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Abstract. This work presents a hybrid improvement procedure for the bin pack-
ing problem and its application to the multiprocessor scheduling problem. This
heuristic has several features: a new lower bound; reductions; initial solutions
by reference to the dual problem; heuristics for load redistribution, and an im-
provement process utilizing tabu search. It improved the best known solutions
for many of the benchmark instances and found the largest number of optimal
solutions with respect to the other available approximate algorithms.

1. Introduction

Given a set N = {1, . . . , n} of items with weights wi (i = 1, . . . , n), the bin packing
(BP) problem consists of finding the minimum number m of bins of capacity C nec-
essary to pack the items without violating the capacity constraints. BP is known to be
closely related to the multiprocessor scheduling problem (P‖Cmax), which is the prob-
lem of scheduling n independent tasks with associated processing times wi on m parallel
identical processors with the objective of minimizing the maximum completion time of
a task (makespan). Both problems are NP-hard [Garey and Johnson, 1979]. They share
the same decision problem, which is to determine whether all items/tasks can be assigned
to m bins/processors with bin capacity/makespan equal to C. This kind of dual relation-
ship [Hochbaum and Shmoys, 1987, Scholl et al., 1997] is explored in this work.

The branch-and-bound procedure MTP [Martello and Toth, 1990] is a basic refer-
ence for BP. Another branch-and-bound procedure was proposed by Scholl et al. (1997).
Valério de Carvalho (1999) presented an exact algorithm based on colunm generation.
Schwerin and Wäscher (1999) proposed the procedure MTPCS which combines MTP
with the bound LCS derived from the cutting stock problem. Recently, Fleszar and Hindi
(2002) proposed a few new heuristics to BP. Dell’Amico and Martello (1995) developed
a branch-and-bound algorithm to exactly solve P‖Cmax.

In this work, we present a hybrid improvement procedure for the bin packing prob-
lem (HI BP) and its application to the multiprocessor scheduling problem (HI PCmax).
A new lower bound for BP is presented in Section 2. The full hybrid improvement heuris-
tic and its three phases is described in Section 3. Computational results, comparisons
with other heuristics for different classes of test problems and concluding remarks are
presented in Section 4.
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2. Lower Bound L�

A trivial lower bound to BP is given by L1 = �∑n
i=1 wi/C�. We propose a new destructive

bound [Scholl et al., 1997] for BP, based on the work of Dell’Amico and Martello (1995)
for P‖Cmax. We assume that the items are sorted in non-increasing order of their weights.
Given a lower bound m to the number of bins in a feasible solution, we attempt to establish
that no feasible solution using m bins exist, in which case this bound can be increased by
one. Let θ = maxq=1,...,n{q :

∑n
i=n−q+1 wi ≤ C} be an upper bound to the number of

items in any bin of a feasible solution to BP. The proofs of the following propositions and
theorems are given in Alvim (2003).

Proposition 1 If θ < �n/m� for some integer m, then any feasible solution to BP uses at
least m + 1 bins.

Proposition 2 Given an integer σ ≤ �n/m�, if C(σ) = �∑n
i=σ

wi

m−1
� > C, then any

feasible solution with m bins has at least σ items in each bin.

Proposition 3 Given an integer σ ≤ �n/m�, if
∑σ

i=1 wi ≤ C then there exists an optimal
solution using m bins having at least σ items in each bin.

The next theorem follows directly from Propositions 2 and 3:

Theorem 1

ϑ = max{ max
σ=1,...,�n/m�

{σ : C(σ) > C}, max
σ=1,...,�n/m�

{σ :
σ∑

i=1

wi ≤ C}}

is a lower bound to the number of items in any bin of a feasible solution using m bins.

The next two propositions show how the lower bound ϑ and the upper bound θ to
the number of items in any bin of any solution with m bins can be used to improve the
lower bound to the number of bins.

Proposition 4 Let mϑ = max{m − (n − ϑ · m), 0} be a lower bound to the number of
bins with exactly ϑ items. If �∑n

i=mϑ·ϑ+1
wi

(m−mϑ)
� > C, then m+1 is a valid lower bound

to the number of bins in the optimal solution.

If θ = ϑ + 1, each bin has either ϑ or θ items. If this is the case, the number of
mϑ of bins with exactly ϑ items and the number mθ of bins with exactly θ items may be
computed as the solution of the system (m = mθ + mϑ, n = θ · mθ + ϑ · mϑ) yielding
mϑ = (ϑ + 1) · m − n and mθ = n − ϑ · m. Then, a lower bound to the capacity needed
to accommodate the n items in m bins is given by

Cϑ(m) = max
{⌈ n∑

i=n−ϑ·mϑ+1

wi/mϑ

⌉
,
⌈ n∑

i=n−θ·mθ+1

wi/mθ

⌉}
.

Proposition 5 If θ = ϑ + 1 and Cϑ(m) > C, then m + 1 is a valid lower bound to the
number of bins in the optimal solution.

The next theorem follows directly from Propositions 1, 4, and 5:



Theorem 2 Let m be a lower bound to the number of bins. Then,

Lϑ(m) =




m + 1, if any of the conditions (a), (b), or (c) below holds:
(a) θ < �n/m�
(b) �∑n

i=mϑϑ+1
wi

(m−mϑ)
> C�

(c) θ = ϑ + 1 and Cϑ(m) > C;
m, otherwise

is an improved valid lower bound to the number of bins in a feasible solution.

3. The two hybrid improvement heuristics: HI BP and HI PCmax
We summarized below the basic steps of HI BP and HI PCmax. Each procedure has one
specific preprocessing step and share the same core procedure formed by the construction,
redistribution and improvement phases, which use, in addition to the problem data, the pa-
rameters: target value for the number of bins (targetm) and target value for the makespan
(targetC). A solution is feasible to BP if the makespan is no greater than targetC (bin
capacity). A solution is feasible to P‖Cmax if it uses no more than targetm bins.

• Preprocessing for HI BP, given n items with weights wi and bin capacity C: Use
reduction procedure MTRP [Martello and Toth, 1990]. Compute an upper bound
ubm to the number of bins m. Compute lower bounds to m: L3 by Martello
and Toth (1990), L

(20)
∗ by Fekete and Schepers (2001) and Lϑ (Section 2). Set

targetC ← C and targetm ← max{L3, L
(20)
∗ , Lϑ}. If targetm = ubm, then stop.

• Preprocessing for HI PCmax, given n tasks with processing times wi and m pro-
cessors: Compute upper bound ubC to the makespan C. Compute lower bounds
to C: L3, LHS and Lϑ as described by Dell’Amico and Martello (1995). Set
targetm ← m and targetC ← max{L3, LHS, Lϑ}. If targetC = ubC , then stop.

• Core procedure, given n, wi, targetC and targetm:
– Construction: build a feasible solution to P‖Cmax.
– Redistribution: if the current solution is not feasible to BP, then apply load

balancing/unbalancing strategies to improve bin usability.
– Improvement: if the current solution is not feasible to BP, then use a tabu

search heuristic to attempt to knock down capacity violations.
• Stopping criterion: if the current solution is feasible to BP, then stop; otherwise

HI BP sets targetm ← targetm + 1 and HI PCmax sets targetC ← targetC + 1;
go back to the core procedure.

3.1. Construction phase and upper bounds

Let S be a (not necessarily feasible) solution to BP with m bins. Associated with solution
S there is a family of subsets B1, . . . , Bm where Bj is used to denote both the j-th bin
itself and the set of items it contains, for every j = 1, . . . , m. Let wS(j) =

∑
i∈Bj

wi be
the total weight of the items placed in bin Bj in solution S, j = 1, . . . , m. Then, each
bin Bj is in exactly one of the following situations: violated (wS(j) > C), complete
(wS(j) = C), incomplete (C > wS(j) > 0) or empty (wS(j) = 0). A bin is saturated if it
is violated or complete. Bins which are not violated are said to be feasible.

The following construction heuristics were used for building feasible solutions
and upper bounds to P‖Cmax. All of them start with m open bins and investigate the
items in non-increasing order of their weights.



• Dual Best-Fit Decreasing (DBFD): select the bin with smallest sufficient residual
capacity; if none is available then select the lightest bin.

• Dual Best 3-Fit Decreasing (DB3FD): if there is an empty bin, then select it to
place the current item. Otherwise, perform an attempt to fill exactly each bin, by
identifying a pair of yet unselected items whose sum of their weights is equal to
the residual capacity of the bin. For the remaining unselected items, insert the
current item into the heaviest non-saturated bin in which it fits; if none is available
then the lightest bin is selected.

• Dual Worst-Sum-Fit Decreasing (DSSFD): if there is an empty bin, then insert
the current item into this bin and perform an attempt to fill it by solving a subset
sum problem (using heuristic MTSS of Martello and Toth (1990)). Otherwise, the
current item is inserted into the lightest bin.

• LPT: this is the Longest Processing Time heuristic by Graham (1969).
• AHS: this is the the (1/5 + 2−k)-approximation algorithm for the minimum

makespan problem proposed by Hochbaum and Shmoys (1987).

Two of the fastest heuristics for the approximate solution of BP are the well-known
First-Fit Decreasing (FFD) and Best-Fit Decreasing (BFD) greedy algorithms, see e.g.
Martello and Toth (1990) for a review. HI BP uses BFD in the preprocessing step and
heuristics DBFD, DB3FD, DWSFD and LPT in the construction phase. HI PCmax uses
heuristics LPT, AHS and DWSFD in the preprocessing and construction phases.

3.2. Redistribution phase

Whenever a feasible solution to P‖Cmax is not feasible to BP, load balancing and load
unbalancing sub-strategies are applied to improve bin usability by load redistribution.

Load balancing: given any pair of bins of the current infeasible solution S, a new
solution S ′ can be obtained by redistributing the items in these bins, so as to minimize the
absolute value of the difference of their weights. Since the latter amounts to a number par-
titioning problem, an approximate algorithm provides a significant efficiency advantage
for computing a suboptimal redistribution of the items in these two bins. The differencing
method of Karmarkar and Karp (1982)is applied to all pairs of bins of the current solution,
in which one of them is violated and the other is non-saturated to more nearly equalize
the weights of items assigned to these restricted pairs of bins and minimize the maximum
deviation. The search stops when no further improvement is possible. This procedure can
make an infeasible solution feasible.

Load unbalancing: given n items with weights wi, and an integer C, the maximum
subset sum problem consists of finding a feasible subset of items whose sum of their
weights is as close as possible to C. For every pair of incomplete bins in the current
solution S, the load unbalancing sub-strategy attempts to redistribute their items without
making them infeasible and creating more available space in the bin which ends up as
the lighter among the two bins. We create a temporary set of available items, formed by
all the items in this pair of bins, and apply the polynomial-time approximation scheme
MTSS(3) of Martello and Toth (1990). If the sum of the weights of the subset found
by the above algorithm is greater than the weight of the heaviest bin originally in the
pair, then the composition of the two original bins is changed and a new solution S ′ is
obtained. One bin receives all items in the solution of the subset sum problem, while



the other receives the remaining items. The search stops when no further improvement is
possible, after all pairs of incomplete bins have been evaluated. Although this procedure
cannot make an infeasible solution feasible, it makes the current solution more susceptible
to improvement in the next phase by creating more available space for large items.

3.3. Improvement phase

We apply a tabu search strategy to reduce capacity violations in the current solution. For
any solution S, we denote by ES =

∑m
j=1 max{0, wS(j)−C} the sum of all bin capacity

violations. ES = 0 if S is feasible to BP. Starting from an infeasible solution S, we
investigate neighborhoods defined by swap moves which exchange pairs of items, one of
them always from a violated bin. For any item i = 1, . . . , n, we denote by S(i) the index
of the bin were this item is currently placed in solution S. Each move i ↔ k is defined by
an ordered pair (i, k) of items from different bins. The first element in the pair is always
an item in the target violated bin, whose excess deviation we want to reduce. The solution
S ′ resulting from applying this move to solution S is characterized by S ′(i) = S(k),
S ′(k) = S(i), S ′(�) = S(�) ∀� 
= i, k. We only consider moves that decrease the excess
deviation of the target violated bin, i.e., swap moves for which wi > wk. The value
∆(i, k) = max{wS′(S ′(i))−C, 0}+ max{wS′(S ′(k))−C, 0} gives the excess violation
associated exclusively with the bins where these items are placed after their exchange.

We consider six types of moves, one for each possible combination of the bins
situation after a move i ↔ k: (1) complete and complete, (2) complete and incomplete,
(3) incomplete and incomplete, (4) complete and violated, (5) incomplete and violated
and (6) violated and violated. For each move type we consider three criteria: (i) the
associated move value ∆(i, k) (≥ 0), (ii) the number of violated bins (0, 1 or 2) and
(iii) the number of complete bins (0, 1 or 2). We now discuss what qualifies a candidate
move as being better than another. In principle, moves leading to pairs with less violated
bins are preferable. Although less important, moves leading to pairs with more complete
bins are also preferable. The proposed strategy categorizes each possible move by a
“priority”. For a given target violated bin whose neighborhood is being investigated,
one chooses the move with the higher priority, breaking ties in favor of the bin with
the smaller excess deviation ∆(i, k). Inasmuch as it may not be possible to establish
a total order over all possible moves (since one move type may be better than another
with respect to one criterion, but not with respect to the other), two different potential
priority values are assigned to some move types and one of them is randomly selected
with probability 1/2 at each iteration. For example: a move of type (5), leading to one
violated bin with ∆(i, k) = 3, is better or worst than a move of type (6), leading to
two violated bins with ∆(i, k) = 2? It is not clear. The proposed rules allow different
choices at different iterations, avoiding inflexible preferences that could exclude some
search paths. These rules are particularly useful in the context of a solution method which
accepts moves leading to infeasible solutions that may eventually be made feasible at a
later step. Another tabu search feature used in this work is logical restructuring based on
anticipatory analysis [Glover and Laguna, 1997].

Whenever a move i ↔ k is performed, we forbid for a duration of TabuTenure
iterations all moves that would reinsert either item k into bin S(k) or item i into bin
S(i), where TabuTenure is randomly chosen from a discrete uniform distribution in
the interval [0.8 · √n, 1.2 · √n]. The improvement phase stops if a feasible solution



Table 1: HI BP vs. Perturbation MBS’ + VNS [Fleszar and Hindi, 2002]
HI BP Perturbation MBS’ + VNS

Group # opt max abs dev time (s) opt max abs dev time (s)
Group-I 160 160 0 0.52 159 1 0.03
Group-II 1210 1210 0 0.15 1170 2 0.16

Total 1370 1370 0 0.19 1329 2 0.14

is found or if a total of MaxIterations tabu search iterations have been performed
without improvement in the total excess violation.

4. Computational experiments and concluding remarks

We report computational experiments for BP and for P‖Cmax. Heuristic HI BP sets
MaxIterations=4000 and HI PCmax sets MaxIterations = 1000. They were
coded in C and compiled with version 2.95.2 of gcc, using the optimization flag -O3.
Experiments were performed on a 1.7 GHz Pentium IV, 256 Mbytes of RAM memory.

We consider four groups of test problems for BP. Group-I, distributed by the
OR Library (http://mscmga.ms.ic.ac.uk/jeb/orlib/binpackinfo.html), has 160 instances.
Group-II is composed by 1210 instances available from Scholl and Klein (2003). Group-
III is composed by 217 instances distributed by SICUP (2003) and Group-IV is com-
posed by 100 instances of each of 145 ffd-hard and extremely-ffd-hard classes proposed
by Schwerin and Wäscher (1997). We compare our results with those obtained by Pertur-
bation MBS’+VNS [Fleszar and Hindi, 2002] on a 400 MHz Pentium, for 1370 instances
(Group-I and Group-II). Table 1 gives, for each group, the number of instances and, for
each heuristic, the number of instances for which the optimal solution was found, the max-
imum absolute deviation, and the average computation times in seconds. HI BP found
optimal solutions for all instances, 41 additional instances than Perturbation MBS’+VNS.
HI BP also solved four open instances from Group-II, as reported by Scholl and Klein
(2003). We also compared our results with those reported by SICUP (2003) for the in-
stances of Group-III. HI BP improved the best results for 11 instances and found the same
results for the others. HI BP benefits of using strong lower bounds, as the search stops
as soon as it identifies a proven optimal solution. We remark that the new lower bound
Lθ identified 18 optimal solutions of Group-II and 37 optimal solutions of Group-III. An
extension of this work [Alvim et al., 2004] compared our results with those obtained by
MTPCS [Schwerin and Wäscher, 1999] for Group-IV. HI BP performed consistently bet-
ter than MTPCS, solving to optimality 97.9% of the 14500 instances against 84.2% by
MTPCS.

We considered two groups of test problems for P‖Cmax. Each group is
formed by ten test problems for each of 39 classes. These classes are character-
ized by different combinations of m ∈ {5, 10, 25} and n ∈ {10, 50, 100, 500, 1000}
with processing times randomly generated in the intervals [1,100], [1,1000], and
[1,10000]. The two groups differ by the distribution of the processing times: uni-
form [França et al., 1994] and non-uniform [Necciari, 2001]. We compared the new
heuristic HI PCmax [Alvim and Ribeiro, 2004] with the branch-and-bound code (B&B)
by Dell’Amico and Martello (1995) with the number of backtracks set at 4000. Table 2
summarizes the main results obtained by algorithms HI PCmax and B&B on the same



Table 2: Comparative results: HI PCmax vs. B&B.
HI PCmax B&B

opt max abs rel avg time opt max abs rel avg time
Group ti ∈ error error (s) error error (s)

[1, 100] 130 0 0.0000 0 130 0 0.0000 0
uniform [1, 1000] 126 1 1.36e-05 0.02 126 3 2.22e-05 0.03

[1, 10000] 110 12 3.46e-05 0.15 107 173 4.33e-04 0.17
[1, 100] 120 7 6.79e-04 0.14 87 20 2.12e-03 2.12

non-uniform [1, 1000] 128 25 1.03e-04 0.20 79 152 1.77e-03 1.52
[1, 10000] 121 253 1.04e-04 0.72 77 880 1.80e-03 3.99

computational environment. For each group of test problems and for each algorithm, it
indicates the number of optimal solutions found over the 130 instances, the maximum
absolute errors (w.r.t. the best lower bound), the average relative errors, and the average
computation times in seconds. The superiority of HI PCmax is clear for the non-uniform
instances. It not only found better solutions, but also in smaller computation times.

Another experiment was done to investigate the effectiveness of the preprocessing,
construction, redistribution and improvement phases of HI BP and HI PCmax. The main
results showed that: (i) the redistribution phase alone is a good heuristic for BP (472
optimal solutions out of 581); (ii) the construction heuristic DWSFD revealed itself as a
very effective approximate algorithm for P‖Cmax (556 optimal solutions out of 780); (iii)
the improvement phase is essential to solve difficult instances.

The effectiveness of our hybrid improvement procedure is mainly due to the com-
bination of several features: reduction, use of several known and new lower bounds, initial
solutions by reference to the dual problem; heuristics for load redistribution based on dif-
ferencing and unbalancing; and an improvement process utilizing tabu search. The move
selection strategy used by the tabu search is a major contribution of this work and very
likely can be applied to other problems in similar situations. HI BP and HI PCmax com-
pare favorably with other approaches. We note that the best results previously reported in
the literature for BP were not all of them obtained by a single heuristic. Although other
heuristics were able to find similar results for some classes of test problems, HI BP found
the largest number of optimal solutions with respect to the other available approximate
algorithms. The improvement heuristic HI PCmax outperformed the other approximate
algorithms in the literature, in terms of solution quality and computation times.

We conclude that the main contributions of this work are as follows: a new lower
bound for BP; a good load redistribution heuristic for BP; the move selection strategy used
by the tabu search; a good construction heuristic for P‖Cmax and two efficient and robust
improvement heuristics for the bin packing and the multiprocessor scheduling problems.
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