
Chapter 2

GRASP WITH PATH-RELINKING:

RECENT ADVANCES AND

APPLICATIONS

Mauricio G.C. Resende1 and Celso C. Ribeiro2

1Internet and Network Systems Research, AT&T Labs Research, 180 Park Avenue,
Room C241, Florham Park, NJ 07932 USA.

mgcr@research.att.com

2Department of Computer Science, Catholic University of Rio de Janeiro, Rua Marquês
de São Vicente, 225, Rio de Janeiro, RJ 22453-900 Brazil

celso@inf.puc-rio.br

Abstract: Path-relinking is a major enhancement to the basic greedy randomized
adaptive search procedure (GRASP), leading to significant improvements in solution
time and quality. Path-relinking adds a memory mechanism to GRASP by providing
an intensification strategy that explores trajectories connecting GRASP solutions and
the best elite solutions previously produced during the search. This paper reviews
recent advances and applications of GRASP with path-relinking. A brief review of
GRASP is given. This is followed by a description of path-relinking and how it is
incorporated into GRASP. Several recent applications of GRASP with path-relinking
are reviewed. The paper concludes with a discussion of extensions to this strategy,
concerning in particular parallel implementations and applications of path-relinking
with other metaheuristics.

Keywords: Metaheuristics, GRASP, path-relinking.

2.1 INTRODUCTION

GRASP (Greedy Randomized Adaptive Search Procedure) is a meta-
heuristic for finding approximate solutions to combinatorial optimization
problems formulated as

min f(x) subject to x ∈ X,

30 Metaheuristics: Progress as Real Problem Solvers

where f(·) is an objective function to be minimized and X is a discrete
set of feasible solutions. It was first introduced by Feo and Resende [14]
in a paper describing a probabilistic heuristic for set covering. Since
then, GRASP has experienced continued development [15, 43] and has
been applied in a wide range of problem areas [18].

2.1.1 Multi-start local search

GRASP can be thought of as a search method that repeatedly applies
local search from different starting solutions in X. At each step of local
search, the neighborhood N(x) of the current solution x is searched for a
solution y ∈ N(x) such that f(y) < f(x). If such an improving solution
is found, it is made the current solution and another step of local search
is done. If no improving solution is found, the procedure stops with x
as a locally optimal solution.

An obvious initial solution for local search is a solution generated by
a greedy algorithm. Greedy algorithms construct a solution one element
at a time. For example, a tree is built one edge at a time; a schedule is
built one operation at a time; a vertex partition is built one vertex at a
time. At each step of a greedy algorithm, a set of candidate elements C
contains all elements that can be added to extend the partial solution.
Greedy algorithms make use of a greedy function g(e) that measures the
incremental cost of adding element e ∈ C to the current partial solution.
For a minimization problem, the element e∗ = argmin{g(e) : e ∈ C} is
chosen to be added to the partial solution. The addition of e∗ to the
partial solution usually restricts the set of candidates elements, which is
reflected by the reduction of its cardinality. The procedure ends when a
complete solution is built, i.e. when C = ∅.

The drawback of using a greedy algorithm as an initial solution for
local search is that if a deterministic rule is used to break ties, a greedy
algorithm will produce a single solution and therefore local search can
only be applied once. Even when a probabilistic tie breaking rule is
used, the diversity of purely greedy solutions is usually low.

The other extreme is to repeatedly start local search from randomly
generated solutions. Though this approach produces a high level of di-
versity in the starting solutions, the average quality of these random
solutions is usually much worse than that of a greedy solution. Fur-
thermore, the time local search takes to converge to a locally optimal
solution is, on average, much longer than when a greedy initial solution
is used.

GRASP blends greedy and random construction either by using greed-
iness to build a restricted candidate list (RCL) and randomness to select

GRASP with path-relinking 31

an element from the list, or by using randomness to build the list and
greediness for selection. Candidate elements e ∈ C are sorted according
to their greedy function value g(e). In a cardinality-based RCL, the lat-
ter is made up by the k top-ranked elements. In a value-based construc-
tion, the RCL consists of the elements in the set {e ∈ C : g∗ ≤ g(e) ≤
g∗+α·(g

∗−g∗)}, where g∗ = min{g(e) : e ∈ C}, g∗ = max{g(e) : e ∈ C},
and α is a parameter satisfying 0 ≤ α ≤ 1. Since the best value for α is
often difficult to determine, it is often assigned a random value for each
GRASP iteration.

Algorithm 2.1 shows the pseudo-code for a pure greedy randomized
adaptive search procedure. The value of the best solution is stored in
f∗ and imax GRASP iterations are done. Each iteration consists of a
greedy randomized construction phase, followed by a local search phase,
starting from the greedy randomized solution. If the solution resulting
from the local search improves the best solution so far, it is stored in x∗.

Data : Number of iterations imax

Result: Solution x∗ ∈ X
f∗ ←∞;
for i = 1, . . . , imax do

x← GreedyRandomizedConstruction();
x← LocalSearch(x);
if f(x) < f∗ then

f∗ ← f(x);
x∗ ← x;

end

end

Algorithm 2.1: A basic GRASP for minimization.

Figure 2.1 displays results for an instance of the maximum covering
problem [36], showing the distribution of objective function values for
the construction phase and the local search phase of a purely random
multi-start algorithm (followed by local search) and a GRASP with the
parameter α fixed at 0.85. In both plots, the iterates have been sorted
by the objective function value of the solution found by local search.
The plots show that the GRASP construction achieves a reasonably
amount of diversity in terms of solution values, while producing starting
solutions for local search that have much better objective function values.
The objective function values are situated around 3.5 for the random
construction and 9.7 for GRASP construction, while the value obtained
by local search are around 9.9. Consequently, the local search times
are much smaller for GRASP than for the purely random multi-start
algorithm.

32 Metaheuristics: Progress as Real Problem Solvers

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 500 1000 1500 2000 2500 3000 3500 4000

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Sorted iterates (sorted by local search value)

Random construction with local search

local search

construction

9.50

9.55

9.60

9.65

9.70

9.75

9.80

9.85

9.90

9.95

10.00

0 500 1000 1500 2000 2500 3000 3500 4000

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Sorted GRASP iterates (sorted by local search value)

GRASP construction with local search

local search

construction

Figure 2.1. Random multi-start vs. GRASP on an instance of maximum covering
problem.

Figure 2.2 shows, with results for 100 runs on the same instance of
a maximum satisfiability problem, the benefit of using GRASP instead
of repeatedly restarting local search with a randomly generated solution
and a greedy solution. Two curves compare objective function value
(best and average over the 100 runs) for different values of the RCL

GRASP with path-relinking 33

parameter α. Two other curves compare solution times (average total
time and average local search time) for different values of α. Since this
is a maximization problem, α = 0 corresponds to random construction,
while α = 1 corresponds to greedy construction. While the average so-
lution improves as we move from random to greedy, the best solution
(what we are really interested in) improves as we move away from ran-
dom construction, but reaches a maximum before reaching α = 1, and
then decreases after that. As the mean solution increases, the spread of
solutions decreases. The combination of the increase in mean solution
value and the presence of enough spread contribute to produce the best
solution with α = .8. Solution times decrease as one moves from random
to greedy and this is mainly due to the decrease in time for local search.

 415000

 420000

 425000

 430000

 435000

 440000

 445000

 0 0.2 0.4 0.6 0.8 1
 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

A
ve

ra
ge

 ti
m

e
(s

ec
on

ds
)

RCL parameter ALPHA

best solution found

avg. solution found

avg. local search time

avg. total time

Figure 2.2. Average versus best solution found and total running time versus local
search time as a function of the RCL parameter α on 100 runs on an instance of
maximum satisfiability.

2.1.2 Memory-based mechanisms

If GRASP iteration i uses the random number generator seed si, then
the iterations are memoryless, i.e. they produce the same result inde-
pendently of the order in which they are run. In the remainder of this
section, we review how the use of memory was introduced into GRASP.

Memory can be used to avoid doing redundant work. For example,
one can store in a hash table all solutions constructed and used as initial

34 Metaheuristics: Progress as Real Problem Solvers

solutions for local search [30]. Every time a new solution is constructed,
it will only be used as an initial solution in the local search phase if it is
not present in the hash table.

Filtering of constructed solutions [16, 30, 34] avoids applying local
search to low-quality solutions, where local search will probably take
long to converge to a low-quality local optimum.

Fleurent and Glover [19] introduced a long-term memory mechanism
in GRASP construction that makes use of a set of elite solutions found
during the GRASP iterations. Their mechanism favors (strongly deter-
mined) variables that cannot be changed without eroding the objective
or changing significantly other variables and (consistent) variables that
receive a particular value in a large portion of the elite solutions.

Prais and Ribeiro [34] introduced another learning mechanism for
GRASP construction, which they named reactive GRASP. Recall that in
a value-based restricted candidate list a parameter α determines the level
of randomness or greediness used to make up the RCL. Instead of using
a fixed value for α, reactive GRASP selects a value, at random, from
a discrete set of values {α1, α2, . . . , αm}. Each value αi has associated
with it a probability pi that it will be selected (

∑m
i=1 pi = 1). The

idea in reactive GRASP is to change these probabilities as the iterations
proceed, to favor values that have led to better solutions in previous
GRASP iterations.

Laguna and Mart́ı [28] introduced another strategy for using long-
term memory consisting of a set of elite solutions. At each GRASP
iteration, this strategy combines the GRASP solution with a randomly
selected elite solution, using path-relinking [23]. This is the subject of
the next section.

2.2 PATH-RELINKING

Path-relinking was originally proposed by Glover [23] as an intensifi-
cation strategy exploring trajectories connecting elite solutions obtained
by tabu search or scatter search [24–26]. Starting from one or more elite
solutions, paths in the solution space leading toward other elite solu-
tions are generated and explored in the search for better solutions. To
generate paths, moves are selected to introduce attributes in the current
solution that are present in the elite guiding solution. Path-relinking
may be viewed as a strategy that seeks to incorporate attributes of high
quality solutions, by favoring these attributes in the selected moves.

Algorithm 2.2 illustrates the pseudo-code of the path-relinking proce-
dure applied to a pair of solutions xs (starting solution) and xt (target
solution).

GRASP with path-relinking 35

Data : Starting solution xs and target solution xt
Result: Best solution x∗ in path from xs to xt
Compute symmetric difference ∆(xs, xt);
f∗ ← min{f(xs), f(xt)};
x∗ ← argmin{f(xs), f(xt)};
x← xs;
while ∆(x, xt) 6= ∅ do

m∗ ← argmin{f(x⊕m) : m ∈ ∆(x, xt)};
∆(x⊕m∗, xt)← ∆(x, xt) \ {m

∗};
x← x⊕m∗;
if f(x) < f∗ then

f∗ ← f(x);
x∗ ← x;

end

end

Algorithm 2.2: Path-relinking.

The procedure starts by computing the symmetric difference ∆(xs, xt)
between the two solutions, i.e. the set of moves needed to reach xt (target
solution) from xs (initial solution). A path of solutions is generated
linking xs and xt. The best solution x∗ in this path is returned by the
algorithm. At each step, the procedure examines all moves m ∈ ∆(x, xt)
from the current solution x and selects the one which results in the least
cost solution, i.e. the one which minimizes f(x⊕m), where x⊕m is the
solution resulting from applying move m to solution x. The best move
m∗ is made, producing solution x ⊕m∗. The set of available moves is
updated. If necessary, the best solution x∗ is updated. The procedure
terminates when xt is reached, i.e. when ∆(x, xt) = ∅.

We notice that path-relinking may also be viewed as a constrained
local search strategy applied to the initial solution xs, in which only
a limited set of moves can be performed and where uphill moves are
allowed. Several alternatives have been considered and combined in
recent implementations of path-relinking [1–3, 7, 48, 50, 52]:

periodical relinking: path-relinking is not systematically applied,
but instead only periodically;

forward relinking: path-relinking is applied using the worst among
xs and xt as the initial solution and the other as the target solution;

backward relinking: the roles of xs and xt are interchanged, path-
relinking is applied using the best among xs and xt as the initial
solution and the other as the target solution;

36 Metaheuristics: Progress as Real Problem Solvers

back and forward relinking: two different trajectories are explored,
the first using xs as the initial solution and the second using xt in
this role;

mixed relinking: two paths are simultaneously explored, the first
emanating from xs and the second from xt, until they meet at an
intermediary solution equidistant from xs and xt;

randomized relinking: instead of selecting the best yet unselected
move, randomly select one from among a candidate list with the
most promising moves in the path being investigated; and

truncated relinking: the full trajectory between xs and xt is not
investigated, but instead only part of it.

All these alternatives involve trade-offs between computation time and
solution quality. Ribeiro et al. [50] observed that exploring two different
trajectories for each pair (xs, xt) takes approximately twice the time
needed to explore only one of them, with very marginal improvements in
solution quality. They have also observed that if only one trajectory is to
be investigated, better solutions are found when the relinking procedure
starts from the best among xs and xt. Since the neighborhood of the
initial solution is much more carefully explored than that of the guiding
one, starting from the best of them gives the algorithm a better chance
to investigate in more detail the neighborhood of the most promising
solution. For the same reason, the best solutions are usually found closer
to the initial solution than to the guiding solution, allowing the pruning
of the relinking trajectory before the latter is reached.

2.3 GRASP WITH PATH-RELINKING

Path-relinking is a major enhancement to the basic GRASP proce-
dure, leading to significant improvements in solution time and quality.

The use of path-relinking within a GRASP procedure, as an intensi-
fication strategy applied to each locally optimal solution, was first pro-
posed by Laguna and Mart́ı [28]. It was followed by several extensions,
improvements, and successful applications [3, 9, 43, 45, 50]. Two basic
strategies are used:

path-relinking is applied to all pairs of elite solutions, either period-
ically during the GRASP iterations or after all GRASP iterations
have been performed as a post-optimization step; and

path-relinking is applied as an intensification strategy to each local
optimum obtained after the local search phase.

GRASP with path-relinking 37

Applying path-relinking as an intensification strategy to each local
optimum seems to be more effective than simply using it only as a
post-optimization step. In general, combining intensification with post-
optimization results in the best strategy. In the context of intensification,
path-relinking is applied to pairs (x, y) of solutions, where x is a locally
optimal solution produced by each GRASP iteration after local search
and y is one of a few elite solutions randomly chosen from a pool with
a limited number Max Elite of elite solutions found along the search.
Uniform random selection is a simple strategy to implement. Since the
symmetric difference is a measure of the length of the path explored
during relinking, a strategy biased toward pool elements y with high
symmetric difference with respect to x is usually better than one using
uniform random selection [45].

The pool is originally empty. Since we wish to maintain a pool of
good but diverse solutions, each locally optimal solution obtained by
local search is considered as a candidate to be inserted into the pool
if it is sufficiently different from every other solution currently in the
pool. If the pool already has Max Elite solutions and the candidate is
better than the worst of them, then a simple strategy is to have the
former replaces the latter. Another strategy, which tends to increase the
diversity of the pool, is to replace the pool element most similar to the
candidate among all pool elements with cost worse than the candidate’s.
If the pool is not full, the candidate is simply inserted.

Post-optimization is done on a series of pools. The initial pool P0 is
the pool P obtained at the end of the GRASP iterations. The value
of the best solution of P0 is assigned to f∗0 and the pool counter is
initialized k = 0. At the k-th iteration, all pairs of elements in pool
Pk are combined using path-relinking. Each result of path-relinking is
tested for membership in pool Pk+1 following the same criteria used
during the GRASP iterations. If a new best solution is produced, i.e.
f∗k+1 < f∗k , then k ← k + 1 and a new iteration of post-optimization is
done. Otherwise, post-optimization halts with x∗ = argmin{f(x) | x ∈
Pk+1} as the result.

Algorithm 2.3 illustrates such a procedure. Each GRASP iteration
has now three main steps:

Construction phase: a greedy randomized construction procedure
is used to build a feasible solution;

Local search phase: the solution built in the first phase is progres-
sively improved by a neighborhood search strategy, until a local
minimum is found; and

38 Metaheuristics: Progress as Real Problem Solvers

Path-relinking phase: the path-relinking algorithm using any of
the strategies described in Section 2.2 is applied to the solution
obtained by local search and to a randomly selected solution from
the pool. The best solution found along this trajectory is also con-
sidered as a candidate for insertion in the pool and the incumbent
is updated.

At the end of the GRASP iterations, a post-optimization phase combines
the elite solutions in the pool in the search for better solutions..

Data : Number of iterations imax

Result: Solution x∗ ∈ X
P ← ∅;
f∗ ←∞;
for i = 1, . . . , imax do

x← GreedyRandomizedConstruction();
x← LocalSearch(x);
if i ≥ 2 then

Choose, at random, pool solutions Y ⊆ P to
relink with x;
for y ∈ Y do

Determine which (x or y) is initial xs and
which is target xt;
xp ← PathRelinking(xs, xt);
Update the elite set P with xp;
if f(xp) < f∗ then

f∗ ← f(xp);
x∗ ← xp;

end

end

end

end

P = PostOptimize{P};
x∗ = argmin{f(x), x ∈ P};

Algorithm 2.3: A basic GRASP with path-relinking heuristic for
minimization.

Aiex [1] and Aiex et al. [4] have shown experimentally that the solu-
tion times for finding a target solution value with a GRASP heuristic
fit a two-parameter exponential distribution. Figure 2.3 illustrates this
result, depicting the superimposed empirical and theoretical distribu-
tions observed for one of the cases studied in the computational exper-
iments reported by the authors, which involved 2400 runs of GRASP

GRASP with path-relinking 39

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

pr
ob

ab
ili

ty

time to target value (seconds)

Empirical distribution
Theoretical distribution

Figure 2.3. Superimposed empirical and theoretical distributions (times to target
values measured in seconds on an SGI Challenge computer with 28 processors).

procedures for each of five different problems: maximum independent
set [16, 37], quadratic assignment [29, 38], graph planarization [40, 47],
maximum weighted satisfiability [39], and maximum covering [36]. The
same result still holds when GRASP is implemented in conjunction with
a path-relinking procedure [2].

2.4 APPLICATIONS

Path-relinking has been successfully used together with GRASP in a
variety of applications, such as the three index assignment problem [1, 3],
the problem of routing private circuits in communication networks [41],
the 2-path network design problem [48], the p-median problem [44], the
Steiner problem in graphs [50], the job-shop scheduling problem [1, 2],
the prize-collecting Steiner tree problem [9], the quadratic assignment
problem [32], the MAX-CUT problem [17], and the capacitated min-
imum spanning tree problem [53]. Some of these applications will be
reviewed in the remainder of this section.

Before we review some of these applications, we first describe a plot
used in several of our papers to experimentally compare different ran-
domized algorithms or different versions of the same randomized algo-
rithm [1, 4]. This plot shows empirical distributions of the random vari-
able time to target solution value. To plot the empirical distribution,
we fix a solution target value and run each algorithm T independent

40 Metaheuristics: Progress as Real Problem Solvers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASP

GRASP+PR

Figure 2.4. Empirical distributions of the random variables time to target solution

for a pure GRASP and a GRASP with path-relinking for MAX-CUT instance G11
with target value of 552 [17]. Two hundred independent runs of each algorithm were
used to make the plots.

times, recording the running time when a solution with cost at least
as good as the target value is found. For each algorithm, we associate
with the i-th sorted running time (ti) a probability pi = (i− 1

2)/T , and
plot the points zi = (ti, pi), for i = 1, . . . , T . Figure 2.4 shows one such
plot comparing a pure GRASP with a GRASP with path-relinking for
MAX-CUT instance G11 with target solution value of 552. The figure
shows clearly that GRASP with path-relinking (GRASP+PR) is much
faster than pure GRASP to find a solution with weight 552 or more.
For instance, the probability of finding such a solution in less than 5
seconds is over 80% with GRASP with path-relinking, while it is about
2% with pure GRASP. Similarly, with probability 50% GRASP with
path-relinking finds such a target solution in less than 2.5 seconds, while
for pure GRASP, with probability 50% a solution is found in less than
122 seconds.

2.4.1 Private virtual circuit routing

A frame relay service offers virtual private networks to customers by
provisioning a set of long-term private virtual circuits (PVCs) between
customer endpoints on a large backbone network. During the provi-
sioning of a PVC, routing decisions are made without any knowledge of

GRASP with path-relinking 41

future requests. Over time, these decisions can cause inefficiencies in the
network and occasional offline rerouting of the PVCs is needed. Resende
and Ribeiro [43] formulate the offline PVC routing problem as an integer
multi-commodity flow problem with additional constraints and with an
objective function that minimizes propagation delays and/or network
congestion. They propose variants of a GRASP with path-relinking
heuristic for this problem. Experimental results for realistic-size prob-
lems show that GRASP benefits greatly from path-relinking and that
the proposed heuristics are able to improve the solutions found with
standard routing techniques.

Let G = (V,E) be an undirected graph representing the frame relay
network. Denote by V = {1, . . . , n} the set of backbone nodes where
switches reside, while E is set of trunks (or edges) that connect the
backbone nodes, with |E| = m. Parallel trunks are allowed. Since
G is an undirected graph, flows through each trunk (i, j) ∈ E have
two components to be summed up, one in each direction. However, for
modeling purposes, costs and capacities will always be associated only
with the ordered pair (i, j) satisfying i < j. For each trunk (i, j) ∈ E,
denote by bij its maximum allowed bandwidth (in kbits/second), while
cij denotes the maximum number of PVCs that can be routed through it
and dij is the propagation, or hopping, delay associated with the trunk.
Each commodity k ∈ K = {1, . . . , p} is a PVC to be routed, associated
with an origin-destination pair and with a bandwidth requirement (or
demand, also known as its effective bandwidth) rk. The latter takes into
account the actual bandwidth required by the customer in the forward
and reverse directions, as well as an overbooking factor.

Let xkij = 1 if and only if edge (i, j) ∈ E is used to route commodity

k ∈ K. The cost function φij(x
1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji) associated with

each trunk (i, j) ∈ E with i < j is the linear combination of a trunk
propagation delay component and a trunk congestion component. The
propagation delay component is defined as

φdij(x
1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji) = dij ·

∑

k∈K

ρk(x
k
ij + xkji), (2.1)

where coefficients ρk are used to model two plausible delay functions:

If ρk = 1, then this component leads to the minimization of the
number of hops weighted by the propagation delay on each trunk.

If ρk = rk, then the minimization takes into account the effective
bandwidth routed through each trunk weighted by its propagation
delay.

42 Metaheuristics: Progress as Real Problem Solvers

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2

co
st

 p
er

 u
ni

t o
f c

ap
ac

ity

trunk utilization rate

Figure 2.5. Piecewise linear congestion cost component associated with each trunk.

Let yij =
∑

k∈K rk(x
k
ij+x

k
ji) be the total flow through trunk (i, j) ∈ E

with i < j. The trunk congestion component depends on the utilization
rates uij = yij/bij of each trunk (i, j) ∈ E with i < j. It is taken as
the piecewise linear function proposed by Fortz and Thorup [20] and
depicted in Figure 2.5, which increasingly penalizes flows approaching
or violating the capacity limits:

φbij(x
1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji) =

= bij ·

uij , uij ∈ [0, 1/3)
3 · uij − 2/3, uij ∈ [1/3, 2/3),
10 · uij − 16/3, uij ∈ [2/3, 9/10),
70 · uij − 178/3, uij ∈ [9/10, 1),
500 · uij − 1468/3, uij ∈ [1, 11/10),
5000 · uij − 16318/3, uij ∈ [11/10,∞).

(2.2)

For PVC routing, Resende and Ribeiro used the cost function

φij(x
1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji) =

= (1−δ) ·φdij(x
1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji)+δ ·φbij(x

1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji)

(2.3)

GRASP with path-relinking 43

associated with each trunk (i, j) ∈ E with i < j, where weights (1 − δ)
and δ correspond respectively to the propagation delay and the network
congestion components, with δ ∈ [0, 1].

In the construction phase of GRASP, the routes are determined, one
at a time. A new PVC is selected to be routed in each iteration. To
reduce the computation times, we used a combination of the strategies
usually employed by GRASP and heuristic-biased stochastic sampling.
We create a restricted candidate list with a fixed number of elements nc.
At each iteration, it is formed by the nc unrouted PVC pairs with the
largest demands. An element ` is selected at random from this list with
probability π(`) = r`/

∑

k∈RCL rk.
Once a PVC ` ∈ K is selected, it is routed on a shortest path from

its origin to its destination. The bandwidth capacity constraints are
relaxed and handled via the penalty function introduced by the trunk
congestion component (2.2) of the edge weights. The constraints on
the limit of PVCs routed through each trunk are explicitly taken into
account by forbidding routing through trunks already using its maximum
number of PVCs. The weight ∆φij of each edge (i, j) ∈ E is given
by the increment of the cost function value φij(x

1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji),

associated with routing r` additional units of demand through edge (i, j).
More precisely, let K ⊆ K be the set of previously routed PVCs and

Kij ⊆ K be the subset of PVCs that are routed through trunk (i, j) ∈ E.

Likewise, let K = K ∪ {`} ⊆ K be the new set of routed PVCs and
Kij = Kij∪{`} ⊆ K be the new subset of PVCs that are routed through

trunk (i, j). Then, define xhij = 1 if PVC h ∈ K is routed through trunk

(i, j) ∈ E from i to j, xhij = 0 otherwise. Similarly, define xhij = 1 if PVC

h ∈ K is routed through trunk (i, j) ∈ E from i to j, xhij = 0 otherwise.
According to (2.3), the cost associated with each edge (i, j) ∈ E in the
current solution is given by φij(x

1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji). In the same

manner, the cost associated with each edge (i, j) ∈ E after routing PVC
` will be φij(x

1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji). Then, the incremental edge weight

∆φij associated with routing PVC ` ∈ K through edge (i, j) ∈ E, used
in the shortest path computations, is given by

∆φij = φij(x
1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji)− φij(x

1
ij , . . . , x

p
ij , x

1
ji, . . . , x

p
ji).

(2.4)
The enforcement of the constraints that limit the number of PVCs

routed through each trunk may lead to unroutable demand pairs. In
this case, the current solution is discarded and a new construction phase
starts.

Each solution built in the first phase may be viewed as a set of routes,
one for each PVC. The local search procedure seeks to improve each

44 Metaheuristics: Progress as Real Problem Solvers

route in the current solution. For each PVC k ∈ K, start by removing
rk units of flow from each edge in its current route. Next, compute incre-
mental edge weights ∆φij associated with routing this demand through
each trunk (i, j) ∈ E according to (2.4). A tentative new shortest path
route is computed using the incremental edge weights. If the new route
improves the solution, it replaces the current route of PVC k. This is
continued until no improving route can be found.

In the proposed path-relinking strategy, the set of moves correspond-
ing to the symmetric difference ∆(x1, x2) between any pair {x1, x2} of
solutions is the subset Kx1,x2

⊆ K of PVCs routed through different
routes in x1 and x2. Without loss of generality, suppose that path-
relinking starts from any elite solution z in the pool and uses the locally
optimal solution y as the guiding solution.

The best solution y along the new path to be constructed is initialized
with z. For each PVC k ∈ Ky,z, the same shortest path computations
described for construction and local search are used to evaluate the cost
of the new solution obtained by rerouting the demand associated with
PVC k through the route used in the guiding solution y instead of that
used in the current solution originated from z. The best move is selected
and removed from Ky,z. The new solution obtained by rerouting the
above selected PVC is computed, the incumbent y is updated, and a new
iteration resumes. These steps are repeated, until the guiding solution
y is reached. The incumbent y is returned as the best solution found by
path-relinking and inserted into the pool if it is better than the worst
solution currently in the pool.

Figure 2.6 illustrates the comparison of the four algorithms: pure
GRASP (GRASP), GRASP with forward path-relinking (GRASP+PRf, in
which a locally optimal solution is used as the initial solution), GRASP
with backward path-relinking (GRASP+PRb, in which an elite solution
is used as the initial solution), and GRASP with backward and for-
ward path-relinking (GRASP+PRfb, in which path-relinking is performed
in both directions) on PVC routing instance fr750a (60 nodes, 498 arcs,
and 750 commodities). For a given computation time, the probabil-
ity of finding a solution at least as good as the target value increases
from GRASP to GRASP+PRf, from GRASP+PRf to GRASP+PRfb, and from
GRASP+PRfb to GRASP+PRb. For example, there is 9.25% probability for
GRASP+PRfb to find a target solution in less than 100 seconds, while this
probability increases to 28.75% for GRASP+PRb. For GRASP, there is a
8.33% probability of finding a target solution within 2000 seconds, while
for GRASP+PRf this probability increases to 65.25%. GRASP+PRb finds a
target solution in at most 129 seconds with 50% probability. For the

GRASP with path-relinking 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASPGRASP+PRfGRASP+PRfbGRASP+PRb

Figure 2.6. Empirical distributions of time to target solution for GRASP, GRASP
with forward path-relinking, GRASP with backward path-relinking, and GRASP with
back and forward path-relinking for private virtual circuit routing instance fr750a.
Two hundred independent runs were done for each algorithm. Target solution value
used was 479000.

same probability, this time increases to 172, 1727, and 10933 seconds,
respectively, for variants GRASP+PRfb, GRASP+PRf, and GRASP.

These results suggest that variant GRASP+PRb, which performs path-
relinking backward from an elite solution to a locally optimal solution,
is the most effective.

Another experiment comparing the four variants was done on PVC
routing instance att (90 nodes, 274 trunks, 272 commodities). Ten
independent runs of each algorithm were done for 100 seconds on a 196
MHz SGI Challenge computer. Table 2.1 summarizes these results. For
each variant, this table lists the best and average solution values found
after 10 seconds and after 100 seconds. The results point to GRASP+PRb

and GRASP+PRfb as the two best heuristics. It is interesting to note that
even if given 100 seconds, GRASP finds solutions of worse quality than
those found by GRASP+PRb and GRASP+PRfb in only 10 seconds.

2.4.2 2-path network design

Let G = (V,E) be a connected undirected graph, where V is the set
of nodes and E is the set of edges. A k-path between nodes s, t ∈ V is
a sequence of at most k edges connecting them. Given a non-negative

46 Metaheuristics: Progress as Real Problem Solvers

Table 2.1. Comparison of GRASP, GRASP with forward path-relinking, GRASP
with backward path-relinking, and GRASP with back and forward path-relinking for
private virtual circuit routing instance att. Ten independent runs of 100 seconds were
done for each algorithm.

10 runs 10 seconds 100 seconds

Variant best average best average

GRASP 126603 126695 126228 126558
GRASP+PRf 126301 126578 126083 126229
GRASP+PRb 125960 126281 125666 125883
GRASP+PRfb 125961 126307 125646 125850

weight function w : E → R+ associated with the edges of G and a set D
of pairs of origin-destination nodes, the 2-path network design problem
(2PNDP) consists in finding a minimum weighted subset of edges E ′ ⊆ E
containing a 2-path between every origin-destination pair. Applications
can be found in the design of communication networks, in which paths
with few edges are sought to enforce high reliability and small delays.
Dahl and Johannessen [13] proved that the decision version of 2PNDP
is NP-complete.

Rosseti [52] and Ribeiro and Rosseti [48] described sequential and
parallel implementations of GRASP with path relinking for the 2-path
network design. The construction of a new solution begins by the ini-
tialization of modified edge weights with the original edge weights. Each
iteration of the construction phase starts by the random selection of an
origin-destination pair still in D. A shortest 2-path between the ex-
tremities of this pair is computed, using the modified edge weights. The
weights of the edges in this 2-path are set to zero until the end of the
construction procedure, the origin-destination pair is removed from D,
and a new iteration resumes. The construction phase stops when 2-paths
have been computed for all origin-destination pairs.

The local search phase seeks to improve each solution built in the con-
struction phase. Each solution may be viewed as a set of 2-paths, one for
each origin-destination pair in D. To introduce some diversity by driv-
ing different applications of the local search to different local optima, the
origin-destination pairs are investigated at each GRASP iteration in a
circular order defined by a different random permutation of their original
indices. Each 2-path in the current solution is tentatively eliminated.
The weights of the edges used by other 2-paths are temporarily set to
zero, while those which are not used by other 2-paths in the current
solution are restored to their original values. A new shortest 2-path be-

GRASP with path-relinking 47

tween the extremities of the origin-destination pair under investigation
is computed, using the modified weights. If the new 2-path improves
the current solution, then the latter is modified; otherwise the previous
2-path is restored. The search stops if the current solution was not im-
proved after a sequence of |D| iterations along which all 2-paths have
been investigated. Otherwise, the next 2-path in the current solution is
investigated for substitution and a new iteration resumes.

Each GRASP iteration performs an intensification phase using path-
relinking, in which the newly generated solution obtained at the end of
the local search phase is combined with a randomly selected solution
from the pool of elite solutions. Path-relinking starts by determining all
origin-destination pairs whose associated 2-paths are different in the two
solutions. These computations amount to determining the set of moves
which should be applied to the initial solution to reach the guiding one.
Each move is characterized by a pair of 2-paths, one to be inserted and
the other to be eliminated from the current solution. At each path-
relinking iteration the best yet unselected move is applied to the current
solution and the best solution found along the path connecting the two
solutions is updated. The incumbent best solution found along the path-
relinking step is inserted into the pool if it is better than the worst
solution currently in the pool.

Several strategies for the implementation of the path-relinking step
have been investigated in [49, 52]: pure GRASP (GRASP), GRASP with
forward path-relinking (GRASP+PRf, in which a locally optimal solution
is used as the initial solution), GRASP with backward path-relinking
(GRASP+PRb, in which an elite solution is used as the initial solution),
GRASP with backward and forward path-relinking (GRASP+PRfb, in
which path-relinking is performed twice, once in each direction), and
GRASP with mixed path-relinking (GRASP+ PRm, in which two paths in
opposite directions are simultaneously explored).

The results displayed in Table 2.2 illustrate the behavior of these
five variants on randomly generated instances [52] on complete graphs
with 100, 200, 300, 400, and 500 nodes. For each instance, we give
the best and average solution values found over ten independent runs
of each algorithm. For each problem size, the processing time is limited
at that observed for 200 iterations of the pure GRASP procedure on
the first instance in the group. Algorithms GRASP+PRfb and GRASP+PRm

performed better than the other variants, as far as together they found
the best solutions and the best average solutions for all instances in the
table. GRASP with backward path-relinking usually performs better
than the forward path-relinking variant, due to the fact that it starts

48 Metaheuristics: Progress as Real Problem Solvers

Table 2.2. Results for ten runs of each algorithm on randomly generated instances
of 2-path network design problems with limited processing time.

GRASP GRASP+PRf GRASP+PRb GRASP+PRfb GRASP+PRm

|V | best avg. best avg. best avg. best avg. best avg.

779 784.3 760 772.8 763 769.3 749 762.7 755 765.3
762 769.6 730 749.4 735 746.0 729 741.7 736 745.7

100 773 779.2 762 769.3 756 766.1 757 763.6 754 765.1
746 752.0 732 738.4 723 736.7 719 730.4 717 732.2
756 762.3 742 749.7 739 746.5 737 742.9 728 743.7

1606 1614.7 1571 1584.4 1540 1568.0 1526 1562.0 1538 1564.3
1601 1608.8 1557 1572.8 1559 1567.9 1537 1558.9 1545 1563.3

200 1564 1578.2 1523 1541.9 1516 1531.9 1508 1519.9 1509 1528.7
1578 1585.6 1531 1553.3 1518 1538.1 1510 1532.2 1513 1534.7
1577 1599.6 1567 1575.4 1543 1563.5 1529 1556.3 1531 1556.1

2459 2481.9 2408 2425.0 2377 2401.3 2355 2399.2 2366 2393.6
2520 2527.7 2453 2469.7 2419 2449.1 2413 2438.9 2405 2439.4

300 2448 2463.5 2381 2403.1 2339 2373.8 2356 2375.3 2338 2370.3
2462 2482.1 2413 2436.2 2373 2409.3 2369 2400.9 2350 2401.0
2450 2458.8 2364 2402.5 2328 2368.6 2347 2373.9 2322 2365.4

3355 3363.8 3267 3285.5 3238 3257.0 3221 3239.4 3231 3252.2
3393 3417.5 3324 3338.2 3283 3306.8 3220 3292.2 3271 3301.4

400 3388 3394.4 3311 3322.4 3268 3291.9 3227 3275.1 3257 3273.2
3396 3406.0 3316 3326.5 3249 3292.0 3256 3284.8 3246 3287.9
3416 3429.3 3335 3365.5 3267 3327.7 3270 3313.9 3259 3323.5

4338 4350.1 4209 4247.1 4176 4207.6 4152 4196.1 4175 4206.2
4353 4369.6 4261 4278.6 4180 4233.7 4166 4219.6 4175 4226.3

500 4347 4360.7 4239 4257.8 4187 4224.8 4170 4201.9 4187 4217.9
4317 4333.8 4222 4238.6 4157 4197.4 4156 4182.2 4159 4197.1
4362 4370.4 4263 4292.0 4203 4294.0 4211 4236.8 4200 4240.2

from an elite solution that is often better than the current local optimum,
fully exploring the neighborhood of the former.

The results observed for variant GRASP+PRm are very encouraging: this
algorithm found better solutions than the other variants for 40% of the
instances.

To further illustrate and compare these five variants, we display in
Figure 2.7 a plot of the empirical probability distribution of the time to
target solution value for each algorithm, computed from 200 indepen-
dent runs. These plots show that the probability of finding a solution
at least as good as a target value increases from GRASP to GRASP+PRf to
GRASP+PRb to GRASP+PRfb, and finally to GRASP+PRm. These results con-
firms an observation first noticed by Ribeiro et al. [50] and later by Re-
sende and Ribeiro [42], suggesting that the backward strategy performs

GRASP with path-relinking 49

a major role in successful implementations of path-relinking. Moreover,
they also indicate that the mixed path-relinking strategy proposed by
Rosseti [52] is very effective.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASPGRASP+PRf

GRASP+PRfb

GRASP+PRb

GRASP+PRm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASPGRASP+PRf

GRASP+PRfb

GRASP+PRb

GRASP+PRm

Figure 2.7. Empirical distributions of time to target solution for GRASP, GRASP
with forward path-relinking, GRASP with backward path-relinking, GRASP with
back and forward path-relinking, and GRASP with mixed path-relinking for a 2-path
network design instance with 80 nodes. Two hundred independent runs were done for
each algorithm. Target solution value used was 588.

2.4.3 p-median problem

In the p-median problem, we are given a set F ofm potential facilities,
a set U of n users (or customers), a distance function d : U × F → R,
and a constant p ≤ m, and want to determine which p facilities to open
so as to minimize the sum of the distances from each user to its closest
open facility. It is a well-known NP-hard problem [27].

Resende and Werneck [45] describe a GRASP with path-relinking for
the p-median problem. Empirical results on instances from the literature
show that the algorithm is robust and that it performs at least as well
as other methods, and often better in terms of both running time and
solution quality. In all cases the solutions obtained by the GRASP with
path-relinking were within 0.1% of the best known upper bounds. For a
large number of instances new best known solutions were produced by
the new algorithm.

50 Metaheuristics: Progress as Real Problem Solvers

The standard greedy algorithm for the p-median problem [10, 55]
starts with an empty solution and adds facilities one at a time, choosing
the most profitable in each iteration (the one whose insertion causes the
greatest drop in solution cost). The construction procedure proposed in
[45] is similar to the greedy algorithm, but instead of selecting the best
among all possible options, it only considers q < m possible insertions
(chosen uniformly at random) in each iteration. The most profitable
among those is selected. The running time of the algorithm is O(m +
pqn). The idea is to make q small enough so as to significantly reduce
the running time of the algorithm (when compared to the pure greedy
one) and to ensure a fair degree of randomization. In tests, the value
q = dlog2(m/p)e was determined to be suitable.

The standard local search procedure for the p-median problem, orig-
inally proposed by Teitz and Bart [54], is based on swapping facilities.
Given an initial solution S, the procedure determines, for each facility
f 6∈ S, which facility g ∈ S (if any) would improve the solution the most
if f and g were interchanged (i.e., if f were opened and g closed). If there
is one such improving move, f and g are interchanged. The procedure
continues until no improving interchange can be made, in which case a
local minimum will have been found. The complexity of this swap-based
local search is O(pmn) per iteration. Whitaker [55] proposed an effi-
cient implementation of this method, which he called fast interchange,
for which the bound on the running time of each iteration is reduced to
O(mn). Resende and Werneck [35] have recently proposed an alterna-
tive implementation. Although it has the same worst-case complexity
as Whitaker’s, it can be substantially faster in practice. The speedup
(of up to three orders of magnitude) results from the use of informa-
tion gathered in early iterations of the algorithm to reduce the amount
of computation performed in later stages. Though this implementation
can require a greater amount of memory, with the use of some pro-
gramming techniques (e.g. sparse matrix representation and cache), the
additional memory requirements can be minimized.

Intensification (via path-relinking) occurs in two different stages.
First, every GRASP iteration contains an intensification step, in which
the newly generated solution is combined with a solution from the pool.
Then, in the post-optimization phase, solutions in the pool are combined
among themselves.

Let S1 and S2 be two valid solutions, interpreted as sets of (open)
facilities. The path-relinking procedure starts with one of the solutions
(say, S1) and gradually transforms it into the other (S2) by swapping in
elements from S2 \S1 and swapping out elements from S1 \S2. The total
number of swaps made is |S2 \S1|, which is equal to |S1 \S2|. The choice

GRASP with path-relinking 51

of which swap to make in each stage is greedy: the most profitable (or
least costly) move is made.

The outcome of path-relinking is the best local minimum in the path.
A local minimum in this context is a solution that is both succeeded
(immediately) and preceded (either immediately or through a series of
same-value solutions) in the path by strictly worse solutions. If the path
has no local minima, one of the original solutions (S1 or S2) is returned
with equal probability. When there is an improving solution in the path,
this criterion matches the traditional one exactly: it simply returns the
best element in the path. It is different only when the standard path-
relinking is unsuccessful, in which case it tries to increase diversity by
selecting a solution other than the extremes of the path.

Note that path-relinking is very similar to the local search procedure
described earlier, with two main differences. First, the number of al-
lowed moves is restricted: only elements in S2 \ S1 can be inserted, and
only those in S1 \S2 can be removed. Second, non-improving moves are
allowed. These differences are easily incorporated into the basic imple-
mentation of the local search procedure.

The intensification procedure is augmented by performing a full local
search on the solution produced by path-relinking. Because this solution
is usually very close to a local optimum, this application tends to be
much faster than on a solution generated by the randomized constructive
algorithm. A side effect of applying local search at this point is increased
diversity, since one is free to use facilities that did not belong to any of
the original solutions.

The plots in Figure 2.8 compare GRASP with path-relinking and pure
GRASP on the 1400-facility, 1400-user TSPLIB instance fl1400. The
plot on the left shows quality of the best solution found as a fraction of
the average value of the first solution for GRASP with path-relinking and
pure GRASP for p = 500. Times are given as multiples of the average
time required to perform one multi-start iteration. Smaller values are
better. The plot on the right shows ratios between partial solutions
found with and without path-relinking for different values of p. Ratios
smaller than 1.000 favor the use of path-relinking. The plots show that
GRASP benefits from path-relinking, in particular for large values of p.

2.4.4 Three index assignment problem

The three-index assignment problem (AP3) was introduced by Pier-
skalla [33] as an extension of the classical two-dimensional assignment
problem. Consider a complete tripartite graph Kn,n,n = (I ∪J ∪K, (I×
J) ∪ (I × K) ∪ (J × K)),where I, J , and K are disjoint sets of size n.

52 Metaheuristics: Progress as Real Problem Solvers

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

2 20 40 60 80 100

re
la

tiv
e

qu
al

ity

relative time

without path-relinking
with path-relinking

0.995

0.996

0.997

0.998

0.999

1.000

1.001

1.002

1.003

1.004

1.005

2 20 40 60 80 100

qu
al

ity
 r

at
io

relative time

10 centers
25 centers
50 centers
75 centers

100 centers
250 centers
500 centers

Figure 2.8. GRASP with path-relinking versus pure GRASP on TSPLIB instance
fl1400.

If a cost ci,j,k is associated with each triplet (i, j, k) ∈ I × J ×K, then
the AP3 consists of finding a subset A ∈ I × J × K of n triplets such
that every element of I ∪ J ∪K occurs in exactly one triplet of A, and
the sum of the costs of the chosen triplets is minimized. The AP3 is

GRASP with path-relinking 53

NP-hard [21, 22]. A permutation-based formulation for AP3 is

min
p,q∈πN

n
∑

i=1

cip(i)q(i),

where πN denotes the set of all permutations of the set of integers N =
{1, 2, . . . , n}.

Aiex [1] and Aiex et al. [3] describe a GRASP with path-relinking
for AP3. Computational results show clearly that this GRASP for AP3
benefits from path-relinking and compares well with previously proposed
heuristics for this problem. GRASP with path-relinking was able to im-
prove the solution quality of heuristics proposed by Balas and Saltzman
[6], Burkard et al. [8], and Crama and Spieksma [11] on all instances
proposed in those papers.

The GRASP construction phase builds a feasible solution S by select-
ing n triplets, one at a time. The solution S is initially empty and the
set C of candidate triplets is initially the set of all triplets. To select the
pth triplet (p = 1, . . . , n − 1) to be added to the solution, a restricted
candidate list C ′ is defined to include all triplets (i, j, k) in the candidate
set C having cost cijk ≤ c+ α(c− c), where

c = min{cijk
∣

∣ (i, j, k) ∈ C} and c = max{cijk
∣

∣ (i, j, k) ∈ C}.

Triplet (ip, jp, kp) ∈ C
′ is chosen at random and is added to the solution,

i.e. S = S∪{(ip, jp, kp)}. Once (ip, jp, kp) is selected, the set of candidate
triplets must be adjusted to take into account that (ip, jp, kp) is part of
the solution. Any triplet (i, j, k) such that i = ip or j = jp or k = kp is
removed from the current set of candidate triplets. After n− 1 triplets
have been selected, the set C of candidate triplets contains one last
triplet which is added to S, thus completing the construction phase.

In the local search procedure, the current solution is improved by
searching its neighborhood for a better solution. The solution of the
AP3 can be represented by a pair of permutations (p, q). For a solution
p, q ∈ πN , the 2-exchange neighborhood is N2(p, q) = {p

′, q′ | d(p, p′) +
d(q, q′) = 2}, where d(s, s′) = |{i | s(i) 6= s′(i)}|.

In the local search, each cost of a neighborhood solution is compared
with the cost of the current solution. If the cost of the neighbor is lower,
then the solution is updated, the search is halted, and a search in the
new neighborhood is initialized. The local search ends when no neighbor
of the current solution has a lower cost than the current solution.

Path-relinking is done between an initial solution

S = {(1, jS1 , k
S
1), (2, j

S
2 , k

S
2), . . . , (n, j

S
n , k

S
n)}

54 Metaheuristics: Progress as Real Problem Solvers

and a guiding solution

T = {(1, jT1 , k
T
1), (2, j

T
2 , k

T
2), . . . , (n, j

T
n , k

T
n)}.

Let the symmetric difference between S and T be defined by the following
two sets of indices:

δJ = {i = 1, . . . , n
∣

∣ jSi 6= jTi }

and
δK = {i = 1, . . . , n

∣

∣ kSi 6= kTi }.

An intermediate solution of the path is visited at each step of path-
relinking. Two elementary types of moves can be carried out. In a
type-one move, triplets

{(i1, j1, k1), (i2, j2, k2)}

are replaced by triplets

{(i1, j2, k1), (i2, j1, k2)}.

In a type-two move, triplets

{(i1, j1, k1), (i2, j2, k2)}

are replaced by
{(i1, j1, k2), (i2, j2, k1)}.

Set δJ guides type-one moves, while δK guides type-two moves. For
all i ∈ δJ , let q be such that jTq = jSi . A type-one move replaces triplets

{(i, jSi , k
S
i), (q, j

S
q , k

S
q)}

by
{(i, jSq , k

S
i), (q, j

S
i , k

S
q)}.

For all i ∈ δK, let q be such that kTq = kSi . A type-two move replaces
triplets

{(i, jSi , k
S
i), (q, j

S
q , k

S
q)}

by
{(i, jSi , k

S
q), (q, j

S
q , k

S
i)}.

At each step, the move that produces the least costly solution is selected
and the corresponding index is deleted from either δJ or δK. This
process continues until there are only two move indices left in one of
the sets δJ or δK. At this stage, any of these two moves results in the

GRASP with path-relinking 55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600

pr
ob

ab
ili

ty

time (seconds)

Balas & Saltzman 24.1

GRASP
GPR(RAND)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

pr
ob

ab
ili

ty

time (seconds)

Balas & Saltzman 24.1

GPR(RAND)
GPR(RAND,INT)

GPR(ALL)
GPR(ALL,INT)

Figure 2.9. The plot of the left shows empirical probability distributions of time to
target value for GRASP and GRASP with path-relinking (random selection of one
guiding solution from elite set). The plot of the right shows empirical probability dis-
tributions of time to target value for different variants of GRASP with path-relinking.

guiding solution and, therefore, are not carried out. The best solution
found in the path is returned by the procedure.

The plots in Figure 2.9 illustrate how GRASP with path-relinking
compares with pure GRASP and how different variants of GRASP with
path-relinking compare. The variants of GRASP with path-relinking
tested were: random selection of one guiding solution [GPR(RAND)];
random selection of one guiding solution and periodic relinking of all ele-
ments in pool [GPR(RAND,INT)]; selection of all pool elements as guid-

56 Metaheuristics: Progress as Real Problem Solvers

ing solutions [GPR(ALL)]; and selection of all pool elements as guiding
solutions with periodic relinking of all elements in pool [GPR(ALL,INT)].
The algorithms were run 200 times (using different initial seeds for the
random number generator) on instance 24.1 of Balas and Saltzman [6],
stopping when a solution value better than a given target value was
found. The experiment comparing pure GRASP with GRASP with
path-relinking used a target value of 17, while the one comparing the
different variants of GRASP with path-relinking used a more difficult
target value of 7. The plot on the left shows the benefit of using path-
relinking in GRASP. The plot on the right shows that the variants using
path-relinking with all elite solutions have a higher probability of finding
a target solution in a given amount of time than the variants that use
path-relinking with a single randomly selected elite solution. The use of
periodic intensification does not appear to influence the distributions as
much.

2.5 CONCLUSIONS AND EXTENSIONS

This paper reviewed recent advances and applications of GRASP with
path-relinking. By providing a short discussion of each component of
GRASP with path-relinking and showing examples of how such heuris-
tics can be implemented for combinatorial optimization problems such as
PVC routing, 2-path network design, 3-index assignment, and p-median,
we hope this paper will serve as a guide for the reader to put together
other GRASP with path-relinking heuristics.

Path-relinking is a major enhancement to the basic greedy random-
ized adaptive search procedure (GRASP), leading to significant improve-
ments in both solution time and quality. It adds an effective memory
mechanism to GRASP by providing an intensification strategy that ex-
plores trajectories connecting GRASP solutions and the best elite so-
lutions previously produced during the search. The numerical results
summarized for the four problems listed above clearly illustrate the ben-
efits obtained by the combination of GRASP with path relinking.

In evolutionary path-relinking used in the post-optimization inten-
sification phase, a new generation of elite solutions is generated from
the current population in the pool of elite solutions by applying path-
relinking between all pairs of solutions in this population. Solutions
obtained by each path-relinking operation are tested for inclusion in the
population of the next generation following the usual rules used in pool
management. This strategy was successfully used for the Steiner prob-
lem in graphs by Ribeiro et al. [50], for the p-median problem by Resende

GRASP with path-relinking 57

and Werneck [44], and for the uncapacitated facility location problem
by Resende and Werneck [46].

Path-relinking may also be used as a solution extractor for population
methods. In particular, path-relinking was recently successfully applied
as a generalized crossover strategy to generate optimized offsprings in
the context of a genetic algorithm for the phylogeny problem [51].

The fact that the computation time to find a target solution value us-
ing GRASP with path-relinking fits a two-parameter exponential distri-
bution (cf. Section 2.3, see [1, 2, 4]) has a major consequence in parallel
implementations of GRASP with path-relinking: linear speedups propor-
tional to the number of processors can be easily observed in parallel in-
dependent strategies. Additionally, path-relinking offers a very effective
mechanism for the implementation of parallel cooperative strategies [12].
In this case, inter-processor cooperation is enforced by a master proces-
sor which stores and handles a common pool of elite solutions which is
shared by all slave processors performing GRASP with path-relinking.
Careful implementations making appropriate use of the computer re-
sources may lead to even larger speedups and to very robust parallel
algorithms, see e.g. [31, 48, 49, 52]. Results obtained for the 2-path net-
work design problem are illustrated in Figure 2.10, showing the speedup
obtained by the cooperative strategy with respect to the independent
one on a cluster of eight processors. Much larger improvements can be
obtained with more processors.

Finally, we notice that path-relinking can also be successfully used in
conjunction with implementations of other metaheuristics such as VNS
and ant colonies, as recently reported e.g. in [5, 17].

ACKNOWLEDGMENTS

Most of this work is part of their dissertations and was jointly done
with the following currently and former M.Sc. and Ph.D. students from
the Catholic University of Rio de Janeiro, Brazil, which are all grate-
fully acknowledged: R.M. Aiex, S.A. Canuto, S.L. Martins, M. Prais, I.
Rosseti, M.C. Souza, E. Uchoa, D.S. Vianna, and R.F. Werneck.

REFERENCES

[1] R.M. Aiex. Uma investigação experimental da distribuição de proba-
bilidade de tempo de solução em heuŕısticas GRASP e sua aplicação
na análise de implementações paralelas. PhD thesis, Department

58 Metaheuristics: Progress as Real Problem Solvers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time-to-target-value (seconds)

IndependentCooperative

Figure 2.10. Probability distributions of time-to-target-value on an instance of the
2-path network design problem for cooperative and independent parallel implemen-
tations of GRASP with path-relinking on a Linux cluster with eight processors.

of Computer Science, Catholic University of Rio de Janeiro, Rio de
Janeiro, Brazil, 2002.

[2] R.M. Aiex, S. Binato, and M.G.C. Resende. Parallel GRASP with
path-relinking for job shop scheduling. Parallel Computing, 29:393–
430, 2003.

[3] R.M. Aiex, M.G.C. Resende, P.M. Pardalos, and G. Toraldo.
GRASP with path relinking for the three-index assignment prob-
lem. Technical report, AT&T Labs Research, Florham Park, NJ
07733, 2000. To appear in INFORMS J. on Computing.

[4] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distri-
bution of solution time in GRASP: An experimental investigation.
Journal of Heuristics, 8:343–373, 2002.

[5] D.J. Aloise, D. Aloise, C.T.M. Rocha, C.C. Ribeiro, José C. Ribeiro
Filho, and Luiz S.S. Moura. Scheduling workover rigs for onshore
oil production. Discrete Applied Mathematics, to appear.

[6] E. Balas and M.J. Saltzman. An algorithm for the three-index
assignment problem. Oper. Res., 39:150–161, 1991.

GRASP with path-relinking 59

[7] S. Binato, H. Faria Jr., and M.G.C. Resende. Greedy randomized
adaptive path relinking. In J.P. Sousa, editor, Proceedings of the
IV Metaheuristics International Conference, pages 393–397, 2001.

[8] R.E. Burkard, R. Rudolf, and G.J. Woeginger. Three-dimensional
axial assignment problems with decomposible cost coefficients. Dis-
crete Applied Mathematics, 65:123–139, 1996.

[9] S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with
perturbation for the prize-collecting Steiner tree problems in graphs.
Networks, 38:50–58, 2001.

[10] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of
bank accounts to optimize float: An analytical study of exact and
approximate algorithms. Management Science, 23:789–810, 1977.

[11] Y. Crama and F.C.R. Spieksma. Approximation algorithms for
three-dimensional assignment problems with triangle inequalities.
European Journal of Operational Research, 60:273–279, 1992.

[12] V.-D. Cung, S.L. Martins, C.C. Ribeiro, and C. Roucairol. Strate-
gies for the parallel implementation of metaheuristics. In C.C.
Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuris-
tics, pages 263–308. Kluwer Academic Publishers, 2002.

[13] G. Dahl and B. Johannessen. The 2-path network problem. Net-
works, 43:190–199, 2004.

[14] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a com-
putationally difficult set covering problem. Operations Research
Letters, 8:67–71, 1989.

[15] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6:109–133, 1995.

[16] T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized
adaptive search procedure for maximum independent set. Opera-
tions Research, 42:860–878, 1994.

[17] P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Ran-
domized heuristics for the max-cut problem. Optimization Methods
and Software, 7:1033–1058, 2002.

[18] P. Festa and M.G.C. Resende. GRASP: An annotated bibliogra-
phy. In C.C. Ribeiro and P. Hansen, editors, Essays and surveys on
metaheuristics, pages 325–367. Kluwer Academic Publishers, 2002.

[19] C. Fleurent and F. Glover. Improved constructive multistart strate-
gies for the quadratic assignment problem using adaptive memory.
INFORMS Journal on Computing, 11:198–204, 1999.

60 Metaheuristics: Progress as Real Problem Solvers

[20] B. Fortz and M. Thorup. Internet traffic engineering by optimizing
ospf weights. In Proc. IEEE INFOCOM 2000 – The Conference on
Computer Communications, pages 519–528, 2000.

[21] A.M. Frieze. Complexity of a 3-dimensional assignment problem.
European Journal of Operational Research, 13:161–164, 1983.

[22] M.R. Garey and D.S. Johnson. Computers and intractability - A
guide to the theory of NP-completeness. W.H. Freeman and Com-
pany, 1979.

[23] F. Glover. Tabu search and adaptive memory programing – Ad-
vances, applications and challenges. In R.S. Barr, R.V. Helgason,
and J.L. Kennington, editors, Interfaces in Computer Science and
Operations Research, pages 1–75. Kluwer, 1996.

[24] F. Glover. Multi-start and strategic oscillation methods – Princi-
ples to exploit adaptive memory. In M. Laguna and J.L. Gonzáles-
Velarde, editors, Computing Tools for Modeling, Optimization and
Simulation: Interfaces in Computer Science and Operations Re-
search, pages 1–24. Kluwer, 2000.

[25] F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.

[26] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search
and path relinking. Control and Cybernetics, 39:653–684, 2000.

[27] O. Kariv and L. Hakimi. An algorithmic approach to nework loca-
tion problems, Part II: The p-medians. SIAM Journal of Applied
Mathematics, 37:539–560, 1979.

[28] M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer
straight line crossing minimization. INFORMS Journal on Com-
puting, 11:44–52, 1999.

[29] Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized
adaptive search procedure for the quadratic assignment problem. In
P.M. Pardalos and H. Wolkowicz, editors,Quadratic assignment and
related problems, volume 16 of DIMACS Series on Discrete Mathe-
matics and Theoretical Computer Science, pages 237–261. American
Mathematical Society, 1994.

[30] S.L. Martins, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro.
Greedy randomized adaptive search procedures for the steiner prob-
lem in graphs. In P.M. Pardalos, S. Rajasekaran, and J. Rolim,
editors, Randomization methods in algorithmic design, volume 43
of DIMACS Series on Discrete Mathematics and Theoretical Com-
puter Science, pages 133–145. American Mathematical Society,
1999.

GRASP with path-relinking 61

[31] S.L. Martins, C.C. Ribeiro, and I. Rosseti. Applications and parallel
implementations of metaheuristics in network design and routing.
Lecture Notes in Computer Science, 3285:205–213, 2004.

[32] C.A. Oliveira, P.M. Pardalos, and M.G.C. Resende. GRASP with
path-relinking for the QAP. In Toshihide Ibaraki and Yasunari
Yoshitomi, editors, Proceedings of the Fifth Metaheuristics Interna-
tional Conference, pages 57–1 – 57–6, 2003.

[33] W.P. Pierskalla. The tri-subsitution method for the three-
multidimensional assignment problem. CORS J., 5:71–81, 1967.

[34] M. Prais and C.C. Ribeiro. Reactive GRASP: An application to
a matrix decomposition problem in TDMA traffic assignment. IN-
FORMS Journal on Computing, 12:164–176, 2000.

[35] M. G. C. Resende and R. F. Werneck. On the implementation of
a swap-based local search procedure for the p-median problem. In
R. E. Ladner, editor, Proceedings of the Fifth Workshop on Algo-
rithm Engineering and Experiments (ALENEX’03), pages 119–127.
SIAM, 2003.

[36] M.G.C. Resende. Computing approximate solutions of the maxi-
mum covering problem using GRASP. Journal of Heuristics, 4:161–
171, 1998.

[37] M.G.C. Resende, T.A. Feo, and S.H. Smith. Algorithm 787: For-
tran subroutines for approximate solution of maximum independent
set problems using GRASP. ACM Transactions on Mathematical
Software, 24:386–394, 1998.

[38] M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: Fortran
subroutines for approximate solution of dense quadratic assignment
problems using GRASP. ACM Transactions on Mathematical Soft-
ware, 22:104–118, 1996.

[39] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Fortran subrou-
tines for computing approximate solutions of MAX-SAT problems
using GRASP. Discrete Applied Mathematics, 100:95–113, 2000.

[40] M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planariza-
tion. Networks, 29:173–189, 1997.

[41] M.G.C. Resende and C.C. Ribeiro. A GRASP with path-relinking
for private virtual circuit routing. Networks, 41:104–114, 2003.

[42] M.G.C. Resende and C.C. Ribeiro. GRASP and path-relinking:
Recent advances and applications. In Toshihide Ibaraki and Ya-
sunari Yoshitomi, editors, Proceedings of the Fifth Metaheuristics
International Conference, pages T6–1 – T6–6, 2003.

62 Metaheuristics: Progress as Real Problem Solvers

[43] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive
search procedures. In F. Glover and G. Kochenberger, editors,
Handbook of Metaheuristics, pages 219–249. Kluwer Academic Pub-
lishers, 2003.

[44] M.G.C. Resende and R.F. Werneck. A GRASP with path-relinking
for the p-median problem. Technical Report TD-5E53XL, AT&T
Labs Research, 2002.

[45] M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-
median problem. Journal of Heuristics, 10:59–88, 2004.

[46] M.G.C. Resende and R.F. Werneck. A hybrid multistart heuristic
for the uncapacitated facility location problem. European Journal
of Operational Research, to appear.

[47] C.C. Ribeiro and M.G.C. Resende. Algorithm 797: Fortran subrou-
tines for approximate solution of graph planarization problems us-
ing GRASP. ACM Transactions on Mathematical Software, 25:341–
352, 1999.

[48] C.C. Ribeiro and I. Rosseti. A parallel GRASP for the 2-path
network design problem. Lecture Notes in Computer Science,
2004:922–926, 2002.

[49] C.C. Ribeiro and I. Rosseti. Efficient parallel cooperative implemen-
tations of GRASP heuristics. Technical report, Catholic University
of Rio de Janeiro, Rio de Janeiro, Brazil, 2005.

[50] C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with
perturbations for the Steiner problem in graphs. INFORMS Journal
on Computing, 14:228–246, 2002.

[51] C.C. Ribeiro and D.S. Vianna. A genetic algorithm for the phy-
logeny problem using an optimized crossover strategy based on
path-relinking. Revista Tecnologia da Informação, 3(2):67–70, 2003.

[52] I. Rosseti. Heuŕısticas para o problema de śıntese de redes a 2-
caminhos. PhD thesis, Department of Computer Science, Catholic
University of Rio de Janeiro, Rio de Janeiro, Brazil, July 2003.

[53] M.C. Souza, C. Duhamel, and C.C. Ribeiro. A GRASP with path-
relinking heuristic for the capacitated minimum spanning tree prob-
lem. In M.G.C. Resende and J. Souza, editors, Metaheuristics:
Computer Decision Making, pages 627–658. Kluwer Academic Pub-
lishers, 2003.

[54] M. B. Teitz and P. Bart. Heuristic methods for estimating the gen-
eralized vertex median of a weighted graph. Operations Research,
16:955–961, 1968.

GRASP with path-relinking 63

[55] R. Whitaker. A fast algorithm for the greedy interchange of large-
scale clustering and median location prolems. INFOR, 21:95–108,
1983.

