ18bbal 1100 826.2 24.9
circ18cbal 1038 820.2 21.0
circ18dbal 1096 816.4 25.5
circ18ebal 1074 823.8 23.3
circ18fbal 1060 822.4 22.4
circ18gbal 1100 819.6 25.5
circ18hbal 1094 816.2 25.4
circ18ibal 1102 823.0 25.3
circ18jbal 1078 815.8 24.3

circ18anonbal 1124 827.8 26.4
circ18dnonbal 1060 838.8 20.9
circ18enonbal 1092 839.2 23.2
circ18fnonbal 1098 842.0 23.3
circ18gnonbal 1098 840.8 23.4
circ18hnonbal 1110 835.8 24.7
circ18inonbal 1104 847.6 23.2
circ18jnonbal 1102 819.2 25.7

circ20abal 1520 1135.0 25.3
circ20bbal 1530 1134.4 25.9
circ20cbal 1470 1119.6 23.8
circ20dbal 1464 1140.8 22.1
circ20ebal 1526 1130.6 25.9
circ20fbal 1546 1125.0 27.2
circ20gbal 1536 1123.0 26.9
circ20hbal 1516 1131.4 25.4
circ20ibal 1544 1129.0 26.9
circ20jbal 1484 1121.2 24.4

circ20anonbal 1502 1150.0 23.4
circ20bnonbal 1522 1154.6 24.1
circ20cnonbal 1488 1150.2 22.7
circ20dnonbal 1510 1155.2 23.5
circ20enonbal 1574 1176.2 25.3
circ20gnonbal 1540 1159.6 24.7
circ20inonbal 1516 1141.8 24.7
circ20jnonbal 1516 1134.4 25.2

Average 24.5

Table 3 Comparison between the average results obtained by the ILS heuristic in five minutes with the best
previously known solutions.

13

4 Concluding remarks

We proposed an ILS heuristic for the traveling tournament problem with predefined venues.
A general strategy for building initial solutions was developed and evaluated. We showed
that canonical edge colorings should not be used as initial solutions in some situations.
Instead, the use of Vizing’s edge coloring method lead to considerably better results, im-
proving the best solution values for the instances with 20 teams by 19% on average.

Two neighborhoods were investigated and explored by the ILS heuristic. These neigh-
borhoods allow the heuristic to escape from locally optimal solutions. We have also given a
characterization of some neighborhoods often used in the literature. We established that the
solution space defined by these neighborhoods is not connected, which explains the difficul-
ties found by local search heuristics based on them to find high quality solutions to some
problems.

The new ILS heuristic clearly outperformed the previous heuristics in the literature, im-
proving the best known solution values by at least 20.9% for every benchmark problem after
five minutes of running time. The average reduction over all feasible instances amounted to
24.5%. Even better results can be obtained if longer running times are accepted.

Acknowledgements Fabrı́cio N. Costa is supported by a FAPEMIG grant. Sebastián Urrutia is partially
supported by FAPEMIG (Edital Universal) and CNPq research grant 302560/2007-6. Celso C. Ribeiro is
partially supported by CNPq research grants 301694/2007-9 and 485328/2007-0, and by FAPERJ research
grant E-152.522/2006.

References

Anagnostopoulos A, Michel L, Hentenryck PV, Vergados Y (2006) A simulated annealing
approach to the traveling tournament problem. Journal of Scheduling 9:177–193

Durán G, Noronha TF, Ribeiro CC, Souyris S, Weintraub A (2007) Branch-and-cut for a
real-life highly constrained soccer tournament scheduling problem. In: Burke E, Rudová
H (eds) Practice and Theory of Automated Timetabling VI, Springer, Lecture Notes in
Computer Science, vol 3867, pp 174–186

Easton K, Nemhauser G, Trick M (2001) The traveling tournament problem: Description
and benchmarks. In: Walsh T (ed) Principles and Practice of Constraint Programming,
Springer, Lecture Notes in Computer Science, vol 2239, pp 580–584

Gaspero L, Schaerf A (2007) A composite-neighborhood tabu search approach to the trav-
eling tournament problem. Journal of Heuristics 13:189–207

Kendall G, Knust S, Ribeiro CC, Urrutia S (2010) Scheduling in sports: An annotated bib-
liography. Computers and Operations Research 37:1–19

Knust S (2010) Scheduling non-professional table-tennis leagues. European Journal of Op-
erational Research 200:358–367

Lourenço HR, Martin OC, Stutzle T (2003) Iterated local search. In: Glover F, Kochenberger
G (eds) Handbook of Metaheuristics, Springer, pp 321–353

Melo RA, Urrutia S, Ribeiro CC (2009) The traveling tournament problem with predefined
venues. Journal of Scheduling 12:607–622

Nemhauser G, Trick M (1998) Scheduling a major college basketball conference. Operations
Research 46:1–8

Rasmussen R, Trick M (2006) The timetable constrained distance minimization problem. In:
Beck J, Smith B (eds) Integration of AI and OR Techniques in Constraint Programming

14

for Combinatorial Optimization Problems, Springer, Lecture Notes in Computer Science,
vol 3990, pp 167–181

Rasmussen R, Trick M (2008) Round robin scheduling - A survey. European Journal of
Operational Research 188:617–636

Régin J (2001) Minimization of the number of breaks in sports scheduling problems us-
ing constraint programming. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 57:115–130

Ribeiro CC, Urrutia S (2007a) Heuristics for the mirrored traveling tournament problem.
European Journal of Operational Research 179:775–787

Ribeiro CC, Urrutia S (2007b) Scheduling the Brazilian soccer championship. In: Burke
E, Rudová H (eds) Practice and Theory of Automated Timetabling VI, Springer, Lecture
Notes in Computer Science, vol 3867, pp 149–159

Trick M (2000) A schedule-then-break approach to sports timetabling. In: Burke E, Erben
W (eds) PATAT, Springer Lecture Notes in Computer Science, vol 2079, Springer-Verlag,
pp 242–253

Trick M (2009) Challenge traveling tournament instances. Online reference at
http://mat.gsia.cmu.edu/TOURN/, last visited on August 19, 2009.

Vizing VG (1964) On an estimate of the chromatic class of a p-graph (in russian). Metody
Discret Analiz 3:25–30

de Werra D (1981) Scheduling in sports. In: Hansen P (ed) Studies on Graphs and Discrete
Programming, North Holland, Annals of Discrete Mathematics, vol 11, pp 381–395

