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Abstract. The Brazilian soccer tournament is organized every year by
the Brazilian Soccer Confederation. Its major sponsor is TV Globo, the
largest media group and television network in Brazil, who imposes con-
straints on the games to be broadcast. Scheduling the games of this
tournament is a very constrained problem, with two objectives: breaks
minimization (fairness) and the maximization of the revenues from TV
broadcasting. We propose an integer programming decomposition strat-
egy to solve this problem to optimality. Numerical results obtained for
the 2005 and 2006 editions of the tournament are reported and compared.

1 Introduction

Soccer is the most widely practiced sport in Brazil. The yearly Brazilian
soccer tournament is the most important sport event in the country.
It is organized by the Brazilian Soccer Confederation (CBF). Its major
sponsor is TV Globo, the largest media group and television network in
Brazil, who imposes constraints on the games to be broadcast.

The most attractive games are those involving a subset of elite teams
with more fans and, consequently, with larger broadcast shares. Games
involving teams from São Paulo and Rio de Janeiro (the two largest cities
in Brazil) are of special interest to TV Globo, due to larger revenues from
advertising.

The competition lasts seven months and is structured as a compact mir-
rored double round robin (MDRR) tournament [3]. It is played by n
teams, where n is an even number (n = 24 in 2004, n = 22 in 2005, and
n = 20 in 2006). There are 2n − 2 rounds and each team plays exactly
once in each round. There are at most two rounds of games per week.
Each team faces every other twice: once at home and the other away.
If team a plays against team b at home (resp. away) in round k, with



k < n, then team a plays against team b away (resp. at home) in round
k + n − 1. We refer to [3] for a recent survey on the sport scheduling
literature.

The revenues and the attractiveness of the tournament strongly depend
on the schedule of the games. The organizers and the sponsors search for
a schedule optimizing two different objectives. CBF attempts to maxi-
mize fairness, by minimizing the number of breaks along the tournament
(breaks minimization objective). A break occurs whenever a teams plays
two consecutive home games or two consecutive away games, see e.g. [8].
TV Globo aims to maximize its revenues, by maximizing the number of
relevant games it is able to broadcast (broadcast objective). The schedule
must also satisfy a number of hard constraints.

We propose an integer programming solution approach for solving this
scheduling problem, based on the generation of feasible home-away pat-
terns. The detailed problem formulation is presented in Section 2. The
solution strategy is described in Section 3. Numerical results obtained
for real-life instances corresponding to the 2005 and 2006 editions of the
tournament are reported and compared in Section 4. Concluding remarks
are drawn in the last section.

2 Problem statement

We consider both the 2005 and 2006 editions of the competition, with
respectively n = 22 and n = 20 participating teams. Every team has
a home city and some cities host more than one team. Some teams are
considered and handled as elite teams, due to their number of fans, to
the records of their previous participations in the tournament, and to the
value of their players. There are weekend rounds and mid-week rounds.

São Paulo and Rio de Janeiro are the two largest cities in Brazil (with
more fans and, consequently, generating larger revenues from advertising)
and both of them have four elite teams. Games cannot be broadcast to
the same city where they take place and only one game per round can
be broadcast to each city. Consequently, TV Globo wants to broadcast
to São Paulo (resp. Rio de Janeiro) games in which an elite team from
São Paulo (resp. Rio de Janeiro) plays away against another elite team
from another city. Such games will be referred to as TV games.

Belém is a city very far away from São Paulo and Rio de Janeiro. TV
Globo is not willing to broadcast games taking place at Belém, due to
the high logistical costs. Besides following the structure of a MDRR
tournament, the schedule should also satisfy other hard constraints:

1. Every team playing at home (resp. away) in the first round plays
away (resp. at home) in the last round.

2. Every team plays once at home and once away in the two first rounds
and in the two last rounds.



3. After any number of rounds during the first half of the tournament,
the difference between the number of home games and away games
played by any team is either zero or one (i.e., the number of home
and away games is always balanced in the first n − 1 rounds).

4. Some pairs of teams with the same home city have complementary
patterns (i.e., whenever one of them plays at home, the other plays
away).

5. Flamengo and Fluminense (two elite teams from Rio de Janeiro that
share the same stadium for their home games) have complementary
patterns in the last four rounds.

6. Games between teams from the same city are not to be played in
mid-week rounds or in the last six rounds (since they are among the
most attractive games).

7. There is at least one elite team from Rio de Janeiro playing outside
Rio de Janeiro and one elite team from São Paulo playing outside
São Paulo in every round.

8. If in some round there is only one elite team from Rio de Janeiro
(resp. São Paulo) playing outside Rio de Janeiro (resp. São Paulo),
then this game should not be held in Belém.

The two objectives that must be optimized are the minimization of the
number of breaks and the maximization of the number of rounds in
which there is at least one TV game to be broadcast to São Paulo plus
the number of rounds in which there is at least one TV game to be
broadcast to Rio de Janeiro. Therefore, while the broadcast objective
regards the number of relevant games that TV Globo is able to broadcast,
the breaks minimization objective establishes the home-away equilibrium
in the sequence of games played by each team.

The requirements described above in terms of constraints and objectives
resulted from several meetings and discussions with the organizers of the
tournament and, in particular, with officials of TV Globo.

3 Solution strategy

We propose the following approach to tackle this bi-objective problem.
First, we add to the problem an extra constraint stating that the num-
ber of breaks is fixed at its minimum. Then, the broadcast objective
is maximized with this additional constraint. If the maximum objective
value of this restricted problem is equal to the unconstrained maximum,
then this solution is what in multi-criteria optimization [4] is called an
ideal point (all objectives are at their individual optimal values simul-
taneously). If the maximum solution value of the restricted problem is
smaller than the unconstrained maximum, then the solution of the first
is not an ideal point but still is a non-dominated solution (no other solu-
tion is better with respect to one of the objectives without being worse
with respect to the other). Figure 1 illustrates this approach.



Fig. 1. Solution space and restricted solution space.

We assume that there exists at least one feasible solution with a mini-
mum number of breaks, i.e., we assume that the restricted search space
illustrated in Figure 1 is not empty. This fact was experimentally verified
for all test instances and their variations.

3.1 Bounds

Given a round robin schedule with r rounds, a home-away pattern (HAP)
is a vector of r positions filled with “A”s and “H”s. An “A” (resp. “H”)
in position s of a HAP indicates that every team associated with this
HAP plays away (resp. at home) at round s. Since each team has to play
against every other team, each team must be associated with a different
HAP. Figure 2 shows a HAP set for six teams in a single round robin
schedule.

Team 1: A H A H A
Team 2: H A H A H
Team 3: A H H H A
Team 4: H A A H H
Team 5: H A A A H
Team 6: A H H A A

Fig. 2. HAP set for a tournament with six teams.

We first show that constraints (1) and the mirrored structure impose
that 4(n − 2) is a lower bound to the number of breaks.

Since the tournament is mirrored, if the number of breaks in the first
half of a HAP is even, then the total number of breaks is also even and



equal to twice the number of breaks in the first half. On the other hand,
if the number of breaks in the first half is odd, then the total number of
breaks is also odd and equal to twice the number of breaks in the first
half plus one (there is an extra break in the first round of the second
half).

There are only two HAPs without breaks for single round robin schedules,
one starting with a home game and the other starting with an away game.
Therefore, the other n−2 teams must have at least one break in the first
half of the schedule, yielding at least three breaks in the whole schedule.
We notice that in double round robin schedules a team with an odd
number of breaks plays its last game in the same playing condition of its
first game (home-home or away-away). Therefore, to satisfy constraints
(1), we shall consider schedules in which every team has an even number
of breaks. In consequence, the n − 2 teams having three breaks must
have an extra break and the number of breaks cannot be smaller than
4(n − 2).

The broadcast objective can also be bounded. Since at most one TV
game can be broadcast to São Paulo and another to Rio de Janeiro in
every round, the broadcast objective cannot be greater than twice the
number of rounds. Furthermore, the broadcast objective is also bounded
by the number of existing TV games. The later is equal to the number
of elite teams from São Paulo multiplied by the number of elite teams
outside São Paulo, plus the number of elite teams from Rio the Janeiro
multiplied by the number of elite teams outside Rio de Janeiro. The
second bound is stronger (i.e., smaller) for the instances solved in this
work. As an example, the first bound is equal to 84 for n = 22, while the
second is equal to 56 (four elite teams from Rio de Janeiro, four from
São Paulo, and three from other cities).

3.2 Solution algorithm

An straightforward integer programming formulation of the problem
could not be solved by a commercial solver such as CPLEX after an
entire day of computations.

Decomposition methods have been previously proposed for problems
where the distances between the venues were not relevant. Nemhauser
and Trick [6] proposed a three-phase scheme to exactly solve the prob-
lem of scheduling a basketball league. Feasible home-away patterns are
created in the first phase. In the second phase, a different feasible HAP is
assigned to each team (two different teams must have different HAPs in
every feasible round robin schedule). Finally, in the last phase, the sched-
ule is created respecting the previously determined HAP assignments.

Some recent papers dealt with scheduling problems in soccer tourna-
ments. Della Croce and Oliveri [2] tackled the Italian soccer league.
Bartsch et al. [1] worked on the schedule of the soccer leagues of Austria



and Germany. Goossens and Spieksma [5] considered the scheduling of
the Belgian soccer league. Noronha et al. [7] proposed a branch-and-cut
algorithm to schedule the Chilean soccer tournament. The algorithms
proposed in [1, 2] follow a decomposition scheme similar to that of [6].

We propose an algorithm following an approach similar to the above
described multi-phase decomposition scheme. Figure 3 illustrates this
approach, whose four phases are described in the next sections.

3.3 Phase 1: HAP generation

HAPs of mirrored schedules are divided into two symmetric halves. The
second half is completely determined by the first. Therefore, we may
determine which properties the first half of a HAP must obey so as that
the entire HAP be feasible. As noticed in Section 3.1, if the number of
breaks in the first half of a HAP is even, then the total number of breaks
is also even and equal to twice the number of breaks in the first half.
On the other hand, if the number of breaks in the first half is odd, then
the total number of breaks is also odd and equal to twice the number of
breaks in the first half plus one.

HAPs satisfying constraints (1) are those with an even number of breaks.
Therefore, we consider only HAPs with an even number of breaks in the
first half. Since we are interested in schedules with a minimum number
of breaks, we only consider HAPs with either zero (there are only two
such HAPs) or two breaks in the first half.

HAPs satisfying constraints (2) are those without breaks in the second
and last rounds. Since the schedule is mirrored, they must have no breaks
in the last round of the first half (round n − 1).

The difference between the number of home and away games in a HAP
without breaks is equal to one after odd rounds and equal to zero after
even rounds. If a HAP has a break in an even round, this difference
increases to two. Therefore, HAPs satisfying constraints (3) are those
without breaks in even rounds of the first half. Even (resp. odd) rounds
of the second half are globally odd (resp. even) in mirrored schedules.
In consequence, teams with breaks have at least one break in an even
round and the difference between the number of home and away games
will be necessarily greater than one after some round. For this reason,
constraints (3) are limited to the first half of the schedule. If they were
imposed to the whole schedule, the problem would be infeasible.

Consequently, feasible HAPs for the first half are those without breaks
or with exactly two breaks in odd rounds (but not in the last, since
constraints (2) forbid breaks in the last round of the second half). There
are n/2 − 2 rounds (all odd rounds but the first and the last) in which
teams may have their two breaks, yielding a total of

(

n/2−2

2

)

= (n/2−2) ·
(n/2− 3)/2 possible break configurations. Since there are two HAPs for



Fig. 3. Solution approach.



every possible break configuration (one starting by a home game and the
other by an away game), the number of feasible HAPs with two breaks is
equal to (n/2−2) · (n/2−3). Considering the two HAPs without breaks,
the total number of feasible HAPs is equal to (n/2 − 2) · (n/2 − 3) + 2.

The number of feasible HAPs is equal to 58 for n = 20 and to 74 for
n = 22. This small number of feasible home-away patterns with at most
two breaks each allows their complete enumeration in this phase.

3.4 Phase 2: assignment of partial HAPs to elite teams

In this phase, we use an explicit exhaustive enumeration to assign a HAP
to each elite team satisfying constraints (4) and (5). The use of the two
HAPs with no breaks is enforced, to keep the number of breaks at its
minimum value 4(n − 2).

Constraint (4) is satisfied by assigning complementary HAPs to every
pair of teams to which this constraint is imposed. Since half of the teams
play at home and half away in every round of a feasible HAP assignment,
in this phase and the next we first enumerate HAP assignments in which
if one pattern is used, the complementary pattern is used as well. In this
way, we improve the chance of a HAP assignment to be feasible.

Since Flamengo and Fluminense have their own complementary teams,
they cannot have complementary patterns themselves. Therefore, to sat-
isfy constraint (5) we assign patterns in such a way that (i) if Flamengo
starts at home (resp. away), then Fluminense starts away (resp. at home),
and (ii) either both or none of them have a break in round n−3. This en-
sures that Flamengo and Fluminense will have complementary patterns
in the last four rounds, therefore satisfying constraint (5).

After assigning a HAP to each elite team, we build and solve a linear
programming model considering the partial HAP assignments already
made (we remind that they satisfy constraints (1) to (5)), maximizing
the broadcast objective subject to constraints (6) to (8). This linear
programming model enforces that each elite team will play either at
home or away in each round, depending on the HAP assigned to it.

The optimal value of the above linear program is an upper bound to the
broadcast objective, associated to the current partial HAP assignment.
This current partial assignment can be discarded if the bound it provides
is not smaller than the value of the broadcast objective for the current
best known feasible solution. In this case, a new partial HAP assign-
ment is enumerated and this phase is repeated for the new assignment.
Otherwise, the algorithm proceeds to the third phase.

If all partial HAP assignments have been enumerated, the algorithm
stops and returns the best feasible solution it obtained. The latter is
non-dominated, but not an ideal solution.



3.5 Phase 3: assignment of HAPs to non-elite teams

In this phase, once again we use an explicit exhaustive enumeration to
assign one of the still available HAPs to each non-elite team, satisfying
constraint (4) and completing the partial assignment constructed in the
previous phase. Once the HAP assignment is complete, the algorithm
proceeds to the last phase.

Whenever all possible alternatives to complete the partial assignment of
HAPs to elite teams have been tested, the algorithm goes back to the
second phase to enumerate a new partial assignment.

3.6 Phase 4: schedule creation

At this point, there is a HAP assigned to each team. In this phase, we
build and solve an integer programming problem considering the current
HAP assignments, maximizing the broadcast objective subject to con-
straints (6) to (8). This integer program defines the games to be played
in each round, according to the home-away patterns assigned to each
team.

In this straightforward problem formulation, we use binary variables xijk

that are equal to one if and only if team i plays with team j at home in
round k. Since at this phase we already know which teams play at home
and which play away in each round, half of the variables are trivially equal
to zero and can be eliminated. We also know that, due to the home-away
pattern assigned to each team, the number of breaks is minimum and
equal to 4(n − 2). Therefore, the number of variables is relatively small,
since there is no need to use further variables to model the breaks. In
consequence, this model can be quickly solved by a commercial solver.

We first assume that the above integer program is feasible. If its optimal
value is equal to the broadcast bound, then the algorithm terminates
with an ideal solution. Otherwise, if the optimal value of the integer
program is equal to the linear programming bound obtained in the second
phase, then the algorithm returns to the second phase to enumerate a
new partial HAP assignment, because no better solution can be obtained
with the current partial assignment.

If the integer program is infeasible or if its optimal value is smaller than
the linear programming bound, then the algorithm returns to the third
phase to enumerate another complete HAP assignment.

In any case, if the integer program is feasible and its optimal value is
smaller than that of the current best known feasible solution, then the
latter is updated.



4 Application to real-life instances

The algorithm was applied to two instances corresponding to the 2005
and 2006 editions of the Brazilian tournament, with 22 and 20 teams
respectively. There were 11 elite teams in each instance: four from São
Paulo, four from Rio de Janeiro, and three from other cities.

CPLEX 9.0 was used as the linear and integer programming solver in the
computational experiments. The algorithm was coded in C++, compiled
with gcc and executed on a standard Pentium IV processor with 256
Mbytes of RAM memory.

The approach proposed in this work was able to compute optimal sched-
ules providing ideal solutions (i.e., simultaneously optimizing both the
broadcast and the breaks objectives) for the 2005 and 2006 editions of
the tournament, always in less than ten minutes of execution time.

Tables 1 and 2 compare the schedules produced by the new algorithm
(HAP-ILP) with those elaborated by the tournament organizers using ad
hoc procedures based on their own expertise, acquired after many years
creating the tournament schedule. The schedules are compared in terms
of the satisfaction of the problem constraints and of the values of the
two objective functions.

The solutions produced by our four-phase approach are clearly better
than those produced by the current scheduler. Three types of constraints
were not fully satisfied in the official schedules of the 2005 and 2006
editions of the tournament, while in both cases our algorithm provided
optimal solutions satisfying all constraints. Regarding the 2005 edition,
the ad hoc rules lead to schedules with 152 breaks and 43 TV games to
be broadcast. The four-phase integer programming approach proposed
in this work found a schedule with only 80 breaks (which is optimal), in
which all 56 TV games could be broadcast (which is once again optimal).
A similar comparison can be done for the 2006 edition of the tournament.

5 Conclusions

In this paper, we proposed a four-phase integer programming approach
for scheduling the yearly Brazilian soccer tournament. This is a bi-criteria
highly constrained mirrored round robin tournament, combining a fair-
ness objective established by the organizers with an economical objective
imposed by the TV sponsors.

The proposed algorithm was able to obtain optimal solutions maximiz-
ing both objectives and satisfying all constraints in a few minutes of
computation time on a standard desktop computer. The schedules pro-
vided by the four-phase approach are clearly better than those currently
used by the tournament organizers, which are obtained by simple ad



Official schedule HAP-ILP schedule

Constraints (1) yes yes
Constraints (2) yes yes
Constraints (3) no yes
Constraints (4) yes yes
Constraint (5) no yes
Constraints (6) no yes
Constraints (7) yes yes
Constraints (8) yes yes
Breaks 156 80 (optimal)
Broadcast 43 56 (optimal)

Table 1. 2005 edition of the Brazilian tournament (22 teams).

Official schedule HAP-ILP schedule

Constraints (1) yes yes
Constraints (2) yes yes
Constraints (3) no yes
Constraints (4) yes yes
Constraint (5) no yes
Constraints (6) no yes
Constraints (7) yes yes
Constraints (8) yes yes
Breaks 172 72 (optimal)
Broadcast 47 56 (optimal)

Table 2. 2006 edition of the Brazilian tournament (20 teams).

hoc rules that are not even able to found feasible solutions satisfying all
constraints.

A software system implementing a simple decision support system based
on the proposed algorithm is able to generate a collection of same cost
solutions to be evaluated and compared by the user. The use of this
decision support system and the schedules created with the approach
proposed in this work are currently under consideration by the tourna-
ment organizers.
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