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Abstract A divisible load is an amount W ≥ 0 of computational work that can be

arbitrarily divided into chunks and distributed among a set P of worker processors

to be processed in parallel. The Divisible Load Scheduling Problem consists in (a)

selecting a subset of active workers, (b) defining the order in which the chunks will

be transmitted to each of them, and (c) deciding the amount of load αi that will

be transmitted to each active worker, so as to minimize the makespan, i.e., the total

elapsed time since the master began to send data to the first worker, until the last

worker stops its computations. We propose a biased random-key genetic algorithm for

solving the divisible load scheduling problem. Computational results show that the

genetic algorithm outperforms the best heuristic in the literature.
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24105, Brazil
E-mail: tfn@dcc.ufmg.br

Mauricio G. C. Resende
Mathematical Optimization and Planning, Amazon.com
333 Boren Avenue North, Seattle, WA 98109, USA (work of this author was done when he was
employed by AT&T Labs Research)
E-mail: resendem@amazon.com

Celso C. Ribeiro
Universidade Federal Fluminense, Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil
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1 Introduction

A divisible load is an amount W ≥ 0 of computational work that can be arbitrarily

divided and distributed among different processors to be processed in parallel. The

processors are arranged in a star topology and the load is stored in a central master

processor. The latter splits the load into chunks of arbitrary sizes and transmits each of

them to other processors, called workers. The master does not process the load itself.

The master can only send load to one worker at a time. Any worker can only start

processing after it has completely received its respective chunk of the load. The workers

are heterogeneous in terms of processing power, communication speed, and setup time

for start communicating with the master. Not all available processors should necessarily

be used for processing the load.

The Divisible Loading Scheduling Problem (DLSP) was introduced in [12], moti-

vated by an application in intelligent sensor networks. Applications of DLSP arise from

a number of scientific problems, such as parallel database searching [11], parallel image

processing [25], parallel video encoding [26,35], processing of large distributed files [37],

and task scheduling in cloud computing [28], among others.

In this work, we deal with the same DLSP variant treated in [1, 10]. Let P =

{1, ..., n} be the set of worker processors indices. Each worker i ∈ P has (i) a setup

time gi ≥ 0 to start the communication with the master, (ii) a communication time

Gi ≥ 0 needed to receive each unit of the load from the master and (iii) a processing

time wi ≥ 0 needed to process each unit of the load. Therefore, it takes gi + αi · Gi

units of time for the master to transmit a load chunk of size αi ≥ 0 to the worker i ∈ P .

Furthermore, it takes an additional wi · αi units of time for this worker to process the

chunk of load assigned to it.

The scheduling problem consists of (a) selecting a subset A ⊆ P of active workers,

(b) defining the order in which the chunks will be transmitted to each active worker

and (c) deciding the amount of load αi that will be transmitted to each worker i ∈ A,

so as to minimize the makespan, i.e., the total elapsed time since the master began

to send data to the first worker, until the last worker stops its computations. This

problem was proved to be NP-hard in [42].

Since the load can be split arbitrarily, all workers stop at the same time in the

optimal solution [5]. In addition, if the order in which the chunks are transmitted to

the workers is fixed, then the best solution can be computed in O(n) time, using the

AlgRap algorithm developed in [1]. In other words, given a permutation of the workers

in P , AlgRap computes the set of active workers and the amount of load that has to

be sent to each of them to minimize the makespan. Therefore, DLSP can be reduced

to the problem of finding the best permutation of the processors, i.e., the one which

induces the minimum makespan. In order to find this permutation, we propose a biased

random-key genetic algorithm [18,19,22], which has been successfully used for solving

many permutation based combinatorial optimization problems [17,19–21,23,30].

The paper is organized as follows. Related work is reviewed in the next section. The

proposed heuristic is described in Section 3. Computational experiments are reported

and discussed in Section 4. Concluding remarks are drawn in the last section.



2 Related work

There are many variants of DLSP in the literature. Divisible load scheduling may be

performed in a single round or in multiple rounds. In the single round case [1, 3–5, 7,

9, 10, 13, 15, 16, 24, 27, 32, 36, 38, 39], each active worker receives and processes a single

chunk of the load. In the multi-round case [1, 4, 6, 8, 14–16, 31, 33, 39–41], each active

worker receives and processes multiple chunks of load. After the master finishes the

transmission of the first round of load to all active workers, it immediately starts the

transmission of the next batch of load chunks following the same order, until all the

load is distributed among the workers.

The workers may be homogeneous or heterogeneous. If the workers are homoge-

neous, the values of gi, Gi, and wi are the same for all processors i ∈ P [4,8,9,24,40,41].

Contrarily, in the heterogeneous case the values of gi, Gi, and wi may be different for

each worker [1, 3, 5, 6, 10,13–16,27,31–33,36,38–41].

The system can be dedicated or non-dedicated. When the system is dedicated, it is

assumed that all resources (processors, memory, network, etc.) are used to process a

single computational load [1, 5–7, 9, 10, 13, 15, 16, 31, 36, 38–41]. Non-dedicated systems

may be used to simultaneously process different computational loads [6, 7, 32].

In this work, we consider the single round DLSP with dedicated and heterogeneous

workers [1, 4, 5, 10, 15, 38, 42], that was proved to be NP -hard in [42]. Blazewicz and

Drozdowski [10] showed that once a permutation of the workers is given, a solution

with minimum makespan can be obtained in O(n log n) time, where n = |P | is the

number of workers. Later, Abib and Ribeiro [1] proposed the faster AlgRap algorithm

that finds this solution in O(n) time.

Non-linear programming formulations for the single round DLSP with dedicated

and heterogeneous workers was proposed in [13]. The first mixed integer linear pro-

gramming formulation was proposed in [4] and was later improved and extended in [1].

Computational experiments reported in [1] have shown that the CPLEX branch-and-

cut algorithm based on this formulation was able to find optimal solutions for 490 out

of 720 instances with up to 160 processors. However, for the largest unsolved instances,

the computational gaps were very high, which motivated the development of heuristics

for solving DLSP.

To the best of our knowledge, the best heuristic in the literature for the DLSP

variant studied in this paper is the HeuRet algorithm of Abib and Ribeiro [1]. At each

iteration, their algorithm (i) estimates the performance ei of each worker in i ∈ P and

(ii) builds a solution by taking the processors in P in a non-increasing order of the ei
values. The algorithm sets ei = Gi, for all i ∈ P , in the first iteration and makes use

of the exact AlgRap algorithm to compute an initial solution s0 with makespan T0.

Next, at each forthcoming iteration k, the estimated performance ei of each worker

i ∈ P is updated from the values of gi, wi, Gi, and Tk−1 and a new solution with

makespan Tk is built by algorithm AlgRap considering the new order defined on the

workers. The procedure stops when Tk−1 < Tk, i.e. when the new solution degenerates

the makespan of the previous one.

The heuristic proposed in the next section improves upon HeuRet because, instead

of defining a greedy local search on the performance estimation of the workers, it

performs a global search in the space of worker permutations in order to find the

permutation that induces the optimal or a near-optimal solution.



3 Biased random-key genetic algorithm

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA), were

first introduced in [2] for combinatorial optimization problems whose solutions can be

represented by a permutation vector. Solutions are represented as vectors of randomly

generated real numbers called keys. A deterministic algorithm, called a decoder, takes

as input a solution vector and associates with it a feasible solution of the combinatorial

optimization problem, for which an objective value or fitness can be computed. Two

parents are selected at random from the entire population to implement the crossover

operation in the implementation of a RKGA. Parents are allowed to be selected for

mating more than once in a given generation.

A biased random-key genetic algorithm (BRKGA) differs from a RKGA in the way

parents are selected for crossover [19]. In a BRKGA, each element is generated combin-

ing one element selected at random from the elite solutions in the current population,

while the other is a non-elite solution. The selection is said biased because one parent

is always an elite individual and has a higher probability of passing its genes to the

new generation.

The BRKGA-DLS biased random-key genetic algorithm for DLSP evolves a pop-

ulation of chromosomes that consists of vectors of real numbers (keys). Each solution

is represented by a |P |-vector, in which each component is a real number in the range

[0, 1] associated with a worker processor in P . Each solution represented by a chromo-

some is decoded by a heuristic that receives the vector of keys and builds a feasible

solution for DLSP using algorithm AlgRap [1]. Decoding consists of two steps: first,

the processors are sorted in a non-decreasing order of their random keys; next, the

resulting order is used as the input for AlgRap. The makespan of the solution provided

by AlgRap is used as the fitness of the chromosome.

We use the parametric uniform crossover scheme proposed in [34] to combine two

parent solutions and produce an offspring. In this scheme, the offspring inherits each of

its keys from the best fit of the two parents with probability 0.60 and from the least fit

parent with probability 0.40. Instead of the mutation operator, the concept of mutants

is used: a fixed number of mutant solutions are introduced in the population in each

generation, randomly generated in the same way as in the initial population.

The keys associated to each worker are randomly generated in the initial popula-

tion. At each generation, the population is partitioned into two sets: TOP and REST .

Consequently, the size of the population is |TOP | + |REST |. Subset TOP contains

the best solutions in the population. Subset REST is formed by two disjoint sub-

sets: MID and BOT , with subset BOT being formed by the worst elements on the

current population. As illustrated in Figure 1, the chromosomes in TOP are simply

copied to the population of the next generation. The elements in BOT are replaced by

newly created mutants. The remaining elements of the new population are obtained

by crossover with one parent randomly chosen from TOP and the other from REST .

This distinguishes a biased random-key genetic algorithm from the random-key genetic

algorithm of Bean [2], where both parents are selected at random from the entire pop-

ulation. Since a parent solution can be chosen for crossover more than once in a given

generation, elite solutions have a higher probability of passing their random keys to

the next generation. |MID | = |REST | − |BOT | offspring solutions are created. In our

implementation, the population size was set to |TOP | + |MID| + |BOT | = 5 × |P |,

with the sizes of sets TOP , MID , and BOT set to 0.15 × 5 × |P |, 0.7 × 5 × |P |, and

0.15× 5× |P |, respectively, as suggested by Noronha et al. [30].



Fig. 1 Population evolution between consecutive generations of a BRKGA.

4 Computational experiments

We report computational experiments to assess the performance of the biased random-

key genetic algorithm BRKGA-DLS. This algorithm was implemented in C++. The

experiments were performed on a Quad-Core AMD Opteron(tm) Processor 2350, with

16 GB of RAM memory.

The set of instances used in the experiments was proposed in [1]. There are 120

grid configurations with n = 10, 20, 40, 80, 160 worker processors and eight combi-

nations of the parameter values gi, Gi and wi, i = 1, . . . , n, each of them rang-

ing either in the interval [1, 100] or in the interval [1000, 100000]. Three instances

were generated for each combination of n, gi, Gi, and wi. Six different values of the

load W = 100, 200, 400, 800, 1600, 3200 are considered for each grid configuration, cor-

responding to 18 instances for each combination of parameters gi, Gi and wi, and

amounting to a total of 720 test instances. Each heuristic was run ten times for each

instance, with different seeds for the random number generator of [29].

The first experiment consisted in evaluating if BRKGA-DLS efficiently identifies

the relationships between keys and good solutions and converges faster to near-optimal

solutions. We compare its performance with that of a multi-start procedure that uses

the same decoding heuristic as BRKGA-DLS. Each iteration of the multi-start proce-

dure, called MS-DLS, applies the same decoding heuristic of BRKGA-DLS, but using

randomly generated values for the keys. In this experiment, BRKGA-DLS was run for

1000 generations and MS-DLS for 1000× q iterations, where q = 5× |P | is the popu-

lation size of BRKGA-DLS. The average solution values found by BRKGA-DLS were

4.95% better than those provided by MS-DLS over the 720 instances. Also, the worst

(resp. best) solution values found by BRKGA-DLS were 5.98% (resp. 3.78) smaller

than the respective worst (resp. best) solution values obtained with MS-DLS. These

results indicate that BRKGA-DLS identifies the relationships between keys and good

solutions, making the evolutionary process converge to better solutions faster than

MS-DLS.

In the second experiment, we compared BRKGA-DLS with HeuRet and MS-DLS.

We first evaluated how many optimal solutions have been obtained by each heuristic



over the 720 test instances. The default CPLEX branch-and-cut algorithm based on

the formulation in [1] was also run for the 720 instances. Version 12.6 of CPLEX was

used and the maximum CPU time was set to 24 hours. CPLEX was able to prove the

optimality for 497 out of the 720 test instances. The first line of Table 1 shows that

BRKGA-DLS found optimal solutions for 413 instances (i.e. 83.1%) out of the 497

instances for which the optimal solutions are known, while HeuRet found 320 optimal

solutions and MS-DLS found only 177 of them. The second line of Table 1 gives the

number of instances for which each heuristic found the best known solution value. The

third line of this table shows the number of runs for which BRKGA-DLS and MS-

DLS found the best known solution values (we recall that HeuRet is a deterministic

algorithm, while the others are randomized). Finally, the last line of this table gives,

for each of the three heuristics, a score that represents the sum over all instances of

the number of methods that found strictly better solutions than the specific heuristic

being considered. The lower a score is, the best the corresponding heuristic is. It can

be seen that BRKGA outperformed both HeuRet and MS-DLS heuristics with respect

to the number of optimal and best solutions found, as well as with respect to the score

value. In particular, BRKGA-DLS obtained better scores than HeuRet for all but one

instance and found the best known solution values for 645 out of the 720 test instances,

while HeuRet found the best solution values for only 313 instances.

Table 1 Summary of the numerical results obtained with BRKGA-DLS, HeuRet and MS-DLS
for 720 test instances.

MS-DLS HeuRet BRKGA-DLS
Optimal values (over 497 instances) 177 320 413
Best values (over 720 instances) 189 313 645
Best values (over 7200 runs) 2166 - 6191
Score value 803 112 1

The third and last experiment provides a more detailed comparison between HeuRet

and BRKGA-DLS, based on 20 larger and more realistic instances with |P | = 320 and

W = 10, 000. The values of Gi and gi have been randomly generated in the ranges

[1, 100]and [100, 100, 000], respectively. However, differently from [1], the values of wi

have been randomly generated in the interval [200, 500]. These values are more realistic,

since the processing rate of a real computer is always larger than its communication

rate. In this experiment, BRKGA-DLS was made to stop after |P | generations with-

out improvement in the best solution found. The results are reported in Table 2. The

first column shows the instance name. The second and third columns display, respec-

tively, the makespan and the computation time (in seconds) obtained by HeuRet. The

next two columns provide the average makespan over ten runs of BRKGA, the corre-

sponding coefficient of variation, defined as the ratio of the standard deviation to the

average. The average computation time in seconds of BRKGA over ten runs is given

in the sixth column. The last column shows the percent relative reduction between

the average solution found by BRKGA-DLS with respect to that found by MS-DLS.

It can be seen that the average makespan obtained by BRKGA-DLS is always smaller

than that given by HeuRet. In addition, the coefficient of variation of BRKGA-DLS

is very small, indicating that it is a robust heuristic. The percent relative reduction of

BRKGA-DLS with respect to MS-DLS amounted to 3.19% for instance dls.320.10 and

to 2.38% on average.



As in real-life applications the load size may be very large, and the total commu-

nication and processing times may take many hours, reductions in the elapsed time of

this magnitude may be very significant. Although the running times of BRKGA-DLS

are larger than those of HeuRet, their average values never exceeded the time taken

by HeuRet by more than 30 seconds. Since practical applications of parallel process-

ing take long elapsed times, the trade-off between the reduction in the elapsed time

and this small additional running time needed by BRKGA accounts very favorably to

BRKGA-DLS. In addition, we notice that the BRKGA-DLS genetic algorithm itself

may be efficiently parallelized with a high speed-up and distributed over the set P of

processors, making its computation time irrelevant when compared with that of the

parallel application.

Table 2 BRKGA vs. HeuRet on the largest instances with 320 processors.

HeuRet BRKGA
Instance makespan time (s) makespan CV (%) time (s) reduction (%)
dls.320.01 312813.64 0.01 306613.22 0.04 27.24 1.98
dls.320.02 321764.07 0.01 313847.15 0.07 16.72 2.46
dls.320.03 402264.85 0.01 392059.46 0.11 23.72 2.54
dls.320.04 348474.15 0.01 341436.89 0.02 28.16 2.02
dls.320.05 342086.46 0.01 334946.37 0.03 21.67 2.09
dls.320.06 311824.17 0.01 305601.28 0.02 21.93 2.00
dls.320.07 325732.30 0.01 316467.42 0.02 23.19 2.84
dls.320.08 323171.95 0.01 315065.11 0.03 26.23 2.51
dls.320.09 312326.77 0.01 305948.81 0.02 25.03 2.04
dls.320.10 296984.47 0.01 287521.34 0.12 24.04 3.19
dls.320.11 290559.21 0.01 284822.15 0.04 20.56 1.97
dls.320.12 343076.56 0.01 333085.72 0.05 19.53 2.91
dls.320.13 287276.21 0.01 281525.27 0.04 22.77 2.00
dls.320.14 311054.47 0.01 303796.42 0.06 26.81 2.33
dls.320.15 362369.67 0.01 352642.18 0.04 20.41 2.68
dls.320.16 287083.60 0.01 281082.29 0.09 25.38 2.09
dls.320.17 339666.43 0.01 329893.61 0.04 23.53 2.88
dls.320.18 368795.14 0.01 361281.06 0.07 22.08 2.04
dls.320.19 347671.73 0.01 338075.70 0.03 27.59 2.76
dls.320.20 372427.24 0.01 364013.40 0.06 18.28 2.26
Averages 330371.15 0.01 322486.24 0.05 23.24 2.38

5 Conclusions

We considered the single round divisible load scheduling problem with dedicated and

heterogeneous workers. A new biased random-key genetic algorithm has been proposed

for the problem.

The BRKGA-DLS heuristic improves upon the best heuristic in the literature, since

it performs a global search in the space of worker permutations in order to find the

best order in which the active worker processors will receive load from the master.

Computational experiments on 720 test instances with up to 160 processors have

shown that BRKGA-DLS found optimal solutions for 413 instances (out of the 497 in-

stances where the optimal solution is known), while the HeuRet heuristic found optimal

solutions for only 320 of them. Moreover, BRKGA-DLS obtained better scores than



HeuRet for all but one instance and found solutions as good as the best known solution

for 645 out of the 720 test instances. To summarize, BRKGA-DLS outperformed the

previously existing HeuRet heuristic with respect to all measures considered in Table 1.

For the new set of larger and more realistic instances with 320 processors, BRKGA-

DLS found solution values 2.38% better than HeuRet on average. In addition, the

processing times of BRKGA-DLS are relatively small and never exceeded 30 seconds.

Therefore, parallel processing applications dealing with large amounts of data and

taking long elapsed times can benefit from BRKGA-DLS, since the additional running

time needed by BRKGA-DLS may result in a significant reduction in the makespan.
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