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Abstract. Run time distributions or time-to-target plots are very use-
ful tools to characterize the running times of stochastic algorithms for
combinatorial optimization. We further explore run time distributions
and describe a new tool to compare two algorithms based on stochastic
local search. For the case where the running times of both algorithms fit
exponential distributions, we derive a closed form index that gives the
probability that one of them finds a solution at least as good as a given
target value in a smaller computation time than the other. This result is
extended to the case of general run time distributions and a numerical
iterative procedure is described for the computation of the above prob-
ability value. Numerical examples illustrate the application of this tool
in the comparison of different algorithms for three different problems.

1 Motivation

Run time distributions or time-to-target plots display on the ordinate axis the
probability that an algorithm will find a solution at least as good as a given
target value within a given running time, shown on the abscissa axis. Time-to-
target plots were first used by Feo et al. [8]. Run time distributions have been
advocated also by Hoos and Stützle [12, 11] as a way to characterize the running
times of stochastic algorithms for combinatorial optimization.

It has been observed that in many implementations of local search heuristics
for combinatorial optimization problems, such as simulated annealing, genetic
algorithms, iterated local search, tabu search, and GRASP [2, 6, 7, 10, 14, 19,
27, 28, 29], the random variable time to target value fits an exponential (or a
shifted exponential) distribution. Hoos and Stützle [13, 14] conjecture that this
is true for all local search methods for combinatorial optimization.

Aiex et al. [3] describe a perl program to create time-to-target plots for mea-
sured times that are assumed to fit a shifted exponential distribution, following
[2]. Such plots are very useful in the comparison of different algorithms for solv-
ing a given problem and have been widely used as a tool for algorithm design
and comparison.
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In this work, we further explore run time distributions to evaluate stochastic
local search algorithms. We describe a new tool to compare any pair of different
stochastic local search algorithms and we use it in the investigation of different
applications. Under the assumption that the running times of the two algorithms
follow exponential (or shifted exponential) distributions, we develop in Section 2
a closed form index that gives the probability that one of the algorithms finds
a target solution value in a smaller computation time than the other. In Sec-
tion 3, this result is extended to the case of general run time distributions and a
numerical iterative procedure is described for the computation of such probabil-
ity. Applications illustrating the comparison of different algorithms for the same
problem appear in Section 4. Concluding remarks are made in the last section.

2 Comparing exponential-time algorithms

We assume the existence of two stochastic local search algorithms A1 and A2 for
some combinatorial optimization problem. Furthermore, we assume that their
running times fit exponential (or shifted exponential) distributions. We denote
by X1 (resp. X2) the continuous random variable representing the time needed
by algorithm A1 (resp. A2) to find a solution as good as a given target value:

X1 7→

{

0, τ < T1

λ1e
−λ1(τ−T1), τ ≥ T1

and

X2 7→

{

0, τ < T2

λ2e
−λ2(τ−T2), τ ≥ T2

where T1, λ1, T2, and λ2 are parameters. The cumulative probability distribution
and the probability density function of X1 are depicted in Figure 1.

Since both algorithms stop when they find a solution at least as good as the
target, we may say that algorithm A1 performs better than A2 if the former stops
before the latter. Therefore, we must evaluate the probability that X1 takes a
value smaller than or equal to X2, i.e. we compute Pr(X1 ≤ X2). Conditioning
on the value of X2 and applying the total probability theorem, we obtain:

Pr(X1 ≤ X2) =

∫ ∞

−∞

Pr(X1 ≤ X2|X2 = τ)fX2
(τ)dτ =

=

∫ ∞

T2

Pr(X1 ≤ X2|X2 = τ)λ2e
−λ2(τ−T2)dτ =

∫ ∞

T2

Pr(X1 ≤ τ)λ2e
−λ2(τ−T2)dτ.

Let ν = τ − T2. Then, dν = dτ and

Pr(X1 ≤ X2) =

∫ ∞

0

Pr[X1 ≤ (ν + T2)]λ2e
−λ2νdν. (1)

To solve the above integral, one first has to compute

Pr[X1 ≤ (ν + T2)] =

∫ ν+T2

−∞

fX1
(τ)dτ.
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Fig. 1. Probability density function and cumulative probability distribution of X1.

Assuming that T2 ≥ T1, without loss of generality, we have that:

Pr[X1 ≤ (ν + T2)] =

∫ ν+T2

T1

λ1e
−λ1(τ−T1)dτ.

Now, let w = τ − T1. Then, dw = dτ and

Pr[X1 ≤ (ν + T2)] =

∫ ν+T2−T1

0

λ1e
−λ1wdw = 1 − e−λ1(ν+T2−T1). (2)

Replacing (2) in equation (1), we obtain

Pr(X1 ≤ X2) =

∫ ∞

0

[1 − e−λ1(ν+T2−T1)]λ2e
−λ2νdν =

= 1 − e−λ1(T2−T1)

∫ ∞

0

e−ν(λ1+λ2)dν = 1 + e−λ1(T2−T1)λ2
e−ν(λ1+λ2)

λ1 + λ2

∣

∣

∣

∣

ν = ∞
ν = 0

.

Finally,

Pr(X1 ≤ X2) = 1 − e−λ1(T2−T1)
λ2

λ1 + λ2
. (3)

This result can be better interpreted by rewriting expression (3) as:

Pr(X1 ≤ X2) = (1 − e−λ1(T2−T1)) + e−λ1(T2−T1)
λ1

λ1 + λ2
. (4)

The first term of the right-hand side of equation (4) is the probability that
0 ≤ X1 ≤ T2, in which case X1 is clearly less than or equal to X2. The second
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(a) GRASP with bidirectional path-relinking (b) Pure GRASP

Fig. 2. Run time distributions on an instance of the 2-path network design problem
with 80 nodes and 800 origin-destination pairs, with target value set at 588.

term of (4) is the probability that X1 be greater than T2 and less than or equal
to X2, given that X1 ≥ T2, which completes the interpretation.

To illustrate the above result, we consider two algorithms described in [25]
for solving the 2-path network design problem. Algorithm A1 is an implementa-
tion of GRASP with bidirectional path-relinking, while algorithm A2 is a pure
GRASP heuristic. Figure 2 depicts the run time distributions obtained after 500
runs with different seeds on an instance with 80 nodes and 800 origin-destination
pairs, with the target value set at 588. The plots have been obtained with the
perl tool provided in [3], which also computed the parameters of the two distri-
butions: λ1 = 0.218988, T1 = 0.01, λ2 = 17.829236, and T2 = 0.01. Applying
expression (3), we get Pr(X1 ≤ X2) = 0.943516. This probability is consistent
with Figure 3, in which the run time distribution of GRASP with bidirectional
path-relinking is much to the left of that of pure GRASP for the same instance.

Aiex et al. [2] have shown experimentally that the time taken by a GRASP
heuristic to find a solution at least as good as a given target value fits an expo-
nential distribution. If the setup times are not negligible, it fits a two-parameter
shifted exponential distribution. The experiments involved 2,400 runs of five
problems: maximum stable set [8], quadratic assignment [16], graph planariza-
tion [22], maximum weighted satisfiability [21], and maximum covering [20].

However, if path-relinking is applied as an intensification step at the end of
each iteration [4, 24, 25], then the iterations are no longer independent and the
memoryless characteristic of GRASP is destroyed. Consequently, the time-to-
target random variable may not fit an exponential distribution.

This claim is illustrated by two implementations of GRASP with path-
relinking. The first is an application to the 2-path network design problem [25].



5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.001  0.01  0.1  1  10  100  1000
cu

m
ul

at
iv

e 
pr

ob
ab

ili
ty

time to target solution value (seconds)

GRASP
GRASP+biPR

Fig. 3. Superimposed run time distributions of GRASP with bidirectional path-
relinking and pure GRASP.
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Fig. 4. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on an instance of the 2-path network design problem with 80 nodes and
800 origin-destination pairs, with target set to 588.

The run time distribution and the quantile-quantile plot for an instance with
80 nodes and 800 origin-destination pairs are depicted in Figure 4. The second
is an application to the three-index assignment problem [1]. Run time distribu-
tions and quantile-quantile plots for Balas and Saltzman problems 22.1 (target
set to 8) and 24.1 (target set to 7) are shown in Figures 5 and 6, respectively.
We observe that points steadily deviate by more than one standard deviation
from the estimate for the upper quantiles in the quantile-quantile plots (i.e.,
many points associated with large computation times fall outside the plus or
minus one standard deviation bounds). Therefore, we may say that these run
time distributions are not exponential.

If the running times do not fit exponential distributions, then the result
established by expression (3) does not hold. Therefore, this approach is extended
to general run time distributions in the next section.
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Fig. 5. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on Balas and Saltzman problem 22.1, with target set to 8.
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Fig. 6. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on Balas and Saltzman problem 24.1, with target value to 7.

3 General run time distributions

Let X1 and X2 be continuous random variables, with cumulative probability
distributions FX1

(τ) and FX2
(τ) and probability density functions fX1

(τ) and
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fX2
(τ). Then,

Pr(X1 ≤ X2) =

∫ ∞

−∞

Pr(X1 ≤ τ)fX2
(τ)dτ =

∫ ∞

0

Pr(X1 ≤ τ)fX2
(τ)dτ,

since fX1
(τ) = fX2

(τ) = 0 for any τ < 0. For an arbitrary small real number ε,
the above expression can be rewritten as

Pr(X1 ≤ X2) =

∞
∑

i=0

∫ (i+1)ε

iε

Pr(X1 ≤ τ)fX2
(τ)dτ. (5)

Since Pr(X1 ≤ iε) ≤ Pr(X1 ≤ τ) ≤ Pr(X1 ≤ (i + 1)ε) for iε ≤ τ ≤ (i + 1)ε,
replacing Pr(X1 ≤ τ) by Pr(X1 ≤ iε) and by Pr(X1 ≤ (i + 1)ε) in (5) leads to

∞
∑

i=0

FX1
(iε)

∫ (i+1)ε

iε

fX2
(τ)dτ ≤ Pr(X1 ≤ X2) ≤

∞
∑

i=0

FX1
((i+1)ε)

∫ (i+1)ε

iε

fX2
(τ)dτ.

Let L(ε) and R(ε) be the value of the left and right hand sides of the above
expression, respectively, with ∆(ε) = R(ε) − L(ε) being the difference between
the upper and lower bounds of Pr(X1 ≤ X2). Then,

∆(ε) =
∞
∑

i=0

[FX1
((i + 1)ε) − FX1

(iε)]

∫ (i+1)ε

iε

fX2
(τ)dτ.

Let δ = maxτ≥0{fX1
(τ)}. Since |FX1

((i + 1)ε) − FX1
(iε)| ≤ δε for i ≥ 0,

∆(ε) ≤

∞
∑

i=0

δε

∫ (i+1)ε

iε

fX2
(τ)dτ = δε

∫ ∞

0

fX2
(τ)dτ = δε.

In order to evaluate a good approximation to Pr(X1 ≤ X2), we select the
appropriate value of ε such that the resulting approximation error ∆(ε) is suffi-
ciently small. Next, we compute L(ε) and R(ε) to obtain the approximation

Pr(X1 ≤ X2) ≈
L(ε) + R(ε)

2
. (6)

In practice, the probability distributions are unknown. Instead of them, all
the information available is a large number N of observations of the random
variables X1 and X2. Since δ = maxτ≥0{fX1

(τ)} is unknown, the value of ε
cannot be estimated. Then, we proceed iteratively as follows.

Let t1(j) (resp. t2(j)) be the value of the j-th smallest observation of X1

(resp. X2), for j = 1, . . . , N . We set the bounds a = min{t1(1), t2(1)} and
b = max{t1(N), t2(N)} and choose an arbitrary number h of integration intervals
to compute an initial value for the integration interval ε = (b − a)/h. For small
values of ε, the probability density function fX1

(τ) in the interval [iε, (i + 1)ε]

can be approximated by f̂X1
(τ) = (F̂X1

((i + 1)ε) − F̂X1
(iε))/ε, where

F̂X1
(iε) = |{t1(j), j = 1, . . . , N : t1(j) ≤ iε}|.
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The same approximations hold for random variable X2.
Finally, the value of Pr(X1 ≤ X2) can be computed as in (6), using the

estimates f̂X1
(τ) and f̂X2

(τ) in the computation of L(ε) and R(ε). If the ap-
proximation error ∆(ε) = R(ε) − L(ε) is sufficiently small, then the procedure
stops. Otherwise, the value of ε is halved and the above steps are repeated.

4 Numerical applications

We apply the tool described in the previous section to compare pairs of stochas-
tic local search algorithms running on the same instance of three different test
problems: server replication for reliable multicast, routing and wavelength as-
signment, and 2-path network design.

4.1 DM-D5 and GRASP algorithms for server replication

Current multicast services use a delivery tree, whose root represents the sender,
leaves represent the receivers, and internal nodes represent relaying servers.
Transmission is performed by creating copies of the data at split points of the
tree. A successful technique to provide a reliable multicast service is the server
replication approach, in which data is replicated at some multicast-capable re-
laying servers and each of them is responsible for the retransmission of packets
to receivers in its group. The problem consists of selecting the best multicast-
capable relaying hosts to act as replicated servers in a multicast scenario.

DM-GRASP is a hybrid version of the GRASP metaheuristic that incorpo-
rates a data-mining process [26]. Its basic principle consists of mining for patterns
found in good-quality solutions to guide the construction of new solutions. We
compare two different heuristics for the server replication problem: algorithm
A1 is an implementation of the DM-D5 version [9] of DM-GRASP, in which the
mining algorithm is periodically applied, while A2 is a pure GRASP heuristic.
We present illustrative results for two instances using the same network scenario,
with m = 25 and m = 50 replication servers.

Each algorithm was run 200 times with different seeds. The target was set
at 2,818.925 for the instance with m = 25 and at 2,299.07 for that with m = 50.
Figures 7 and 8 depict run time distributions and quantile-quantile plots for
DM-D5. Running times of the latter did not fit exponential distributions for
any of the instances. GRASP running times were exponential for both. The
run time distributions of DM-D5 and GRASP are superimposed in Figure 9.
Algorithm DM-D5 outperformed GRASP, since the run-time distribution of the
first is slightly to the left of that of the second for the instance with m = 25,
and much more clearly for m = 50. Consistently, the computations show that
Pr(X1 ≤ X2) = 0.614775 and Pr(X1 ≤ X2) = 0.849163 for the instances with
m = 25 and m = 50, respectively.
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Fig. 7. Run time distribution and quantile-quantile plot for DM-D5 algorithm on the
instance with m = 25 and target value set at 2,818.925.

4.2 Multistart and tabu search algorithms for routing and

wavelength assignment

A point-to-point connection between two endnodes of an optical network is called
a lightpath. Two lightpaths may use the same wavelength, provided they do
not share any common link. The routing and wavelength assignment problem
is that of routing a set of lightpaths and assigning a wavelength to each of
them, minimizing the number of wavelengths needed. Noronha and Ribeiro [18]
proposed a decomposition heuristic for this problem. First, a set of routes is
precomputed for each lightpath. Next, one of them and a wavelength are assigned
to each lightpath by a tabu search heuristic solving a partition coloring problem.

We compare this decomposition strategy with the multistart greedy heuristic
of Manohar et al. [17]. Two networks are used for benchmarking. The first has
27 nodes representing the capital cities in Brazil, with 70 links connecting them.
There are 702 lightpaths to be routed. Instance [15] Finland is formed by 31
nodes and 51 links, with 930 lightpaths to be routed.

Each algorithm was run 200 times with different seeds. The target was set at
24 for instance Brazil and at 50 for instance Finland. Algorithm A1 is the multi-
start heuristic, while A2 is the tabu search decomposition scheme. The multistart
running times fit exponential distributions for both instances. Figures 10 and 11
display run time distributions and quantile-quantile plots for instances Brazil
and Finland, respectively. The run time distributions of the decomposition and
multistart strategies are superimposed in Figure 12. The direct comparison of the
two approaches shows that decomposition clearly outperformed the multistart
strategy for instance Brazil, since Pr(X1 ≤ X2) = 0.106766 in this case. How-
ever, the situation changes for instance Finland. Although both algorithms have
similar performances, multistart is slightly better with respect to the measure
proposed in this work, since Pr(X1 ≤ X2) = 0.545619.
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Fig. 8. Run time distribution and quantile-quantile plot for DM-D5 algorithm on the
instance with m = 50 and target value set at 2,299.07.
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Fig. 9. Superimposed run time distributions of DM-D5 and GRASP: (a) Pr(X1 ≤
X2) = 0.614775, and (b) Pr(X1 ≤ X2) = 0.849163.

4.3 GRASP algorithms for 2-path network design

Given a connected undirected graph with non-negative weights associated with
its edges, together with a set of origin-destination nodes, the 2-path network
design problem consists of finding a minimum weighted subset of edges contain-
ing a path formed by at most two edges between every origin-destination pair.
Applications can be found in the design of communication networks, in which
paths with few edges are sought to enforce high reliability and small delays. Its
decision version was proved to be NP-complete by Dahl and Johannessen [5].
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Fig. 10. Run time distribution and quantile-quantile plot for tabu search on Brazil
instance with target value set at 24.
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Fig. 11. Run time distribution and quantile-quantile plot for tabu search on Finland
instance with target value set at 50.

We compare different heuristics [25] for approximately solving this problem.
The first is a pure GRASP algorithm (algorithm A1). The others integrate differ-
ent path-relinking strategies for search intensification at the end of each GRASP
iteration: forward (algorithm A2), bidirectional (algorithm A3), and backward
(algorithm A4) [23, 24].

Each algorithm was run 500 independent times. The experiments are sum-
marized by the results obtained on a benchmarking instance with 90 nodes and
900 origin-destination pairs, with the target value set at 673. Run time distribu-
tions and quantile-quantile plots for the different versions of GRASP with path-
relinking are illustrated in Figures 13 to 15. The run time distributions of the
four algorithms are superimposed in Figure 16. Algorithm A2 (as well as A3 and
A4) performs much better than A1, since Pr(X2 ≤ X1) = 0.984470. Algorithm
A3 outperforms A2, as illustrated by the fact that Pr(X3 ≤ X2) = 0.634002. Fi-
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Fig. 12. Superimposed run time distributions of multistart and tabu search: (a)
Pr(X1 ≤ X2) = 0.106766, and (b) Pr(X1 ≤ X2) = 0.545619.

nally, we observe that algorithms A3 and A4 behave very similarly, although A4

performs slightly better for this instance with respect to the measure proposed
in this work, since Pr(X4 ≤ X3) = 0.536016.
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Fig. 13. Run time distribution and quantile-quantile plot for GRASP with forward
path-relinking on 90-node instance with target 673.
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Fig. 14. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on 90-node instance with target 673.
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Fig. 15. Run time distribution and quantile-quantile plot for GRASP with backward
path-relinking on 90-node instance with target 673.

5 Concluding remarks

Run time distributions are very useful tools to characterize the running times of
stochastic algorithms for combinatorial optimization. In this work, we extended
previous tools for plotting and evaluating run time distributions.

Under the assumption that running times of two stochastic local search algo-
rithms follow exponential distributions, we derived a closed form index to com-
pute the probability that one of them finds a target solution value in a smaller
computation time than the other. A numerical iterative procedure was described
for the computation of such index in the case of general run time distributions.

This new tool and the resulting probability index revealed themselves as very
promising and provide a new, additional measure for comparing the performance
of stochastic local search algorithms or different versions of the same algorithm.
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Fig. 16. Superimposed run time distributions of pure GRASP and three versions of
GRASP with path-relinking.

They can also be used for setting the best parameters of a given algorithm.
Numerical applications to different algorithm paradigms, problem types, and
test instances illustrated the applicability of the tool.

In another context, they can also be used in the evaluation of parallel imple-
mentations of local search algorithms, providing a numerical indicator to evaluate
the trade-offs between computation times and the number of processors.
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