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A COLUMN GENERATION APPROACH TO THE MULTIPLE-DEPOT
VEHICLE SCHEDULING PROBLEM

CELSO C. RIBEIRO

Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil

FRANCOIS SOUMIS
GERAD and Ecole Polytechnique de Montréal, Montréal, Quebec, Canada
(Received July 1991; revision received December 1992; accepted February 1993)

We give a new formulation to the multiple-depot vehicle scheduling problem as a set partitioning problem with side
constraints, whose continuous relaxation is amenable to be solved by column generation. We show that the continuous
relaxation of the set partitioning formulation provides a much tighter lower bound than the additive bound procedure
previously applied to this problem. We also establish that the additive bound technique cannot provide tighter bounds
than those obtained by Lagrangian decomposition, in the framework in which it has been used so far. Computational
results that illustrate the robustness of the combined set partitioning-column generation approach are reported for
problems four to five times larger than the largest problems that have been exactly solved in the literature. Finally, we
show that the gap associated with the additive bound based on the assignment and shortest path relaxations can be
arbitrarily bad in the general case, and as bad as 50% in the symmetric case.

his paper addresses the multiple-depot vehicle

scheduling problem (MDVSP), which consists of
covering a set of predefined trips with vehicles pro-
vided by several depots. The problem appears, as an
example, in urban bus scheduling, where, in most
cases, the companies use many depots. The size
of practical problems goes up to some hundreds of
trips and ten depots. The problem is formulated in
Carpaneto et al. (1989) as follows. A set of n trips
T, ..., T, is given, trip T, starting at time s; and
ending at time ¢(j = 1, ..., n), as well as m depots
D,, ..., D, in the kth of which r; vehicles are sta-
tioned (k= 1, ..., m). Let 7; be the travel time for a
vehicle to go from the ending point of trip 7; to the
starting point of trip 7;. An ordered pair (7;, 7;) is
said to be compatible if and only if (iff) they can be
covered by the same vehicle in the sequence, i.e.,
iff e; + 7; < 5. Let ¢; be the finite cost incurred if a
vehicle performs trip 7; immediately after trip T;. For
each trip 7; and each depot Dx, let c,.«; (respectively,
¢;n+x) be the finite cost incurred if a vehicle stationed
at depot D, starts (respectively, ends) with trip 7;. The

costofaduty (T}, T, . .., T;,) performed by a vehicle
stationed at depot Dy is given by Coeii, + Cipiy + ... +
Cip_vir + Cipn+k. Then the problem consists of finding
an assignment of trips to vehicles in such a way that
each trip is covered by exactly one vehicle, each vehi-
cle used in the solution covers a feasible duty (i.e., a
sequence of pairwise compatible trips) and returns to
its depot at the end of the duty, the number of vehicles
leaving from depot D, does not exceed (k= 1, ...,
m), and the sum of the costs of the duties per-
formed by the vehicles used in the solution is
minimized.

The multiple-depot vehicle scheduling problem has
been shown to be NP-hard when m = 2 (Bertossi,
Carraresi and Gallo 1987). In the m = | case it is
solvable in polynomial time as a minimum cost net-
work flow problem. Notice that it can also be solved
in polynomial time for m = 2 in the particular case in
which the objective function corresponds to the min-
imization of the total number of vehicles used to
perform the n trips. A heuristic algorithm based
on Lagrangian relaxation is proposed in Bertossi,
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Carraresi and Gallo, and computational experiments
are reported for problems with up to 50 trips and
3 depots. Another heuristic was proposed by
Dell’Amico, Fischetti and Toth (1990). Their algo-
rithm always guarantees the use of the minimum
number of vehicles, and computational results are
reported for larger problems with up to 500 trips and
4 depots. The errors are typically on the order of 1%.
Other approximate, less specific algorithms are
described in Bodin et al. (1978), Bodin, Rosenfield
and Kydes (1978), Ceder and Stern (1981), Smith and
Wren (1981), and El-Azm (1985). An exact branch-
and-bound algorithm is given by Carpaneto et al.
Their algorithm is based on the computation of lower
bounds by an additive scheme. The gaps are relatively
small and computational results are given for prob-
lems with up to 70 trips and 3 depots.

In this paper, we propose a new approach to the
multiple-depot vehicle scheduling problem, based on
the solution of its continuous relaxation by a column
generation scheme. The paper is organized as follows.
In Section 1 we establish that the additive bound
technique (Carpaneto, Fischetti and Toth 1989,
Fischetti and Toth 1988, 1989) cannot provide tighter
bounds than those obtained by Lagrangian decom-
position, in the framework in which it has been used
so far. Section 2 gives the mathematical formulation
of the multiple-depot vehicle scheduling problem as
an integer program and we compare several lower
bounds to the latter. We show that the bound given
by the linear relaxation of the integer multicommodity
flow formulation is at least as good as the additive
bound proposed in Carpaneto et al. (1989), based on
the assignment and shortest path relaxations. Follow-
ing, Section 3 gives a new formulation of MDVSP
as a set partitioning problem with side constraints, as
well as a column generation scheme for the exact
solution of its continuous relaxation. We show that
the bound obtained by column generation is equal to
that given by the linear relaxation of the integer mul-
ticommodity flow formulation, hence it is better than
the additive bound. Computational results for prob-
lems with up to 300 trips and 6 depots are reported in
Section 4. These results illustrate the robustness of the
column generation approach, which obtains optimal
solutions for much larger problems in smaller com-
putational times, with respect to the branch-and-
bound algorithm described in Carpaneto et al. The
worst-case behavior of different bounds to the multiple-
depot vehicle scheduling problem 1is evaluated
in Section 5, in terms of the maximal gap with re-
spect to the optimal solution. Finally, some conclu-
sions are drawn in the last section.

i,

1. ADDITIVE BOUND AND LAGRANGIAN
DECOMPOSITION

For every optimization problem P, we denote by v(P)
its optimal value. Moreover, if P is an integer pro-
gramming problem, we denote by P its continuous
relaxation, obtained by dropping all integrality con-
straints from the latter. We consider in this section
the additive bound technique in the framework in
which it is applied to an integer programming problem
formulated as follows.

Problem Pg
Minimize ¢ - x
subjectto XE€ =B N ABN...N R,

in which each set %, k = 1, ..., g, is a polytope
defined by linear inequalities and £, also contains
some integrality requirements. For a given cost vector
c¥, let Pg, be the problem:

Problem P 4,

Minimize c* - x*

subject to x* € &.

In many applications of the additive bound technique
only the last problem P is an integer programming
problem, all others Pa,, . . ., Pg_, are linear problems.
The additive bound (Carpaneto, Fischetti and Toth
1989, Fischetti and Toth 1988, 1989) associated with
the family of relaxations {Pa, k= 1, ..., g} can be
defined by

q

ZapD T kE U(Pﬂ.),
o |

where ¢! = cand, foreveryk=1,...,9g— |, ' =
0 is a vector of residual costs satisfying v(Pga) +
& o x sk x forall x € # We show in
the following that the additive bound z,pp cannot
be better than that obtained by Lagrangian
decomposition.

Proposition 1. Let P4, be a linear programming prob-
lem with reduced costs ¢ associated with its optimal
solution and take ¢*' € [0, ¢¥]forj=1, ..., g. Then
the optimal solution to P4, does not change if we take
c© — ¢! instead of ¢* as its cost vector.

Proof. Let X* be the optimal solution of P4,. Then x*
is also an optimal solution to the modified problem,
because it is also feasible for the latter and the modified
reduced costs are nonnegative.
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We now give an alternative formulation of P,
which is amenable to be dealt with by Lagrangian
decomposition.

Problem P
subject to x' € A

Minimize ¢ - x!

x=x xXeE B
xl=xi xI€ A,
Let A%, ..., M be dual multipliers associated with

the equality constraints in the above formulation.
then,

q
L(N,...,\)=minimize c-x'+ Y A\ (x*=x*")
k=2

subjectto x'€ A
xX1E B
X'€ %,

is the Lagrangian function associated with P%. The
next result follows.

Proposition 2. I Pg, ..., P4_, are linear program-
ming problems, then z,pp = L(c? ..., ¢9).

Proof. We recall from Carpaneto et al. that the resid-
ual costs satisfy the inequality 0 < ¢**! < ¢* By
definition,
From Proposition 1,

k=q—1

Zapp = 2, minj(ck ~ ) . x¥|x* € A)
k=1

+ min{c? - x| x? € &,).
k=q
ZapD = 2 min{ck x"lx" € A}

k=1

Now, since the problems in the summation are
independent,

k=g—1
ZaDD = min{ > (k=Y . xk
k=1

+c? XX ER,...,x°€ 92,}

Finally, rearranging the terms in the latter expression,

i,
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we obtain
k=q
Zapp = min{c‘ cxt Y ek (xF
k=2
-x*Yx'e R, ..., x€ 92,}
=L, ..., 9.

As will be seen in Section 2, in the case of MDVSP
problem Pg has the integrality property. In that situ-
ation, the following result holds.

Theorem 1. If Pg,, ..., Pq_, are linear program-
ming problems and Pg, has the integrality property,
then ZAaDD S U(Pg).

Proof. Here ziop = L(Z, ..., maxi-

mumyz e {L(A\% ..., A} = v(Pa).

) =

.....

We notice that if the integrality property does not
hold for Pg, then the additive bound zapp could
eventually be better (i.e., larger) than the linear pro-
gramming bound v(P ).

2. MODEL FORMULATION AND LOWER
BOUNDS

We first give the mathematical formulation of the
multiple-depot vehicle scheduling problem as an in-
teger program. Let N = {1, ..., n} represent the set of
trips and K = {1, ..., m} the set of depots. With each
depot k € K we associate the graph G* = (V*, 4%),
where n + k denotes the kth depot, V= NU {n + k},
and A= NXNU{n+ k} X NUN X {n + k}. Let
x% be the flow of type k (i.e., the number of vehicles
leaving from depot k) through arc (i, j) € 4*. Then,
the multiple-depot vehicle scheduling problem
can be formulated as the following integer multicom-
modity flow problem.

Problem MDVSP

m

Minimize Y, Y c;x%
k=1 (i,ed*

subjectto ), Y xt=1

foralljeN (1)
k=1 iev*
for all k € K,
for all j € A* 93]
Y xkuysn foral k€K

jeN
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xk=0

forall k € K, 3)
for all (i, j) € 4*

x% integer forall k € K,

for all (i, j) € A,

Constraints (1) ensure that each trip is performed
exactly once, while (2) and (3) are, respectively, flow
conservation and capacity constraints. Notice that x*
takes binary values for all i, j € N. We also remark
that this is the appropriate formulation implicitly used
in Carpaneto et al., although the authors gave another
formulation with a weaker continuous relaxation.

We will now establish the relationship between
the bounds obtained by the assignment relaxation, the
shortest path relaxation, the additive technique, and
linear programming. We show that the linear relaxa-
tion of MDVSP provides a stronger lower bound than
does the additive bound of Carpaneto et al.

Assignment Bound. The assignment relaxation is ob-
tained from MDVSP by the aggregation of (2) into a
surrogate constraint. If we define

k=m k=m

k=m
xj= 2 xk V=UV"=NU{U{”+]C}},
k=1 k=1 k=1

and A = U/CT A the relaxed problem is:

Problem AP
Minimize ), ¢;-x; 4
(ipea
subjectto Y, x;; =] foralljEN &)
€V
Y x;— 2 x;=0 foralljeV 6)
eV ey
Y Xris <r, forallkekX
JEN
x;20 forall(i,j)€ 4.

We will show that AP is equivalent to an assignment
problem. Constraints (5) and (6) are equivalent to:

Yx,=1 foralljEN (%)
eV

Yx;=1 forali€N (7
Jjev

Y xj— X x;=0 forallj € V\N. (8)
eV eV

If we define X, .+« as the number of vehicles that do
not leave from depot D, among the r; stationed there,
(8) can be written for all j € \N as:

Y Ximi=rc forallk € K 9)
ey
Y Xpw, = # forall k € X. (10)
jev

Problem AP is then equivalent to the transporta-
tion problem (4), (5), (7), (9) and (10). The latter can
be written as an assignment problem by the use of r,
copies of each depot, each representing one among
the r, vehicles stationed. Hence, the bound v(AP) can
be obtained by the solution of an assignment problem.

Shortest Path Bound. The path relaxation associated
with node v € N is obtained from MDVSP by drop-
ping () forall j# v, jEN:

Problem SP,

m
. X
Minimize ), Y c;x%
k=1 (i ek
subject to

Y xk=1
e

Ts

i

2, xi—

ek ievk

xk=0 forallkeK foralljEV*

xf=20 forallk€K forall(i,j)EA~

A feasible solution to SP, is a circulation of one
unity of flow passing through node v. As all circuits
need to pass through some depot, the bound v(SP,) is
equal to the cost of the shortest circuit passing through
nodes v and n + k for some k € K. The cost of this
circuit is given by the sum of the costs of the shortest
paths from node » + % to node v and from node v to
node n + k.

Additive Bound. The additive bound for MDVSP is
computed as follows (see Carpaneto et al. for the
details). First, set the additive bound z.pp equal to
v(AP), the optimal value of the assignment relaxation.
Then, for each depot D; and for each trip 7}, compute
& = My + Ay, where A (respectively, A;) is the
shortest path from depot D, (respectively, the node
associated with trip 7;) to the node associated with
trip 7; (respectively, depot D,) without visiting any
other depot, in terms of the reduced costs defined by
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the dual solution of AP. Next, set Zapp < Zapp + 4,
solution of the shortest path problem from depot D,
to trip 7, defines new residual costs. A new iteration
resumes by the computation of a new shortest path
bound in terms of such residual costs, until no further
improvement can be attained. In this scheme, the
assignment bound exploits the condition that each
trip must be covered exactly once, while the shortest
path bounds capture the fact that each vehicle per-
forming a duty should return to the same depot from
where it left. From the results in this section, we have
the following theorem.

Theorem 2

i. Maximum,enx{v(SP,)} < v(MDVSP).

il U(AP) < Zadd-
ili. zapp < v(MDVSP).

Proof
i. Trivial, because SP, for all v € N, is a relaxation

of MDVSP.

ii. Trivial, from the definition of the additive bound.

ili. The residual costs defined in Carpaneto et al.
PP. 536-539) satisfy the conditions of Proposition
1. We now proceed with the reformulation of
MDYVSP, as in Section 1 for the integer program-
ming problem P4 Take 4 as the set of constraints
associated with the assignment relaxation. Next,
forevery k=2,..., n+ 1, take % as the set of
constraints associated with the shortest path relax-
ation SP,, for some v € N, in the same order in
which the latter would be solved during the com-
putation of the additive bound. Give different
names to the variables appearing in each block of
constraints and use equality constraints to make
them be the same. This reformulation of MDVSP
is amenable to be dealt with by Lagrangian decom-
position. The result follows from Theorem 1.

3. A COLUMN GENERATION APPROACH

MDVSP can be reformulated in terms of variables
associated with the circuits of the graphs G* =
(V*, A*) defined in the Introduction. For every k € K,
let Q, be the set of paths leaving from depot Dy, visiting
some nodes (trips) of N, and coming back to the same
depot. For every path p € @ = U Q4, let ¢, be the
sum of the costs of its arcs and a;, = 1 iff it visits node
J € N, a;, = 0 otherwise. Now, if we associate a 0-1
variable y, with every path p € Q, we obtain the
equivalent formulation:

i,
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Problem MDVSP’

Minimize 3, 2, GV,

k=1 peqy

subjectto Y, X a,y,=1 foralljEN (11)

k=1 peq;
Y v<n forallkek (12)
PEQ
¥ € {0, 1} for all p € Q.

The set partitioning constraints (11) ensure that
each node j € N has to be visited by exactly one circuit
(i.e., each trip has to be performed by one duty). The
cardinality constraints {12) ensure that no more than
r. vehicles stationed at the depot Dy, £k € K will
be used. The continuous relaxation MDVSP’ can be
solved by column generation. Let «; for all j € N, and
ox for all k € K, be the dual variables associated with
(11) and (12), respectively. The subproblem corre-
sponding to the generation of the column with mini-
mum marginal cost among those of . consists of
finding a shortest path leaving from depot D,, visiting
at least one node of N, and coming back to the same
depot.

Problem CG,

Minimize —ar+ 2, (c; — m)xk
e

subjectto Y, xk— ¥ xk=0 forall jEN

ek eVt
k
Z xn+k,i = 1
IEN
k
2 Xinek =1
iEN

x5 €10, 1} for all (i, j) € 4*.

Let %% for all (i, j) € A* be the optimal solution of
CGy. Then, a new column p to be added to MDVSP”’
is obtained as: Take ¢, = Fpes ¢;X5 and g, =
Sien X% for all j € N. From Theorem 2 and the results
in this section, we can now prove the following theo-
rem concerning the column generation bound.

Theorem 3. v (MDVSP) = v(MDVSP’).

Proof. It is clear that MDVSP and MDVSP’ are
equivalent formulations of the same 0-1 problem. We
now show that their linear relaxations are also equiv-
alent. Suppose that we are solving MDVSP by
Dantzig-Wolfe decomposition (see e.g., Lasdon 1970)
with constraints (1) and (3) in the master problem.
For each k € K, the subproblem defined by constraints
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(2) and the nonnegativity constraints corresponds to
finding a minimal cost circulation through depot D,
in terms of the reduced costs defined by the dual
variables of the master problem. The solution of this
subproblem 1is either zero (when all circuits have a
positive reduced cost and optimality was attained) or
unbounded. In the latter case, it is a circuit through
depot Dy, associated with an extreme ray of the poly-
tope defined by the constraints of the subproblem.
Now, rewrite MDVSP replacing each variable x% by
a linear combination of the extreme rays of the
polytopes associated with each subproblem. Since
the solution of the subproblem is always an
extreme ray, there is no convexity constraint.
Each extreme ray associated with a depot D in the
Dantzig-Wolfe formulation is the same as a path in
Q. in MDVSP. It follows that the values of the coef-
ficients of the current linear combination of extreme
rays at each iteration of the MDVSP and MDVSP’
are equivalent (see also Desrosiers, Soumis and
Desrochers 1988 for a similar result for the minimum
fleet size multiple traveling salesman problem with
time windows).

Theorems 2iii and 3 show that the lower bound
obtained by column generation is at least as good
as that obtained by the additive technique, i.e.,
v(MDVSP’) = z,pp. This fact is in the origin of the
excellent computational results presented and dis-
cussed in the next section.

4. COMPUTATIONAL RESULTS

The column generation approach to the solution
of MDVSP’ was implemented through the code
GENCOL, which is a general purpose software for the
solution of routing and scheduling problems formu-
lated as set covering or set partitioning problems with
side constraints (Sanso et al. 1990). GENCOL solves
by column generation a master problem defined by
the continuous relaxation of a set covering or set
partitioning problem with side constraints. The col-
umn generation subproblems are solved by specialized
shortest path algorithms. The embedded branch-and-
bound algorithm supports different branching criteria
and searching strategies.

In the case of the MDVSP, the column generation
subproblem is an unconstrained shortest path problem
in an acyclic graph (obtained by duplication of the
depot nodes). CPLEX is used as the linear program-
ming solver. Depth-first search is used as the branch-
ing strategy. All computational results reported below
were obtained on a Sun Sparc 2 workstation.

Test problems were randomly generated as in

i,

Carpaneto et al., to simulate a real-life public transport
system in which there are short and long trips running
from 5 a.m. to midnight. Long trips correspond to
extra-urban journeys, or to sequences of urban jour-
neys. Short trips correspond to urban journeys with
peak hours around 7-8 a.m. and 5-6 p.m. Letp,, . . .,
p, be the set of relief points representing the points
where trips can start or finish, randomly generated
according to a uniform distribution in a 60 x 60
square. For each pair (a, b) of relief points, the travel
time from a to b is given by the Euclidean distance
between them. For each trip 7, j = 1, ..., n, the
starting and ending relief points, p} and p;, are gener-
ated as uniformly distributed random integers in
(1, v]. In each pair of trips, 7; and 7}, let rpfp; be
the travel time from the ending point of trip T; to the
starting point of trip 7;. The starting and ending times
of trip T; were generated taking into account two
classes of trips:

1. Short trips, with a probability of 40%: The starting
time s; of trip 7; is generated as a uniformly dis-
tributed random integer in [420, 479] with a prob-
ability of 15%, in {480, 1,019] with a probability
of 70%, and in [1,020, 1,080] with a probability of
15% (these time intervals represent a journey of 11
hours, with two peak periods with the duration of
one hour each). The ending time ¢; of trip T;
is a random integer uniformly distributed in
[s;+ 70j0f + 5, 5; + 7pjp] + 40].

2. Long trips, with a probability of 60%: Here s5; and
¢; are random integers uniformly distributed, re-
spectively, in {300, 1,200] and [s; + 180, s; + 300].
Moreover, every long trip 7, is circular, ie.,
o = pj.

Two classes of problems were considered. For class
A, all the m depots were randomly located inside
the 60 x 60 square. For class B and m = 2, 3, two
depots were located in opposite corners of the square
(m = 2) and the third one (in the m = 3 case) was
randomly generated at a point inside the 60 X 60
square. The number 7, of vehicles available at each
depot D, was generated as an integer uniformly dis-
tributed in [3 + n/(3m), 3 + n/(2m)]. The costs are
given by:

1. ¢;= | 107, + 2(s; — ¢, — ;) | for all compatible
pairs (T3, T));

2. Cour;= | 10 - ED(Dx, p}) | + 5,000 for all depots
D, and trips T;; and

3. ¢ = | 10 - ED(pf, Dc) | + 5,000 for all depots
D, and trips T;,

where ED(a, b) denotes the Euclidean distance be-
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tween a and b. This cost structure is such that the
strongest costs are associated with the arcs leaving or
entering the depots. Hence, the model finds the best
solution (in terms of a mixture of travel and idle
times) with the minimum number of vehicles which
ensure feasibility.

In the basic set of test problems, eight values of n =
30, 40, ..., 100 were considered for each value of m
and for each class of test problems. The value of » is
a random integer uniformly distributed in [n/3, n/2].
For each class and for each value of m and n, ten
instances of the MDVSP were generated. For each
value of m and #, the following average results (over
ten test problems) are given in Table I (class A) and
Table II (class B):

Avgtime  average computation time;

Maxtime maximum computation time;

Avgnodes average number of nodes in the branch-
and-bound tree;

Maxnodes maximum number of nodes in the
branch-and-bound tree;

Avggap  average integrality gap;

Maxgap maximum integrality gap;

Avgcol average number of columns generated;

Maxcol  maximum number of columns generated.

The continuous relaxation of MDVSP’, solved by
column generation, provides a much better lower
bound than the additive bounding scheme described
in Carpaneto et al. The average integrality gap over
all test problems in Tables I and II is only 0.00076%,
while the average gap associated with the additive

RIBEIRO AND SouMis /[ 47

lower bound is on the order of 0.9%. While the average
overall computational times to obtain the optimal
integer solution grow very fast in Carpaneto et al. (e.g.,
from 3.5 seconds for n = 30, to 1756.0 seconds for
n = 70 for class A and m = 2), they behave very well
in the case of the column generation approach (rang-
ing from 1.1 seconds for n = 30 to only 49.2 seconds
for n = 100 on a slower machine; see Table I). All test
problems in this first set were solved to optimality.
The behavior of the algorithm does not seem to be
affected by the class of the test problems.

To further investigate the behavior of the column
generation approach, we fixed n = 100 and we solved
larger problems in terms of the number of depots
(m =2, ..., 10). The depots are located as follows:
m = 2, two depots in opposite corners of the
square; m = 3, the third depot is randomly generated
inside the square; m = 4, four depots in the cor-
ners of the square; m = 5-10, four depots in the
corners and the other randomly generated inside
the square. The average numerical results (over ten
problems for each value of m) are given in Table III,
where it can be noticed that the computational times
do not seem to explode with the increase in the
number of depots.

We also solved much larger instances with up to
300 trips. Foreach valueof m=2, . . ., 6, we generated
ten test problems for n = 150, 200, 250, 300. This
final set of test problems is formed by instances four
to five times larger than the largest problems exactly
solved so far. The computational results are given in
Table IV. The last column of this table shows the

Table 1
Computational Results for Basic Test Problems for Class A
Avgtime Maxtime Avggap Maxgap
n {Seconds) (Seconds) Avgnodes Maxnodes (x107%) (X1073%) Avgcol Maxcol
m = 2 Depots
30 1.1 2 1.0 1 0.0 0.0 149.5 163
40 2.4 5 1.4 5 24 24 219.9 294
50 33 4 1.0 1 0.0 0.0 2748 295
60 7.7 14 1.5 3 1.7 0.9 369.8 445
70 13.0 18 1.2 2 0.0 0.0 471.3 531
80 16.5 30 1.4 5 45 4.5 533.8 663
90 26.5 69 2.8 19 54 5.4 6370 813
100 49.2 190 8.7 73 39 2.7 765.5 897
m = 3 Depots

30 1.4 2 1.0 1 0.0 0.0 171.9 198
40 2.3 3 1.2 3 2.7 2.7 241.6 271
50 5.7 22 2.8 19 20.0 20.0 327.1 468
60 7.0 10 1.0 1 0.0 0.0 406.0 466
70 12.0 19 1.9 5 15.0 9.1 499.9 599
80 18.0 46 2.2 13 2.2 2.2 569.3 723
90 294 49 2.2 7 13.0 7.2 714.6 885
100 32.8 42 1.4 3 0.2 0.2 780.3 852

i,
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Table I1
Computational Results for Basic Test Problems for Class B
Avgtime Maxtime Avggap Maxgap
n (Seconds) (Seconds) Avgnodes Maxnodes (x107%) (x107*%) Avgcol Maxcol
m = 2 Depots
30 1.2 2 1.2 3 0.0 0.0 151.4 169
40 3.0 6 3.0 15 21.0 17.0 231.3 307
50 4.3 6 1.4 3 1.5 1.5 288.7 335
60 59 7 1.0 1 0.0 0.0 354.1 376
70 12.3 18 1.3 3 1.2 1.2 462.2 530
80 16.4 26 1.4 4 35 35 521.5 605
90 23.9 63 3.0 21 4.6 4.6 595.1 760
100 330 48 1.6 7 32 32 7129 806
m= s
30 1.5 2 1.3 3 6.4 6.4 179.6 203
40 30 4 1.0 I 0.0 0.0 249.3 272
50 6.3 22 4.0 23 24,0 20.0 343.5 541
60 10.7 36 39 21 29.0 19.0 429.5 606
70 17.3 70 5.2 39 2.2 1.4 5114 694
80 19.2 29 2.0 9 3.1 1.6 591.6 712
90 30.5 41 2.2 8 53 3.6 717.2 792
100 45.1 92 4.8 19 13.0 6.8 830.5 978
Table 111
Computational Results (Sensitivity to the Number of Depots, n = 100)
Class B, n = 100
Avgtime Maxtime Avggap Maxgap
m (Seconds) (Seconds) Avgnodes Maxnodes (x107*%) (x1073%) Avgcol Maxcol
2 33.0 48 1.6 7 3.2 3.2 712.9 806
3 45.1 92 4.8 19 13.0 6.8 830.5 978
4 46.7 134 4.4 21 13.0 5.2 843.8 1,117
5 94.4 389 17.3 97 320 9.9 941.2 1,403
6 109.5 534 17.6 109 34.0 14.0 1,038.8 1,676
7 48.0 77 3.2 8 16.0 5.5 963.4 1,097
8 116.6 320 21.9 93 45.0 14.0 1,116.2 1,337
9 82.8 385 10.2 70 16.0 13.0 1,067.5 1,557
10 255.7 755 51.6 204 63.0 17.0 1,259.9 1,693

number of problems solved to optimality within the
limit of 300 nodes in the branch-and-bound tree (200
nodes for the largest problems, with » = 250 and
n = 300, due to the increase in the computational
time), out of the ten test problems generated for each
pair of values of m and n. Most of the test problems
with # up to 300 were solved to optimality in reason-
able computational times (averages are taken only
over the problems solved to optimality within those
limits on the number of nodes in the branch-and-
bound tree).

The computational results presented in this section
show that the column generation approach is very
robust: The computational times are not affected by
the class of the test problems and do not seem to
explode with the increase in the number of depots.
Moreover, the lower bounds do not deteriorate with

i,

the increase in problem size. The quality of the lower
bounds made it possible to solve to optimality prob-
lems four to five times larger than the largest problems
exactly solved in the literature so far.

5. WORST-CASE ANALYSIS

In this section we consider the worst-case behavior.of
lower bounds, with the respect to the cost of the
optimal integer solution. This is an interesting type of
analysis, which has not received too much attention.
In the case of the MDVSP, we study the assignment
bound, the shortest path bound, and the additive bound.

Theorem 4. The worst-case ratio zapp/V(MDVSP)
can be arbitrarily bad.

Proof. We consider a family {T''(n)} of instances of
MDVSP, each with two depots D, and D.. For each
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Table IV
Computational Resuits for Larger Test Problems
Avgtime Maxtime Avggap Maxgap Solved to
m n  (Seconds) (Seconds) Avgnodes Maxnodes (X107*%) (X107%) Avgcol Maxcol Optimality
2100 330 48 1.6 7 32 3.2 712.9 806 10/10
150 268.7 1,152 23.0 151 8.2 2.6 1,341.2 1,783 10/10
200 679.8 2,620 21.1 112 9.8 33 1,928.2 2,386 10/10
250 1,254.2 4,764 9.4 51 3.8 1.6 2,687.5 3,541 10/10
300 1,499.8 4915 4.6 27 20 0.3 3,284.6 3,986 8/10
3 100 45.1 92 4.8 19 13.0 6.8 830.5 978 10/10
150 254.2 544 16.7 51 24.0 5.7 1,441.2 1,623 10/10
200 1,105.2 2,909 434 133 14.0 4.3 2,239.3 2,673 9/10
250 1,704.6 3,838 20.4 67 10.0 2.5 2,883.9 3,399 7/10
300 1,832.5 3,658 5.5 15 3.8 1.2 3,568.8 3,699 4/10
4 100 46.7 134 44 21 13.0 5.2 843.8 1,117 10/10
150 655.2 2,962 55.3 261 29.0 7.5 1,664.2 2,437 10/10
200 1,158.8 4,369 41.7 185 240 5.8 2,206.6 2,851 9/10
250 6,230.0 11,179 91.3 160 41.0 5.2 3,600.7 4,329 3/10
300 5,493.0 5,493 54.0 54 11.0 1.1 3,895.0 3,895 1/10
5 100 94.4 389 17.3 97 320 9.9 941.2 1,403 10/10
150 939.6 5,889 92.1 614 17.0 6.0 1,738.3 3,182 10/10
200 672.6 1,763 19.4 74 24.0 11.0 2,247.8 2,582 8/10
250 1,920.7 3,634 33.5 79 11.0 2.1 3,133.0 3,324 6/10
300 3,002.5 9,246 36.0 138 5.3 2.0 3,843.5 4,585 4/10
6 100 109.5 534 17.6 109 34.0 14.0 1,038.8 1,676 10/10
150 682.7 2,500 66.1 298 36.0 8.6 1,803.3 2,315 10/10
200 1,641.1 7,524 58.4 284 25.0 5.9 2,442.1 3412 8/10
250 4,562.5 9,038 88.3 179 18.0 2.8 3,568.2 4,123 6/10
300 3,346.8 5,253 24.5 44 10.0 24 4,092.8 4,383 4/10

k=1, 2, there are n trips Ty, j= 1,...,nina
row. Travel times are taken as:

« 0, from each depot D, to the starting point of trip
Tive—1yns

e n + 1, from each depot D; to the starting point of
each t.l'lp 7}+(k—|)n,j = 2, FRS ( M

+ j, from the ending point of each trip Tjvx-1yr, j = 1,
..., htodepot Dy;

« |, from each depot Di.i(Dy, if k = 2) to the starting
point of trip Tysge-1jn;

* n + 1, from each depot Di.(D,, if k = 2) to the
starting point of each trip Tig-1ym, J = 1,

L, h=1;

* n — j, from the ending point of each trip Tji¢—1yn,
j=1,..., ntodepot Di.((Dy, if k =2);

e 0, from the ending point of trip T x-1» to the
starting point of trip Tj.g-nys forall 1 € i<j=<n.

Moreover, we suppose that all other costs (travel
times) are sufficiently large. The starting and ending
times of each trip Ti-1m, k=1,2,j=1,..., nare
Sistk—1n = €+k-1)» = j. An optimal solution can be built
by taking one vehicle from each depot Dy, k = 1, 2,

i,

and making it perform trips Tivg—1yn, Tovte-tyny - - - 5
Tsk-1yn in this order. Then, yMDVSP) =2 . n.

Since r, = r; = 1 for the instances of family {I"'(n)},
the assignment relaxation AP can be rewritten in that
case as:

Minimum 3} ¢; - x;
(i.)eA

subject to Ey x; =1 forallie V (13)
Zyxu=1 forallj v (14)
e
x;20 for all (i, ) € A4,

With V= {D], T],,Tz, ceny Tn, Dz, Tn+1, Tn+2, ceey
T:.}. The optimal solution X to the assignment relax-
ation is a single cycle leaving from and coming back
to depot D, after visiting, in this order, the nodes
associated with trips Ty, T3, ..., T,, depot- D,, and
the nodes associated with trips .1, Tras, . . ., Tan (see
Figure 1). Then, v(AP) = 0 and

Xpyr, = Xri, = ... = X5p, = Xp,1,,,

= xTn-HTM-Z =...= xTanl = 15
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@O -~ ~)—®)
>
@) G

Figure 1. Optimal solution to the assignment relaxa-
tion of instance I''(n).

all other variables are equal to zero. Now, take the
following values for the dual variables u; foralli € V,
and v; for all j € V, associated with (13) and (14),
respectively:

Up, = 1701 = O,

iy, =n+1, ©0r,=0
arp=n+1, 0p=—(n+1),

forall j=2,...,n—-1;
ir, = —n, 07, =—(n+ 1),

apz=ﬁpz=n;

= Uy, forallj=n+1,...,2n and

h
oy
|

O, = fir,,,,.; forallj=n+1,...,2n

Since ¢; = ¢; + @, + 0, = 0 for all (i, j) € 4 such
that X; = 1, &; = ¢; + ii; + U; = 0 otherwise, (%, 0) is
an optimal dual solution. The following reduced costs
are null in the optimal solution of the assignment
relaxation:

C-T,,D, = (1D, + 127,, + 171)1 = 0,
C-'Dzrn = Cp,T, + 121)2 4 07*" ={

= (1,0, t i,

éTn-HDZ 1 + 602 = 0; and

= chTn+1 + 121)l + 57‘ = 0

n+l

CD) Ty

Therefore, for every trip 73, j = 1, ..., 2n, there is
a path with null reduced costs leaving from each depot,
visiting trip 7; (and possibly others), and coming back
to the same depot, as shown in Figure 2. Hence, the

Figure 2. Paths with zero length in terms of the
reduced costs.

i,

shortest path relaxation does not improve the assign-
ment bound and the additive bound is equal to the
latter. Since the ratio zapp/v(MDVSP) is null for this
family of problems, this completes the proof that the
additive bound can be arbitrarily bad.

Corollary 1. The worst-case ratio v(AP)/v(MDVSP)
can be arbitrarily bad.

Proof. From Theorem 3, since v(AP) < Zapp.

We now make the realistic assumption that when-
ever there is a path with travel time L from a depot
D, to the starting point of a trip 7, there is also a
shorter return path with a travel time less than or
equal to L from the ending point of trip T; to depot
D,. A graph with shorter return paths can be obtained,
for instance, if the travel times in the street network
are symmetrical (in particular, if every street segment
can be traversed in both directions and with the same
travel time) and the duration of each trip is included
in the duration of its incoming arcs. With such arc
durations, the cost of the optimal solution includes
both productive travel times and nonproductive times
between trips and between trips and depots. In most
cities, even in the presence of one-way streets, the
shorter return path assumption is satisfied in the large
majority of the trips and, when it is violated, the
return paths are not often too much larger than half
of the overall path.

Theorem 5. Under the shorter return path assumption,
v(AP)/u(MDVSP) = 1/2 and this bound is tight.

Proof. A feasible solution to MDVSP can be built
from the solution of the assignment relaxation by
taking the latter and transforming each chain leaving
from a depot Dy, performing trips T}, ..., T}, and
arriving at depot Dy, into a cycle leaving from D,
performing the same trips and coming back to
Dy, after T),. Under the shorter return path assump-
tion, the length of this cycle is at most twice the length
of the original chain, Then, yMDVSP) < 2 - v(AP).

We now show that this bound is tight, i.e., it can be
attained. We consider here a family {I%(n)} of in-
stances of MDVSP with the same structure as {T''(n)},
except for the travel times which are taken as: j, from
depot D, to the starting point of trip Tji—iyn, J = 1,

.., n; j, from the ending point of trip Ty,
j=1,..., ntodepot D; n + | — j, from depot
Dini(Dy, if k = 2) to the starting point of trip Tj+x-1n;
j=1,...,n;n+ 1 —j from the ending point of trip
J=1,..., ntodepot Dw (D), if kK = 2),and j — i,
from the ending point of trip 7.1y to the starting
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point of trip Tjvx-1), for all 1 < j <j < n. The optimal
solutions to MDVSP and its assignment relaxation
are the same as for the family {I'*(n)}. Then,
vMDVSP) =2 . 2n)and v(AP) =2 - (n + 1). We
now take the limit of the ratio v(AP)/u(MDVSP) for
the family {T"%(n)} of problems:

fim o(AP)/o(MDVSP) = lim 2 - 1;—' .2my=1/2.

This completes the proof that under the shorter return
path assumption the worst-case ratio 1/2 associated
with the assignment bound is tight.

We will show that the same result holds for the
additive bound. As for Theorem 4, the proof is based
on the exhibition of a particular optimal dual solution
to the assignment relaxation of every instance of
{T'}(n)}, such that all shortest paths computed in terms
of the reduced (residual) costs defined by this dual
solution are null. Therefore, they do not improve the
assignment bound.

Theorem 6. Under the shorter return path assumption,
zapp/V(MDVSP) = 1/2 and this bound is tight.

Proof. Take the following values for the dual variables
u;foralli€ V,and v;forallj€ V:

ftp, = 0p, = 0;

iy, =—05;,=j, forallj=1,2,...,n-1,
ir, = 0y, = —n;

ip, = 0p, =n — 1

iy, = Op,,,,_, forallj=n+1,...,2n;and
5T)-ﬂrm,_,- forallj=n+1,...,2n

Again, since &; = ¢; + #;+ 0, = 0 for all (i, j) € 4
such that %, = 1, &; = ¢; + @ + ; = 0 otherwise,
(i1, 0) is an optimal dual solution. The reduced costs
¢r,p,» €p,T,s C1,,.D,» and Cp,T,,, are null in the optimal
solution of the assignment relaxation.

Therefore, as for Theorem 4, for every trip T}, j =
1, ..., 2n, there is a path with null reduced costs
leaving from each depot, visiting trip 7; (and possibly
others), and coming back to the same depot. Hence,
the additive bound is equal to the assignment bound.
Since v(MDVSP) < 2 . v(AP) under the shorter return
path assumption and v(AP) < zapp, this completes
the proof that zapp/v(MDVSP = 1/2 and this bound

is tight.

i,
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6. CONCLUSIONS

We have given a new formulation to the multiple-
depot vehicle scheduling problem as a set partitioning
problem with side constraints, whose continuous re-
laxation can be solved by column generation. We have
also established the relationship between the bounds
obtained by the assignment relaxation, the shortest
path relaxation, the additive technique, Lagrangian
decomposition, and column generation. We have
shown that the additive bound technique cannot pro-
vide tighter bounds than those obtained by Lagrangian
decomposition, in the framework in which it has been
used so far, and not better than the linear program-
ming bound in the case of the MDVSP.

The column generation approach allows for effi-
ciently solving the linear relaxation, without introduc-
ing other additional relaxations (e.g., the shortest path
and assignment relaxations), as in the case of the
additive bound technique. In fact, the column gener-
ation decomposition technique separates the flow con-
straints from the disjunctive constraints associated
with the set partitioning formulation. This allows the
use of efficient algorithms for solving the flow sub-
problems, leaving a small problem to be solved by
linear programming. Moreover, the column genera-
tion bound simultaneously captures both the assign-
ment and path constraints, contrarily to the additive
bound technique which takes them into account
one-at-a-time.

We have also shown that the column generation
bound v(MDVSP) is at least as good as the addi-
tive bound zapp. The quality of the lower bounds
provided by column generation is very good in prac-
tice and does not deteriorate with the increase in the
number of trips or depots. We have exactly solved
problems with up to 300 trips and 6 depots, which are
four to five times larger than those solved on a pre-
vious work on a faster machine. The quality of the
column generation bound is partly due to the structure
of the set partitioning constraints (11) of MDVSP’.
Let pi, p», and p; be three columns, each associated
with a circuit visiting two out of three trips 7,, T,
and T, in this order. Without loss of generality, sup-
pose that p, visits 7,, then T}, p, visits T,, then T,
and p; visits T) then T.. Since these three trips are
pairwise compatible, there is also a circuit p, visiting
T,, next T,, and then T.. This special structure of the
set partitioning constraints of MDVSP’ eliminates
many fractional solutions from its set of optimal
solutions, and explains why the integrality gaps re-
ported in the Section 4 are much smaller than those
usually observed for other, more general set partition-
ing problems.
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We also considered the worst-case behavior of lower
bounds, with respect to the cost of the optimal integer
solution. This is an interesting type of analysis, which
has not received too much attention. In the case of
the MDVSP, we studied the assignment bound, the
shortest path bound, and the additive bound based on
the assignment and shortest path relaxations. We have
shown that this additive bound can be arbitrarily bad
in the general case, and as bad as 50% in the symmet-
ric case.

Concerning possible generalizations and extensions
of this work, we notice that the software GENCOL is
able to take into account additional constraints such
as time windows, maximum capacity, precedence
and coupling, duration, and resource consumption.
Duration constraints are associated, e.g., to regulations
concerning bus drivers, while length constraints are
associated, e.g., to carburant consumption. Such ad-
ditional constraints are dealt with by specialized short-
est path algorithms for constrained shortest path prob-
lems during the column generation procedure. The
approach proposed for the solution of the MDVSP
could also be extended to scheduling problems with
several types of vehicles. In that case, each depot
would correspond to a different vehicle with a type-
dependent cost.
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