
A HYBRID LAGRANGEAN HEURISTIC WITH

GRASP AND PATH-RELINKING FOR SET K -COVERING

LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

Abstract. The set k-covering problem is an extension of the set covering pro-

blem, in which each object has to be covered at least k times. We describe a
GRASP with path-relinking heuristic for its solution, as well as the template
of a family of Lagrangean heuristics. The hybrid GRASP Lagrangean heuristic

employs the GRASP with path-relinking heuristic using modified costs to ob-
tain solutions for the Lagrangean relaxation problem. Numerical experiments
have shown that the Lagrangean heuristics performed consistently better than
GRASP. The GRASP Lagrangean heuristic makes better use of the dual in-

formation provided by subgradient optimization and is able to discover better
solutions even after the stabilization of the lower bounds.

1. Introduction

Given a set I = {1, . . . ,m} of objects, let {P1, . . . , Pn} be a collection of subsets
of I, with a non-negative cost cj associated with each subset Pj , for j = 1, . . . , n.

A subset Ĵ ⊆ J = {1, . . . , n} is a cover of I if ∪
j∈Ĵ

Pj = I. The cost of a cover Ĵ

is
∑

j∈Ĵ
cj . The set covering problem consists of finding a minimum cost cover J∗.

The set multi-covering problem is a generalization of the set covering problem,
in which each object i ∈ I must be covered by at least ℓi ∈ Z+ elements of
{P1, . . . , Pn}. A special case of the set multi-covering problem arises when ℓi = k,
for all i ∈ I. We refer to this problem as the set k-covering problem (SCkP).

Let the m × n binary matrix A = [aij] be such that for all i ∈ I and j ∈ J ,

aij = 1 if and only if i ∈ Pj ; aij = 0, otherwise. Let a solution Ĵ of SCkP be

represented by a binary n-vector x, where xj = 1 if and only if j ∈ Ĵ . An integer
programming formulation for the set k-covering problem is

z(x) =min

n
∑

j=1

cjxj(1)

s.t.
n
∑

j=1

aijxj ≥ k, i = 1, . . . ,m,(2)

xj ∈ {0, 1}, j = 1, . . . , n.(3)

Applications of the set multicovering problem arise in a variety of fields, such
as marketing, logistics, security, telecommunications (Resende, 2007), and com-
putational biology (Bafna et al., 2003). Though some of these applications can

Date: February 18, 2010.
Key words and phrases. GRASP, hybrid heuristics, Lagrangean relaxation, Lagrangean

heuristics, set k-covering.

1

2 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

be modeled as set covering problems, for reliability purposes they are treated as
multicovering. Other applications are described by Hall and Hochbaum (1992).

We propose a template of Lagrangean heuristics for the set k-covering problem,
based on the hybridization of greedy and GRASP heuristics with subgradient op-
timization. A GRASP with path-relinking heuristic for the set k-covering problem
is customized in Section 2. A template for Lagrangean heuristics for SCkP based
on constructive heuristics and subgradient optimization is proposed in Section 3.
Different implementation strategies for the constructive heuristics and a hybridiza-
tion of GRASP with a Lagrangean heuristic are discussed in Section 4. Numerical
results are reported in Section 5. Concluding remarks are made in the last section.

2. GRASP with path-relinking

GRASP is the short for greedy randomized adaptive search procedures, a multi-
start metaheuristic which consists of applying local search to feasible starting so-
lutions generated with a greedy randomized construction heuristic (Resende and
Ribeiro, 2003). It was introduced in Feo and Resende (1989) for solving a set
covering problem with unit costs.

Path-relinking (Glover, 1996) is an intensification scheme that explores paths
in the solution space connecting good-quality solutions. Memory structures may
be introduced in GRASP through its hybridization with path-relinking (Resende
and Ribeiro, 2005). In this section, we specialize GRASP and path-relinking into
a heuristic for the set k-covering problem.

2.1. Construction phase. A greedy algorithm for set k-covering builds a solution
from scratch, adding one of the sets P1, . . . , Pn at a time to a partial solution, until
each object is covered by at least k sets. At each step of the construction, let the
covering cardinality τj be the number of objects not yet k-covered by the partial
solution that become covered if Pj is introduced in the partial solution. A candidate
list L is formed by the indices of all sets Pj not in the partial solution for which
τj > 0. Each set Pj , with j ∈ L, is evaluated according to a greedy function defined
as the ratio ρj between its cost cj and its covering cardinality τj . The greedy
algorithm adds to the partial solution a minimum ratio candidate set.

In a greedy randomized construction, a candidate set is randomly selected to be
added to the partial solution from a restricted list, formed by all elements j ∈ L
whose ratio ρj is less than or equal to ρ−+α(ρ+−ρ−), with ρ− = min{ρj : j ∈ L},
and ρ+ = max{ρj : j ∈ L}, and α a real-valued parameter in the interval [0, 1].

2.2. Local search. Solutions built with the randomized greedy algorithm are not
guaranteed to be locally optimal, even with respect to simple neighborhoods. There-
fore, the application of local search to such a solution usually results in an improved
local optimum. Starting from an initial solution, local search explores its neighbor-
hood for a cost-improving solution. If none is found, the search returns the initial
solution as a local minimum. Otherwise, the cost-improving solution is made the
new initial solution, and the procedure repeats itself.

The local search proposed in this paper makes use of two neighborhoods. The
first is a (1, 0)-exchange, in which we attempt to remove superfluous sets from
the cover. The second neighborhood is a (1, 1)-exchange, in which we attempt to
replace a more expensive set in the cover by a less expensive one not in the cover.

GRASP LAGRANGEAN HEURISTIC 3

2.3. Path-relinking. The basic implementation of GRASP is memoryless, since
any iteration does not make use of information collected in previous iterations.
Path-relinking is an intensification strategy that can be applied to introduce mem-
ory structures in GRASP (Resende and Ribeiro, 2005). It explores paths in the
solution space connecting good-quality solutions, one of them being an initial so-
lution xs and the other a target solution xt. The procedure maintains a pool P of
diverse elite solutions found during the search. Path-relinking is carried out after
local search, between the local minimum and a randomly selected pool solution.

We take xs as the binary vector representing the solution obtained after the
local search phase and xt as the binary vector representing a pool solution. To favor
longer paths, the pool solution xt is chosen at random with probability proportional
to its Hamming distance to xs, i.e. |{j = 1, . . . , n : xs

j 6= xt
j}|. We do not consider

a pool solution if its Hamming distance to xs is less than four, since any path
between them cannot contain solutions simultaneously better than both xs and xt.

GRASP+PR1

Initialize elite set P ← ∅;2

Initialize best solution value z∗ ←∞;3

for i = 1, . . . , N do4

x← GreedyRandomizedConstruction();5

x← LocalSearch(x);6

if i = 1 then insert x into the elite set P ;7

else8

Choose, at random, a pool solution xp ∈ P ;9

Determine which solution (between x and xp) is the10

initial solution xs and the target solution xt;
x← PathRelinking(xs, xt);11

x← LocalSearch(x);12

Update the elite set P with x;13

end14

if z(x) < z∗ then15

x∗ ← x;16

z∗ ← z(x);17

end18

end19

Algorithm 1: GRASP with path-relinking procedure.

Algorithm 1 shows the pseudo-code for the GRASP with path-relinking proce-
dure. Lines 2 and 3 initialize the elite set P and the value of the best solution
z∗. The loop from line 4 to 19 corresponds to the GRASP with path-relinking
iterations. At each iteration, an initial solution is built by the greedy randomized
procedure in line 5. A local optimum x with respect to (0,0)- and (1,0)-exchanges
is computed in line 6. The elite set P is initialized in line 7. For all other iterations,
lines 8 to 14 perform the application of path-relinking and the elite set management.

A pool solution xp is chosen, at random, from the elite set in line 9. The
candidates for selection are all solutions in P whose Hamming distance to xs is

4 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

greater than three. As already observed, candidates are selected with probabilities
proportional to their Hamming distances to xs. Line 10 determines, between x
and xp, which one is the starting solution xs. The other is the target solution, xt.
Path-relinking is applied in line 11, resulting in a solution x which is reoptimized
by local search in line 12. The elite set P is updated in line 13. If it is not full and
the new solution is different from all others in the pool, then it is inserted in the
elite set. Otherwise, if x is better than the worst solution in the pool, it replaces
the latter. If x does not improve upon the worst solution in the elite set, then it is
discarded. The best solution x∗ and its cost z∗ are updated in lines 15 to 18.

The attribution of x and xp to the initial solution xs or to the target solution xt

depends on the path-relinking strategy. Distinct approaches have been considered
in the implementation of this procedure (Resende and Ribeiro, 2005). We used the
backward strategy, in which the initial solution is the best between xs and xt.

3. A template for Lagrangean heuristics

The primal solutions obtained along the resolution of the Lagrangean dual of
a combinatorial optimization problem are not necessarily feasible (Beasley, 1993;
Fisher, 2004). Lagrangean heuristics exploit the dual multipliers to generate primal
feasible solutions. Beasley (1990b) described a Lagrangean heuristic for set covering
which can be extended to the set k-covering problem.

A Lagrangean relaxation of the set k-covering problem can be defined by associ-
ating dual multipliers λi ∈ R+, for i = 1, . . . ,m, to each inequality (2). This results
in the following Lagrangean relaxation problem LRP(λ):

min

n
∑

j=1

cjxj +

m
∑

i=1

λi(k −
n
∑

j=1

aijxj)

xj ∈ {0, 1} , j = 1, . . . , n.

By letting c′j = cj −
∑m

i=1 λiaij , formulation LRP(λ) simplifies to

z′(λ) = min
n
∑

j=1

c′jxj +
m
∑

i=1

λik

xj ∈ {0, 1} , j = 1, . . . , n,

whose optimal solution x′(λ) is given by

(4) x′
j(λ) =

{

1, if c′j ≤ 0

0, otherwise,

for j = 1, . . . , n, with the objective function value given by

z′(λ) =

n
∑

j=1

c′jx
′
j(λ) + k

m
∑

i=1

λi

being a lower bound to the optimal value of the original problem (1)–(3). The best
lower bound z′(λ∗) is the solution of the Lagrangean dual problem:

(5) zD = max
λ∈R

m

+

z′(λ).

Subgradient optimization may be used to solve (5). Subgradient algorithms may
start from any feasible set of dual multipliers, such as λi = 0, for i = 1, . . . ,m, and

GRASP LAGRANGEAN HEURISTIC 5

iteratively generate further multipliers. We use the same strategy described in Held
et al. (1974) for updating the dual multipliers from one iteration to the next.

At any iteration q, let λq be the current vector of multipliers and let x′(λq) be an
optimal solution to problem LRP(λq), whose optimal value is z′(λq). Furthermore,
let z̄ be a known upper bound to the optimal value of problem (1)–(3). Additionally,
let gq ∈ R

m be a subgradient of z′(λ) for λ = λq, with

(6) gqi = k −
n
∑

j=1

aijx
′
j(λ

q), i = 1, 2, . . . ,m.

To update the Lagrangean multipliers, the algorithm makes use of a step size

(7) dq =
η (z̄ − z′(λq))
∑m

i=1(g
q
i)

2
,

where η ∈ (0, 2]. Multipliers are then updated according to

(8) λq+1
i = max{0;λq

i + dqgqi }, i = 1, . . . ,m

and the subgradient algorithm proceeds to iteration q+1. Beasley (1990b) reports
as computationally useful to adjust the components of the subgradients to zero
whenever they do not effectively contribute to the update of the multipliers, i.e.
arbitrarily set gqi = 0 whenever gqi > 0 and λq

i = 0, for i = 1, . . . ,m.
The proposed Lagrangean heuristic makes use of the dual multipliers λq and of

the optimal solution x′(λq) to each problem LRP(λq) to build feasible solutions to
the original problem (1)–(3). Let H be a heuristic that builds a feasible solution x
from an initial solution x0. Two approaches are considered to define x0: Beasley
(1990b) sets x0 = x(λq), while Caprara et al. (1999) simply initialize x0

j = 0, for
j = 1, . . . , n. In other words, the first approach repairs the initial solution x′(λq)
to make it feasible, while the second builds a feasible solution from scratch.

Heuristic H is initially applied from scratch using the original cost vector c. In
any subsequent iteration q of the subgradient algorithm, H either uses Lagrangean
reduced costs c′j = cj−

∑m

i=1 λ
q
iaij or complementary costs c̄j = (1−x′

j(λ
q))cj . Let

xH,γ be the solution obtained by H, using a generic cost vector γ corresponding
to either one of the above modified cost schemes or to the original cost vector. Its

cost is given by
∑n

j=1 cjx
H,γ
j and may be used to update the upper bound z̄ to the

optimal value of the original problem (1)–(3). This upper bound may be further
improved by local search and is used to adjust the step size in (7).

Algorithm 2 describes the pseudo-code of the Lagrangean heuristic. Lines 2 to 4
initialize the bounds, the iteration counter, and the dual multipliers. The iterations
of the subgradient algorithm are performed along the loop in lines 5 to 22. The
reduced costs are computed in line 6 and the Lagrangean relaxation problem is
solved by inspection in line 7. In the first iteration of the Lagrangean heuristic,
the original cost vector is assigned to γ in line 8, while in subsequent iterations a
modified cost vector is assigned in line 9. Lines 10 to 16 use a basic heuristic to
produce primal feasible solutions to problem (1)–(3) whenever the iteration counter
q is a multiple of H. In line 11, a heuristic H is applied to produce the feasible
solution xH,γ . If the cost of this solution is lower than the current upper bound, the
best solution and its cost are updated in lines 13 and 14, respectively. If the lower
bound z′(λq) is greater than the best lower bound zD, then zD is updated in line 17.

6 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

LagrangeanHeuristic1

Initialize bounds: z̄ ←
∑n

j=1 cj and zD ← 0;2

Initialize iteration counter: q ← 0;3

Initialize dual multipliers: λq
i ← 0, i = 1, . . . ,m;4

repeat5

Compute reduced costs c′j ← cj −
∑m

i=1 λ
q
i aij , j = 1, . . . , n;6

Solve LRP(λq) by inspection to obtain x′(λq);7

if q = 0 then set γ ← c;8

else set γ to the modified cost vector;9

if q is a multiple of H then10

Apply a basic heuristic H with cost vector γ to obtain xH,γ ;11

if
∑n

j=1 cjx
H,γ
j < z̄ then12

x∗ ← xH,γ ;13

z̄ ←
∑n

j=1 cjx
H,γ
j ;14

end15

end16

if z′(λq) > zD then zD ← z′(λq);17

Compute subgradient: gqi = k −
∑n

j=1 aijx
′
j(λ

q), i = 1, 2, . . . ,m;18

Compute step size: dq ← η (z̄ − z′(λq))/
∑m

i=1(g
q
i)

2;19

Update dual multipliers: λq+1
i ← max{0, λq

i − dqgqi }, i = 1, . . . ,m;20

Increment iteration counters: q ← q + 1;21

until stopping criterion not satisfied ;22

Algorithm 2: Pseudo-code of the template for a Lagrangean heuristic.

Lines 18 and 19 compute the subgradient and the step size. The dual multipliers
are updated in line 20 and the iteration counter is incremented in line 21.

Different choices for the initial solution x0 and for the modified costs γ, as well
as for the heuristic H itself, lead to different Lagrangean heuristics.

4. Basic heuristics and Lagrangean GRASP

Different implementation strategies of the basic heuristic in the template of Al-
gorithm 2 lead to distinct Lagrangean heuristics. We considered two variants of
the basic heuristic H. The first is a greedy algorithm with local search, while the
second is a GRASP with path-relinking.

4.1. Greedy basic heuristic. This heuristic either builds a feasible solution x
from scratch, or repairs the solution x′(λq) produced in line 7 of the Lagrangean
heuristic described in Algorithm 2 to make it feasible for problem (1)–(3). It corre-
sponds to the greedy randomized construction using parameter α = 0 and modified
costs (c′ or c̃). Local search is applied to the resulting solution, using the original
cost vector c. We shall refer to the Lagrangean heuristic that uses the greedy basic
heuristic as the greedy Lagrangean heuristic or simply GLH.

4.2. GRASP basic heuristic. Instead of performing one construction step fol-
lowed by local search as in the greedy basic heuristic, this heuristic applies the

GRASP LAGRANGEAN HEURISTIC 7

GRASP with path-relinking heuristic of Algorithm 1 either to build a feasible so-
lution from scratch, or to repair the solution x′(λq) produced in line 7 of the La-
grangean heuristic described in Algorithm 2 to make it feasible for problem (1)–(3).
We shall refer to the Lagrangean heuristic that uses the GRASP basic heuristic as
the GRASP Lagrangean heuristic or simply LAGRASP.

Although the GRASP basic heuristic produces better solutions than the greedy
basic heuristic, the latter is much faster. To address this, in line 11 of Algorithm 2,
we choose to use the GRASP basic heuristic with probability β and the greedy basic
heuristic with probability 1−β. This strategy involves three main parameters: the
number H of iterations after which the basic heuristic is always applied, the number
Q of iterations performed by the GRASP with path-relinking heuristic, and the
probability β of choosing the GRASP heuristic. We shall refer to the Lagrangean
heuristic that uses this hybrid strategy as LAGRASP(β,H,Q).

5. Computational experiments

The numerical experiments were performed on an 2.33 GHz Intel Xeon E5410
Quadcore computer running Linux Ubuntu 8.04. Each run was limited to a single
processor. All codes were implemented in C and compiled with gcc 4.1.2. We
generated 135 test instances for the set k-covering problem from 45 set covering
instances of the OR-Library (Beasley, 1990a). Three coverage factors k were used:

• kmin: k = 2 for all instances;

• kmax: k = min
i=1,...,m

n
∑

j=1

aij ;

• kmed: k = ⌈(kmin + kmax)/2⌉

5.1. Comparative metrics. We used the metrics below to compare the heuristics:

• BestValue: for each instance, BestValue is the best solution value obtained
over all executions of the methods considered.
• Dev : for each heuristic, Dev is the relative deviation in percent between
BestValue and the best solution value obtained with that method.
• AvgDev : this value is the average of Dev over all instances considered in a
particular experiment.
• #Best : for each heuristic, this metric gives the number of instances for
which the best solution obtained with this heuristic matches BestValue.
• NScore: for each instance and heuristic, it gives the number of algorithms
that found a better solution. In case of ties, all algorithms receive the same
score, equal to the number of heuristics strictly better than all of them.
• Score: for each heuristic, it gives the sum of the NScore values over all
instances in the experiment. Thus, the lower Score the better the heuristic.
• TTime: for each heuristic, it gives the sum over all instances of the average
time taken by this heuristic over all runs of the same instance.

5.2. Greedy Lagrangean heuristic. This section reports on the computational
experiments performed to evaluate the efficiency of different versions of the greedy
Lagrangean heuristic. By combining the two different approaches to build the initial
solution x0 and the two modified cost schemes used in the basic heuristic H, four
different versions of greedy Lagrangean heuristics have been devised:

8 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

• GLH1 LL: Lagrangean modified costs are used to build a feasible solution
from that provided by the Lagrangean relaxation.
• GLH2 CL: complementary modified costs are used to build a feasible solu-
tion from that provided by the Lagrangean relaxation.
• GLH3 LS: Lagrangean modified costs are used to build a feasible solution
from scratch.
• GLH4 CS: complementary modified costs are used to build a feasible solu-
tion from scratch.

For all versions, the step size parameter η is initially set to 2 and halved after
every 50 consecutive iterations of the subgradient algorithm without improvement
in the best lower bound. The greedy basic heuristic is run at every subgradient
iteration. Following Beasley (1990b), the greedy Lagrangean heuristic stops when-
ever the lower bound zD matches the upper bound z̄ or the step size parameter η
becomes too small (η ≤ 10−4 in our implementation).

Table 1. Summary of the numerical results obtained with four
versions of the greedy Lagrangean heuristic.

GLH1 LL GLH2 CL GLH3 LS GLH4 CS

AvgDev 0.05 % 0.07 % 0.05 % 0.04 %
#Best 79 47 78 65
Score 83 216 98 153
TTime 24,274.71 22,677.02 37,547.50 41,804.25

Table 1 displays a summary of the results obtained over all 135 test instances
with the four versions of the greedy Lagrangean heuristic. The four heuristics are
able to find good solutions of similar quality, as demonstrated by their average
deviations from the best value, which range from 0.04 to 0.07%. However, the two
versions based on building feasible solutions from scratch consumed much more
running time. With respect to the versions that start from the solutions provided
by the Lagrangean relaxation, the one using Lagrangean modified costs (GLH1 LL)
obtained best results for the three quality metrics, being able to find 79 best solu-
tions over the 135 instances at the cost of a small additional running time.

5.3. GRASP Lagrangean heuristic. In this section, we report the computa-
tional experiments involving the hybridization of GRASP with path-relinking with
the best version of the greedy Lagrangean heuristic. The GRASP construction
phase receives the solution x0 provided by the Lagrangean relaxation. Lagrangean
reduced costs are used to evaluate the candidate elements. Parameter α used in
the GRASP construction phase was set to 0.3 to reduce the computational burden
with respect to the reactive version.

The aim of the first experiment is to evaluate the relationship between running
times and solution quality for different parameter settings. Parameter H, the num-
ber of iterations between successive calls to the basic heuristic, was set to 1, 5, 10,
and 50. Parameter β, the probability of GRASP being applied as the basic heuris-
tic, was set to 0, 0.25, 0.50, 0.75, and 1. Parameter Q, the number of iterations
carried out by the GRASP basic heuristic was set to 1, 5, 10, and 50. By combining
these parameter values, 68 versions of LAGRASP were created. Each version was
applied eight times to each instance, with different initial seeds for the random
number generator. A subset of 21 instances was considered in this experiment.

GRASP LAGRANGEAN HEURISTIC 9

The plot in Figure 1 summarizes the results for all versions, displaying points
whose coordinates are the values of the AvgDev and TTime metrics for each com-
bination of parameter values. Points closer to the origin correspond to the best
balance between solution quality and running time. Three versions, of special in-
terest, are identified and labeled with the corresponding parameters β, H, and Q, in
this order. Setting β = 0 andH = 1 corresponds to the greedy Lagrangean heuristic
(GLH) or, equivalently, to LAGRASP(0,1,-): the average deviation from the best
value amounted to 0.09% in 4,859.16 seconds of running time. Another particularly
interesting version is that with β = 0.25, H = 1, and Q = 5: LAGRASP(0.25,1,5)
obtained better solutions than LAGRASP(0,1,-) at the cost of an increase in running
time, since its average deviation from the best value was only 0.07% and the run-
ning time attained 13,394.27 seconds. Finally, setting β = 0.50, H = 10, and Q = 5
lead to LAGRASP(0.50,10,5), which took less running time than LAGRASP(0,1,-),
but at the cost of a deterioration in solution quality: the average deviation from
the best value was 0.10% and the running time only 2,414.78 seconds.

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5

T
im

e
(s

)

AvgDev (%)

(0,1,-)

(0.25,1,5)

(0.50,10,5)

Figure 1. Average deviation from the best value and total run-
ning time for 68 different versions of LAGRASP: each point repre-
sents a unique combination of parameters β, H, and Q.

Next, all 135 test instances were considered in the comparison of the three ver-
sions of LAGRASP selected as above. Table 2 summarizes the results obtained
by the three versions. It shows that LAGRASP(0.25,1,5) found the best solutions,
with their average deviation from the best values being as low as 0.01%. It also
found 111 among the best known solutions, again with the best performance when
the three versions are evaluated side by side, although at the cost of the high-
est running times. On the other hand, the smallest running time are observed
for LAGRASP(0.50,10,5), which spent about one sixth of the time consumed by
LAGRASP(0.25,1,5) but found the lowest-quality solutions. LAGRASP(0,1,-) (or
GLH) has offered the best trade-off between running time and solution quality.

Figure 2 illustrates the merit of the proposed method for instance scp510-kmax.
We notice that, as the dual information (i.e., the lower bound) seems to stabilize,
the upper bound obtained by LAGRASP(0,1,-) (or GLH) also seems to freeze.

10 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

Table 2. Summary of the numerical results obtained with the
best versions of the GRASP Lagrangean heuristic.

LAGRASP LAGRASP LAGRASP
(0,1,-) (0.25,1,5) (0.50,10,5)

AvgDev 0,03 % 0,01 % 0,07 %
#Best 73 111 47
Score 80 25 160
Time 24,274.71 63,603.06 11,401.26

However, both LAGRASP(0.25,1,5) and LAGRASP(0.50,10,5) continue to make
improvements in discovering better upper bounds, since the randomized aspect of
the GRASP constructive procedure makes it possible to escape from locally optimal
solutions.

 38600

 38800

 39000

 39200

 39400

 39600

 39800

 40000

 0 200 400 600 800 1000 1200 1400

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
s

Iterations

LAGRASP(0,1,-) UB
LAGRASP(0.25,1,5) UB

LAGRASP(0.50,10,5) UB
Lower Bound

Figure 2. Evolution of lower and upper bounds over time for
different versions of LAGRASP.

5.4. Comparative results. In this section, we compare the performance of GRASP
and LAGRASP when the same time limits are given as the stopping criterion for
both heuristics. GRASP with backward path-relinking (GPRb) is compared to
LAGRASP(0.25,1,5), which obtained the best solutions among the three versions
of the Lagrangean heuristics compared in Section 5.3.

LAGRASP(0.25,1,5) and GPRb run for the same time needed by a pure, mem-
oryless GRASP variant to perform 1000 iterations for the same instance. Eight
runs have been performed for each heuristic and each instance, with different ini-
tial seeds given to the random number generator. The results in Table 3 show
that LAGRASP(0.25,1,5) beat GPRb and found the best known solutions for all
instances, while GPRb found solutions whose costs are larger by 3.60% on average
than the best values obtained by LAGRASP(0.25,1,5).

GRASP LAGRANGEAN HEURISTIC 11

Figure 3 displays for the same instance scp510-kmax the typical behavior of
the two methods compared in this section: LAGRASP(0.25,1,5) consistently finds
better solutions than GPRb along all the execution time.

Table 3. Comparative results for LAGRASP and GRASP.

LAGRASP(0.25,1,5) GPRb

AvgDev 0.00 % 3.60 %
#Best 135 0
Score 0 135

 38500

 39000

 39500

 40000

 40500

 41000

 41500

 42000

 42500

 43000

 0 10 20 30 40 50 60 70 80 90

C
os

t

Time (s)

GPRb
LAGRASP(0.25,1,5)

Figure 3. Evolution of solution costs with time for LAGRASP
and GRASP.

6. Concluding remarks

This paper advances the current state-of-the-art of hybrid heuristics combining
metaheuristics with Lagrangean relaxations, reporting on the hybridization between
GRASP and subgradient optimization. The set k-covering problem was used as the
test bed for the algorithmic developments and computational experiments.

We first described a GRASP with path-relinking heuristic for the set k-covering
problem, followed by the template of a family of Lagrangean heuristics. The greedy
Lagrangean heuristic makes use of a greedy algorithm to obtain solutions for the
Lagrangean relaxation, while the GRASP Lagrangean heuristic LAGRASP employs
the best variant of GRASP with path-relinking for this purpose.

Computational experiments have been carried out comparing running times and
solution quality for GRASP with path-relinking, greedy Lagrangean, and GRASP
Lagrangean heuristics. The results have shown that the Lagrangean heuristics
performed consistently better than GRASP for the set k-covering problems.

LAGRASP found better solutions for a greater number of instances than the
greedy Lagrangean heuristic. It makes better use of the dual information provided

12 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

by subgradient optimization and is able to discover better solutions and to escape
from locally optimal solutions after the stabilization of the lower bounds, when the
greedy Lagrangean heuristic fails to find new improving solutions.

References

V. Bafna, B.V. Halldorsson, R. Schwartz, A.G. Clark, and S. Istrail. Haplotypes and
informative SNP selection algorithms: Don’t block out information. In Proceed-
ings of the 7th Annual International Conference on Research in Computational
Molecular Biology, pages 19–27, Berlin, 2003. ACM.

J.E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal
of the Operational Research Society, 41:1069–1072, 1990a.

J.E. Beasley. A Lagrangian heuristic for set-covering problems. Naval Research
Logistics, 37:151–164, 1990b.

J.E. Beasley. Lagrangean relaxation. In C.R. Reeves, editor, Modern heuristic
techniques for combinatorial problems, pages 243–303. Blackwell Scientific Pub-
lications, Oxford, 1993.

A. Caprara, P. Toth, and M. Fischetti. A heuristic method for the set covering
problem. Operations Research, 47:730–743, 1999.

T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8:67–71, 1989.

M.L. Fisher. The Lagrangian relaxation method for solving integer programming
problems. Management Science, 50:1861–1871, 2004.

F. Glover. Tabu search and adaptive memory programing – Advances, applications
and challenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors,
Interfaces in Computer Science and Operations Research, pages 1–75. Kluwer
Academic Publishers, Boston, 1996.

N.G. Hall and D.S. Hochbaum. The multicovering problem. European Journal of
Operational Research, 62:323–339, 1992.

M. Held, P. Wolfe, and H.P. Crowder. Validation of subgradient optimization.
Mathematical Programming, 6:62–88, 1974.

M.G.C. Resende. An optimizer in the telecommunications industry. SIAM
SIAG/Optimization Views-and-News, 18(2):8–19, 2007.

M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages
219–249. Kluwer Academic Publishers, 2003.

M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances
and applications. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuris-
tics: Progress as Real Problem Solvers, pages 29–63. Springer-Verlag, 2005.

(Luciana S. Pessoa) Department of Computer Science, Universidade Federal Flumi-

nense, Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil.

E-mail address: lpessoa@ic.uff.br

(Mauricio G. C. Resende) Algorithms and Optimization Research Department, AT&T

Labs Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932, USA.

E-mail address: mgcr@research.att.com

(Celso C. Ribeiro)Department of Computer Science, Universidade Federal Fluminense,

Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil.

E-mail address: celso@ic.uff.br

