
SPORTS SCHEDULING: PROBLEMS AND APPLICATIONS

CELSO C. RIBEIRO

Abstract. Sports scheduling problems mainly consist in determining the date

and the venue in which each game of a tournament will be played. Integer pro-
gramming, constraint programming, metaheuristics, and hybrid methods have
been successfully applied to the solution of different variants of this problem.

This paper provides an introductory review of fundamental problems in sports
scheduling and their formulations, followed by a survey of applications of op-
timization methods to scheduling problems in professional leagues of different
sport disciplines such as football, baseball, basketball, cricket, and hockey.

A case study illustrates a real-life application of integer programming to the
schedule of the yearly Brazilian football tournament.

1. Introduction

Sports have become a big business in a global economy. Tournaments are fol-
lowed by millions of people across the world. Teams make big investments in new
players. Broadcast rights amount to hundreds of millions of dollars in some com-
petitions. Countries and cities fight for the right to organize worldwide events such
as the Olympics and the Football World Cup.

Professional sport leagues involve millions of fans and significant investments in
players, broadcast rights, merchandising, and advertising, facing challenging opti-
mization problems. On the other side, amateur leagues involve less investments,
but also require coordination and logistical efforts due to the large number of tour-
naments and competitors.

The main problem in sports scheduling consists in determining the date and
the venue in which each game of a tournament will be played. Applications are
found in the scheduling of tournaments of sports such as football, baseball, basket-
ball, cricket, and hockey. These problems have been solved by different exact and
approximate approaches, including integer programming, constraint programming,
metaheuristics, and hybrid methods.

There are many relevant aspects to be considered in the determination of the best
schedule for a tournament. In some situations, one seeks for a schedule minimizing
the total traveled distance, as in the case of the traveling tournament problem
(Easton et al., 2001) and in that of its mirrored variant (Ribeiro and Urrutia,
2007b), which is common to many tournaments in South America (Durán et al.,
2007b). Other problems attempt to minimize the total number of breaks, i.e., the
number of pairs of consecutive home games or consecutive away games played by
the same team. The minimization of the carry-over effects value (Russell, 1980) is
another fairness criterion leading to an even distribution of the sequence of games
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along the schedule. Some problems in sports scheduling have a multicriteria nature.
Ribeiro and Urrutia (2007a; 2009) tackled the scheduling of the yearly Brazilian
football tournament, preliminarily formulated as a bicriteria optimization problem
in which one of the objectives consisted in maximizing the number of games that
could be broadcast by open TV channels (to increase the revenues from broadcast
rights) and the other consisted in finding a balanced schedule with a minimum
number of home breaks and away breaks (for sake of fairness). A multicriteria
version of a referee assignment problem arising in amateur leagues (Duarte et al.,
2007a;b) was tackled by Duarte and Ribeiro (2008).

This paper provides an introductory review to the main problems in sports sched-
uling, also covering the principal practical applications. Although being more fo-
cused into problems and applications, it also addresses the main solution methods
and innovative algorithmic approaches applied in their solution. It should be con-
sidered as a starting point for newcomers and research in the area. The interested
reader is referred to Rasmussen and Trick (2008) for a comprehensive survey of the
literature on round robin tournament scheduling and to Kendall et al. (2010) for a
rather complete bibliography of scheduling problems in sports.

The remaining of this paper is organized as follows. Section 2 reviews the main
definitions and basic issues. Section 3 presents an overview of the main problems
arising in sports scheduling and their formulations: breaks minimization, distance
minimization and the traveling tournament problem, and carry-over effects mini-
mization. Problem reformulation techniques are investigated in Section 4, which
explores a variant of the traveling tournament problem where the venues are known
beforehand. Section 5 surveys applications in different sport disciplines like foot-
ball, baseball, basketball, cricket, and hockey. A case study of a recent application
of integer programming in the scheduling of the yearly first division football tour-
nament in Brazil is reported in Section 6. Concluding remarks and references to
other scheduling problems in sports are given in the last section.

2. Definitions

We consider a tournament played by an even number n of teams. A round robin
tournament is one in which each team plays against every other a fixed number of
times. Every team faces each other exactly once (resp. twice) in a single (resp.
double) round robin (SRR) (resp. DRR) tournament and plays at most once in
each round. A round robin tournament is said to be compact if the number of
rounds is minimum and every team plays exactly once in every round. Each team
has its own venue at its home city and each game is played at the venue of either
one of the two teams in confrontation. The team that plays at its own venue is
called the home team and is said to play a home game, while the other is called the
away team and is said to play an away game. We say there is a repeater whenever
the same pair of teams face each other twice in two consecutive rounds. If the
number of teams is odd, then in each round one team has a bye, i.e. it does not
play. This situation may be reduced to the case of an even number of teams by
adding a dummy team. Then, in each round the team playing against the dummy
team has a bye.

Double round robin tournaments are often partitioned into two phases, where
each game has to occur exactly once in each phase, but with different home rights.
In the case of the so-called mirrored schedules, the games played by each team in
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the second phase follow exactly the same order as those played in the first, but with
exchanged venues. Therefore, the two games played by each pair of opponents take
place at the same round of the first and second phases.

Tournaments may be represented by graphs, which offer a good model for sched-
uling formulations and algorithms, see e.g. de Werra (1980; 1981; 1988). The com-
plete graph Kn may be used to represent a single round robin tournament or any
of the phases of a compact double round robin tournament. Each of its nodes
represents a team. Each game is represented by an edge, whose extremities are
associated with the two opponent teams. Figure 1 displays an example illustrating
the graph representation of a single round robin tournament with n = 4 teams.

Figure 1. Example of a single round robin tournament with n = 4
teams represented by a complete graph.

An edge coloring with exactly n − 1 colors corresponds to an 1-factorization of
Kn, i.e. a partitioning of its edge set into 1-factors F1, . . . , Fn−1 (each consisting
of n/2 non-adjacent edges). Each 1-factor corresponds to the games scheduled to a
given round. Therefore, an ordered 1-factorization determines a timetable for the
tournament, defining the round in which each game is played. Figures 2(a) to 2(c)
represent a timetable for the example presented in Figure 1, in which each game is
assigned to a round.

A tournament schedule determines not only the round in which each game is
played, but also its venue. If home and away games have to be distinguished, then
an orientation is assigned to the edges of the complete graph and to its 1-factors.
In the case of the example depicted in Figures 1 and 2, we assume that team 2
plays all its games away, team 1 plays away with team 3, team 4 plays away with
team 1, and team 4 plays at home with team 3. Therefore, the four teams have the
following home-away patterns of game playing: team 1 - home/away/home; team
2 - away/away/away; team 3 - away/home/home; and team 4 - home/home/away.
Figure 3 illustrates this situation, in which an orientation has been assigned to each
edge in Figure 1 (or, equivalently, to each edge in Figures 2(a) to 2(c)) to create a
complete schedule defined by an oriented graph: the existence of an arc from node
i to node j means that team i plays away against team j.

The problem of scheduling a round robin tournament is often divided into two
subproblems. The construction of the timetable consists in determining the round
in which each game will be played. The home-away pattern (HAP) set determines
in which condition (home or away) each team plays in each round. The HAP set
for the previous example can be represented by a matrix as in Table 1, in which the
cell corresponding to row k and column j indicates the playing condition of team j
in round k. Together, the timetable and the home-away pattern set determine the
tournament schedule.
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(a) First round: 1-factor F1 (b) Second round: 1-factor F2

(c) Third round: 1-factor F3

Figure 2. Timetable of a single round robin tournament with
n = 4 reams represented one of its 1-factorizations: (a) 1-factor F1

associated with the first round, (b) 1-factor F2 associated with the
second round, and (c) 1-factor F3 associated with the third round.

Some round robin scheduling problems involve the construction of both the
timetable and the home-away pattern set. However, either the timetable or the
HAP set may be predefined and known beforehand in some situations. In the first
case, the timetable is given and the problem consists in finding a feasible HAP set
optimizing a certain objective function. In the second case, the home-away pattern
set is predetermined and a timetable is requested. The problem of constructing a
timetable compatible with a given HAP set and optimizing a certain objective ap-
pears as a subproblem in several approaches to solve real-life scheduling problems,
see e.g. Nemhauser and Trick (1998).

Figure 3. Example of a single round robin tournament of four
teams represented by an oriented graph in which an arc from node
i to j means that team i plays away against teams j.
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Teams
Rounds 1 2 3 4

1 home away home away
2 away away home home
3 home away home away

Table 1. Example of a HAP set.

For any given schedule or home-away pattern set, we say that there is a home
(resp. away) break in round k whenever a teams plays two consecutive games at
home (resp. away) in rounds k − 1 and k.

In the example depicted in Figures 1 and 2, with the orientations established
in Figure 3, team 1 has a perfectly alternating schedule with no breaks. Team 2
has two away breaks in the second and third rounds, while teams 3 and 4 have one
home break each, respectively in the third and second rounds. Break minimization
problems deal with the minimization of the number of breaks in the schedule,
while distance minimization problems call for the minimization of the total distance
traveled by the teams.

3. Some fundamental problems

This section presents an introduction to the main problems in sports scheduling
and their variants: breaks minimization, distance minimization and the traveling
tournament problem, carry-over effects minimization, and balanced tournament
designs.

3.1. Breaks minimization. One of the most important goals in sports scheduling
is the minimization of breaks. League organizers seek schedules with a minimum
number of breaks or, at least, with a balanced number of breaks (i.e., schedules in
which all teams have the same number of breaks). Pioneering work in the area was
developed by de Werra (1980; 1981; 1982; 1988).

Sports scheduling problems are often solved by either one of two decomposition
approaches:

(1) “First-schedule, then-break”: first determine the games to be played at
each round, next the corresponding home-away pattern.

(2) “First-break, then-schedule”: first determine a feasible home-away pattern
set, next the corresponding games to be played at each round.

Both approaches have been studied in the literature for different problem settings.
In both cases, a home-away pattern with a minimum number of breaks is often
sought. Break minimization issues in this context have been discussed by Brouwer
et al. (2008), Miyashiro et al. (2003), Miyashiro and Matsui (2005), Post and Woeg-
inger (2006), and de Werra et al. (1990). Results on the number of breaks in round
robin tournaments also appeared e.g. in (Schreuder, 1980; 1992; de Werra, 1980;
1981; 1982; 1988). Optimization and constraint programming approaches for break
minimization have been presented by Regin (2001) and Rasmussen and Trick (2007).

Urrutia and Ribeiro (2006) established a relationship between two aspects of
round robin tournament scheduling problems: trips and breaks. In particular, they
have shown that, for any schedule S, the total number of travels (or trips) T (S)
and the total number of breaks B(S) are such that T (S) = n ·R −B(S)/2, where
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R = n− 1 (resp. R = 2(n− 1)) is the number of rounds in a compact single (resp.
double) round robin tournament with n teams. This connection between breaks
maximization and distance minimization was used to derive lower bounds for some
instances of the mirrored traveling tournament problem and to prove the optimality
of solutions found by a heuristic for the latter.

3.2. Distance minimization and the traveling tournament problem. In the
case of distance minimization scheduling problems, there is a distance (or a time
or a cost) associated to each pair of teams, corresponding to the traveling distance
between their home cities. A schedule minimizing the total distance traveled by all
teams is sought. Additional constraints are usually imposed on traveling.

The traveling tournament problem (TTP) introduced in the seminal paper of
Easton et al. (2001) is by far the most emblematic problem in this area. It is a
challenging combinatorial optimization problem in sports scheduling that abstracts
the most important aspects in creating timetables whenever traveling distances are
an important issue. Given an even number n of teams, distances dij between the
home cities of teams i and j, for every i, j = 1, . . . , n (with dij = 0 if i = j), and two
integer numbers L and U , the TTP calls for the schedule of a double round robin
tournament minimizing the total distance traveled by the teams and respecting a
set of constraints, while assuming that whenever a team plays two consecutive away
games, it goes directly from the site of the first opponent to that of the second:

• every team begins the tournament at home and must return to home after
its last away game;

• no repeaters are allowed, i.e. no two teams can play against each other in
two consecutive rounds;

• every sequence of consecutive home games played by any team is formed
by at least L and at most U games; and

• every sequence of consecutive away games played by any team is formed by
at least L and at most U games.

The most direct integer programming formulation of the traveling tournament
problem makes use of the following decision variables:

xijk =

{

1, if team i plays away against team j in round k,
0, otherwise;

and

ytijk =







1, if team t travels from the facility of team i to that of
team j between rounds k and k + 1,

0, otherwise.

Using these variables, we obtain the formulation (1) to (12) for the TTP:

(1) min
n
∑

i=1

n
∑

j=1

dij · xij1 +
n
∑

t=1

n
∑

i=1

n
∑

j=1

2n−3
∑

k=1

dij · ytijk +
n
∑

i=1

n
∑

j=1

dji · xij,2n−2

subject to:

(2) xiik = 0, i = 1, . . . , n, k = 1, . . . , 2n− 2,
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(3)
n
∑

j=1

(xijk + xjik) = 1, i = 1, . . . , n, k = 1, . . . , 2n− 2,

(4)
2n−2
∑

k=1

xijk = 1, i, j = 1, . . . , n : i 6= j,

(5) L ≤

U
∑

ℓ=0

n
∑

j=1

xij,k+ℓ ≤ U, i = 1, . . . , n, k = 1, . . . , 2n− 2− U,

(6) xijk + xjik + xij,k+1 + xji,k+1 ≤ 1, i, j = 1, . . . , n, k = 1, . . . , 2n− 3,

(7) ziik =

n
∑

j=1

xjik, i = 1, . . . , n, k = 1, . . . , 2n− 2,

(8) zijk = xijk, i, j = 1, . . . , n : i 6= j, k = 1, . . . , 2n− 2,

(9) ytijk ≥ ztik + ztj,k+1 − 1, t, i, j = 1, . . . , n, k = 1, . . . , 2n− 3,

(10) xijk ∈ {0, 1}, i, j = 1, . . . , n, k = 1, . . . , 2n− 2,

(11) zijk ∈ {0, 1}, i, j = 1, . . . , n, k = 1, . . . , 2n− 2,

(12) ytijk ∈ {0, 1}, t, i, j = 1, . . . , n, k = 1, . . . , 2n− 2.

The objective function (1) accounts for the total traveled distance separated in
three terms: the distance traveled by the teams that play away in the first round,
the distance traveled after the first and before the last game played by each team,
and the distance traveled to return home by the teams that play away in the last
round. Constraints (2) state that no team plays against itself, while constraints (3)
enforce that each team plays exactly once in each round, either at home or away.
Constraints (4) guarantee that each team will play away against each opponent
exactly once. Constraints (5) are used to enforce that in any sequence of U + 1
consecutive games a team will play at least L and at most U away games. The
non-occurrence of repeaters is ensured by constraints (6). Constraints (7) enforce
ziik to be equal to 1 (resp. 0) if team i plays at home (resp. away) in round k.
For any two different teams i and j, constraints (8) enforce zijk = xijk, i.e. team
i should be at the home city of team j if the former plays away against the latter.
Constraints (9) impose team t to travel from the home city of team i to that of
team j if it plays in such cities in two consecutive rounds. Constraints (10) to (12)
impose the integrality requirements.

Although the above gives a complete formulation for the TTP, the lower bounds
provided by its linear programming relaxation are very weak. To improve this
formulation, Trick (2003) suggested adding the so called odd-set constraints for each
week. An alternative (and much better) approach is to reformulate by redefining
the decision variables, as described in (Trick, 2005). We shall return to the issue of
problem reformulation in Section 4, where alternative formulations for a variant of
the traveling tournament problem will be explored.

The mirrored traveling tournament problem (Ribeiro and Urrutia, 2007b) and
the traveling tournament problem with predefined venues (Costa et al., to appear;
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Melo et al., 2009) are two variants of the traveling tournament problem. The first
has the additional constraint that games played in round t are exactly the same
played in round t + (n − 1) for t = 1, . . . , n − 1, but with reversed venues. The
second is a single round robin variant of the TTP, in which the venue of each game
to be played is known beforehand.

Benchmark instances and their best lower and upper bounds for the widely
studied case of the TTP with L = 1 and U = 3 can be found in (Trick, 2010).

The TTP and its variants have been tackled by different exact and approximate
solution methods. The first integer programming approach for exactly solving the
TTP was proposed by Easton et al. (2003), where the so-called independent lower
bound later improved by Urrutia et al. (2007) was originally presented. Rasmussen
and Trick (2006) developed an exact two-phase hybrid approach which generates all
feasible patterns in a first phase using constraint programming and assigns teams
to patterns in the second phase using integer programming. Mirrored and non-
mirrored benchmark TTP instances with eight teams have been solved to optimality
by Cheung (2008) and Irnich (2010). Uthus et al. (2011) developed an iterative-
deepening A* based approach for the traveling tournament problem that was able to
find optimal solutions to the largest benchmark instances solved to date, involving
ten teams.

Metaheuristics are among the most effective solution strategies for solving com-
binatorial optimization problems in practice and have been largely applied in the
solution of the TTP and its variants. Among the main algorithmic contributions,
we cite the hybrid algorithms proposed by Anagnostopoulos et al. (2003; 2006) for
the TTP, based on simulated annealing and exploring both feasible and infeasible
schedules, and by Ribeiro and Urrutia (2007b) for the mirrored TTP, in which
components borrowed from the GRASP and ILS metaheuristics are combined and
an ejection-chain mechanism is used to generate perturbations. Numerical results
for the mirrored variant have been later improved by Van Hentenryck and Vergados
(2006), extending their previous work developed for the general case.

Bhattacharyya (2009) gave the first NP-completeness proof for the variant of the
TTP were no constraints exist on the number of consecutive home games or away
games of a team. Later, Thielen and Westphal (2011) have shown that the original
TTP is strongly NP-complete when the upper bound on the maximal number of
consecutive away games is set to 3.

3.3. Carry-over effects minimization. A major issue in the strategy of teams
or athletes, in particular in long competitions, consists in balancing their efforts
over the competition. If a team plays against a weak opponent, it is likely to be in
better shape to play in the next round than if it had played against a hard opponent
before. Teams that play against strong opponents will very likely be more tired for
their next game. Therefore, it is likely that a team (or an athlete) makes much
less effort playing against an opponent that played before against a very strong
contestant, than it would make against an opponent that faced an easy contestant.

The above situation is particularly true in the case of sports which require a
great amount of physical effort (such as wrestling, rugby, and martial arts). In
this sort of sports, it is not uncommon that a team (or an athlete) plays several
matches in a row, making a sequence of very tired (resp. well reposed) opponents
very attractive (resp. unattractive). Some schedules may contain several of such
sequences of easier or harder games assigned to one or more teams. This situation
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does not characterize a fair schedule and is highly undesirable in any tournament.
To illustrate this effect, suppose a Karate-Do or Judo competition, for which there
is no weight division in open-weight categories: a physically weak athlete may fight
a strong one. A contestant that has just fought a very strong opponent will possibly
be very tired (and often wounded) in his/her next fight. This would deteriorate
his/her performance, giving to the next opponent a strong advantage that otherwise
he/she would not have.

Although some authors advocate that carry-over effects do not play a major role
in collective sports (Goossens and Spieksma, 2009b), Flatberg et al. (2009) have
shown a real-life application to a football league in Norway in which carry-over ef-
fects determined by one specific team and player strongly affected the final results
of the competition. Furthermore, they have also shown that the minimization of
such effects lead to a more fair fixture and better schedule of games. Another inter-
esting real-life situation is illustrated by problems in US college football, whereby
a team (Alabama) was repeatedly scheduled against teams with byes in the week
before. The sequence of games was very unattractive for Alabama, because it was
supposed to often meet a restful team that has not played in the previous round
(Goodbread, 2010).

For a given compact single round robin schedule with n teams, we say that team
i gives a carry-over effect to team j if some other team plays in consecutive rounds
against teams i and j. Rounds are considered cyclically, i.e., the first round follows
the last round n− 1 and may be considered as round n. If team i is a very strong
(resp. very weak) team and several teams play consecutively against teams i and j,
then team j may be favored (resp. handicapped) when compared with other teams.

Let cij ≥ 0 count the number of carry-over effects given by team i to team j, for
any i, j = 1, . . . , n with i 6= j. The quality of a schedule with respect to carry-over
effects is measured by the carry-over effects value

∑n

i=1

∑n

j=1 c
2
ij . In an ideal or

balanced schedule with respect to carry-over effects, no teams i, j, p, q should exist
such that teams p and q both play against team j immediately after playing against
team i. In that case, one should have cij = 1, for any i, j = 1, . . . , n with i 6= j.

For every pair of teams i, j = 1, . . . , n (with i 6= j) and for every round k =
1, . . . , n (with rounds cyclically represented, such as that round n − 1 is followed
by the first round), we define the binary variable

ykij =

{

1, if team i plays against team j in round k,
0, otherwise.

The number of carry-over effects given by team i to j is
∑n

ℓ=1

∑n−1
k=1 ykℓi · y(k+1)ℓj ,

for any i 6= j; zero otherwise. Therefore, the carry-over effects value minimization
problem (13) to (19) can be formulated by integer programming as follows:

(13) min

n
∑

i=1

n
∑

j=1

(

n
∑

ℓ=1

n−1
∑

k=1

ykℓi · y(k+1)ℓj)
2

subject to:

(14) ykij = ykji, i, j, k = 1, . . . , n,



10 CELSO C. RIBEIRO

(15)
n
∑

i=1

ykij = 1, j, k = 1, . . . , n,

(16)

n−1
∑

k=1

ykij = 1, i, j = 1, . . . , n : i 6= j,

(17) ykii = 0, i, k = 1, . . . , n,

(18) ynij = y1ij , i, j = 1, . . . , n,

(19) ykij ∈ {0, 1}, i, j, k = 1, . . . , n.

The objective function (13) minimizes the total carry-over effects value. Con-
straints (14) ensure that variables ykij = ykji are the same or, alternatively, that
the game between teams i and j is the same as that between teams j and i (there
is a unique game between teams i and j in a single round robin tournament). Con-
straints (15) enforce that every team plays exactly once in each round of a compact
schedule. Constraints (16) and (17) guarantee that each team plays exactly once
against every other team. Constraints (18) enforce that the n-th round is equiva-
lent to the first. Constraints (19) impose the binary requirements on the variables.
This formulation has O(n3) variables and defines a quadratic minimization prob-
lem. The linearization of the objective function (13) leads to a reformulation with
O(n4) variables.

Russell (1980) proposed a construction algorithm that generates schedules match-
ing the lower bound to the carry-over effects value when the number of teams is a
power of two. The method proposed by Anderson (1999) obtained solutions that
are still the best known to date (except for n = 12). It makes use of algebraic struc-
tures called starters (Dinitz, 1996) to generate schedules. However, the approach
presumes that a suitable starter is known beforehand, which may imply in huge
computation times.

Trick (2000) developed a constraint programming method that made it possible
to prove the optimality of Russell’s method for n = 6. Henz et al. (2004) improved
the solution obtained by the previous approach for n = 12, also using constraint
programming. Miyashiro and Matsui (2006) developed a time-consuming heuristic
based on random permutations of the rounds of fixtures created by the polygon
method (Kirkman, 1847). They reported more than two days of computation times
for n ≥ 18.

Guedes and Ribeiro (2009) developed an ILS-based heuristic for solving a weighted
variant of the carry-over effects minimization problem. This heuristic obtained the
best known solution at the time of writing for the unweighted instance with n = 12.

4. Reformulations

Straightforward problem formulations often lead to weak linear relaxation bounds
to integer programs. Reformulation techniques based on the redefinition of the deci-
sion variables used to formulate the problem provide an effective strategy to obtain
tighter relaxations with improved bounds. Trick (2005) explored problem refor-
mulation in the context of the traveling tournament problem. In this paper, we
consider the traveling tournament problem with predefined venues to illustrate this
approach.
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Melo et al. (2009) have introduced the traveling tournament problem with prede-
fined venues (TTPPV), as already discussed in Section 3.2. This problem is a single
round robin variant of the TTP, in which the venues where the games take place
are known beforehand. Variants of this problem find interesting applications in
real-life leagues whose DRR tournaments are divided into two SRR phases. Games
in the second phase are exactly the same of the first phase, except for the inversion
of their venues. Therefore, the venues of the games in the second phase are known
beforehand and constrained by those of the games in the first phase. This is the
case e.g. of the Chilean soccer professional league (Durán et al., 2007b) and of the
German table tennis federation of Lower Saxony (Knust, 2007). As before, we as-
sume the tournament is played by an even number n of teams, indexed by 1, . . . , n.
Each team has its own venue at its home city. All teams are initially at their home
cities, to where they must return after their last away game. The distance dij ≥ 0
from the home city of team i to that of team j is known, for every i, j = 1, . . . , n,
with i 6= j. A road trip is a sequence of consecutive away games played by a team
at the venues of its opponents, along which this team travels from the venue of one
opponent to that of the next, without returning home. As for the most studied case
of the TTP, we assume that every sequence of consecutive home (or away) games
played by any team is formed by at least L = 1 and at most U = 3 games.

Let G be a set of games, represented by ordered pairs of teams. The game
between teams i and j is represented either by the ordered pair (i, j) or by the
ordered pair (j, i). In the first case, the game between i and j takes place at
the venue of team i; otherwise, at that of team j. For every two teams i and
j, either (i, j) ∈ G or (j, i) ∈ G. The problem consists therefore in finding a
compact single round robin schedule compatible with G, such that the total distance
traveled by the teams is minimized and no team plays more than three consecutive
home games or three consecutive away games. Melo et al. (2009) proposed three
integer programming formulations for this problem, using O(n3), O(n4), and O(n5)
variables. We describe and compare in the following the two formulations in O(n3)
and O(n5) variables.

4.1. Formulation with O(n3) variables. We define two types of decision vari-
ables:

ztjk =

{

1, if team t plays at home against team j in round k,
0, otherwise;

and

ytij =

{

1, if team t travels from the facility of team i to that of team j,
0, otherwise.

The y variables represent the journeys performed by a team between pairs of
cities. Since each game occurs exactly once, a journey between the home cities of
two different teams is performed at most once by each team. Variables z and y are
used in the formulation (20) to (32) of TTPPV, which has O(n3) variables:

(20) minF1(z, y) =

n
∑

t=1

n
∑

i=1

n
∑

j=1

dij · ytij

subject to:
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(21)

n−1
∑

q=1

ztjq = 1, ∀ (t, j) ∈ G,

(22)

n−1
∑

q=1

ztjq = 0, ∀ (j, t) ∈ G,

(23)

n
∑

j=1
j 6=t

(ztjk + zjtk) = 1, t = 1, . . . , n, k = 1, . . . , n− 1,

(24) ytij ≥ zit,k−1 + zjtk − 1, t, i, j = 1, . . . , n : t 6= i 6= j, k = 2, . . . , n− 1,

(25) ytit ≥ zit,k−1 +

n
∑

j=1
j 6=t

ztjk − 1, t, i = 1, . . . , n : t 6= i, k = 2, . . . , n− 1,

(26) ytti ≥

n
∑

j=1
j 6=t

ztj,k−1 + zitk − 1, t, i = 1, . . . , n : t 6= i, k = 2, . . . , n− 1,

(27) ytti ≥ zit1, t, i = 1, . . . , n : t 6= i,

(28) ytit ≥ zit,n−1, t, i = 1, . . . , n : t 6= i,

(29)

k+3
∑

q=k

n
∑

j=1
j 6=t

zjtq ≤ 3, t = 1, . . . , n, k = 1, . . . , n− 4,

(30)

k+3
∑

q=k

n
∑

j=1
j 6=t

zjtq ≥ 1, t = 1, . . . , n, k = 1, . . . , n− 4,

(31) ztjk ∈ {0, 1}, t, j = 1, . . . , n, k = 1, . . . , n− 1,

(32) ytij ∈ {0, 1}, t, i, j = 1, . . . , n.

The objective function (20) defines the minimization of the total distance traveled
by the teams. Constraints (21) and (22) ensure that each game in G occurs exactly
once. Constraints (23) guarantee that each team plays one game in each round.
Constraints (24) enforce team t to perform a trip from the home city of team i to
that of team j if it plays two consecutive away games against teams i and j, in this
order. Constraints (25) enforce team t to perform a trip from the home city of team
i to its own home city if it has an away game against the latter followed by a home
game in the next round. Constraints (26) enforce team t to travel from its own
home city to that of team i to play away against the later after a home game in the
previous round. Constraints (27) enforce team t to travel to the home city of team
i if it plays away against the latter in the first round. Constraints (28) enforce team
t to return from the home city of team i if it plays away against the latter in the
last round. Together, constraints (29) and (30) imply that team t cannot play less
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than one or more than three home games (or away games) in any sequence of four
consecutive games. Constraints (31) and (32) define the integrality requirements.

This formulation has O(n4) constraints: O(n2) of types (21), (23), (27), (28),
(29) and (30), O(n3) of types (25) and (26), and O(n4) of type (24).

4.2. Formulation with O(n5) variables. This formulation considers complete
road trips. Its variables represent road trips of different sizes, giving a more direct
representation of the problem. Three new types of decision variables are defined
and used in this formulation:

w1
tik =







1, if team t starts, in round k, a road trip visiting team i and
returning home in round k + 1 (with t 6= i),

0, otherwise;

w2
tijk =







1, if team t starts, in round k, a road trip visiting first team i, then
team j, and returning home in round k + 2 (with t 6= i 6= j),

0, otherwise;

and

w3
tijℓk =















1, if team t starts, in round k, a road trip visiting first team i, then
team j, next team ℓ, and returning home in round k + 3
(with t 6= i 6= j 6= ℓ),

0, otherwise.

Two dummy rounds (indexed by -1 and 0) are created to simplify the formulation.
The variables corresponding to every road trip starting in any of these dummy
rounds are set to 0. The auxiliary costs cij , cijm, and cijml represent the costs of
road trips of length one, two, and three performed by team i, respectively:

cij = dij + dji,

cijm = dij + djm + dmi, and

cijmℓ = dij + djm + dmℓ + dℓi.

The new variables are used to reformulate TTPPV as the integer program (33)
to (41) below, which has O(n5) variables:

(33) minF3(w
1, w2, w3) =

n−1
∑

k=1

n
∑

i=1

n
∑

j=1
(j,i)∈G

[cij · w
1
ijk+

n
∑

m=1
(m,i)∈G

m 6=j

(cijm · w2
ijmk +

n
∑

ℓ=1
(ℓ,i)∈G
ℓ 6=j 6=m

cijmℓ · w
3
ijmℓk)]

subject to:

(34)

n
∑

i=1

n
∑

j=1
(j,i)∈G

[
∑

k∈{−1,0}

w1
ijk +

n
∑

m=1
(m,i)∈G

m 6=j

(
∑

k∈{−1,0,n−1}

w2
ijmk+

n
∑

ℓ=1
(ℓ,i)∈G
ℓ 6=j 6=m

∑

k∈{−1,0,n−2,n−1}

w3
ijmℓk)] = 0,
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(35)

n−1
∑

k=1

{w1
ijk +

n
∑

m=1
(m,i)∈G

m 6=j

[(w2
ijmk + w2

imjk)+

n
∑

ℓ=1
(ℓ,i)∈G
ℓ 6=j 6=m

(w3
ijmℓk + w3

imjℓk + w3
imℓjk)]} = 1, ∀(j, i) ∈ G,

(36)

n
∑

j=1
(j,i)∈G

{w1
ijk +

n
∑

m=1
(m,i)∈G

m 6=j

[(w2
ijmk + w2

ijm,k−1)+

n
∑

ℓ=1
(ℓ,i)∈G
ℓ 6=j 6=m

(w3
ijmℓk+w3

ijmℓ,k−1+w3
ijmℓ,k−2)]}+

n
∑

j=1
(i,j)∈G

{w1
jik+

n
∑

m=1
(m,j)∈G

m 6=i

[(w2
jimk+w2

jmi,k−1)+

n
∑

ℓ=1
(ℓ,j)∈G
ℓ 6=i 6=m

(w3
jimℓk+w3

jmiℓ,k−1+w3
jmℓi,k−2)]} = 1, i = 1, . . . , n, k = 1, . . . , n−1,

(37)

n
∑

j=1
(j,i)∈G

{w1
ijk + w1

ij,k+1 +

n
∑

m=1
(m,i)∈G

m 6=j

[w2
ijm,k−1 + w2

ijmk + w2
ijm,k+1+

n
∑

ℓ=1
(ℓ,i)∈G
ℓ 6=j 6=m

(w3
ijmℓ,k−2 + w3

ijmℓ,k−1 + w3
ijmℓk + w3

ijmℓ,k+1)]} ≤ 1,

i = 1, . . . , n, k = 1, . . . , n− 2,

(38)
k+3
∑

q=k

{
n
∑

j=1
(j,i)∈G

[w1
ijq +

n
∑

m=1
(m,i)∈G

m 6=j

((w2
ijmq + w2

ijm,q−1)+

n
∑

l=1
(ℓ,i)∈G
ℓ 6=j 6=m

(w3
ijmℓq+w3

ijmℓ,q−1+w3
ijmℓ,q−2))]} ≥ 1, i = 1, . . . , n, k = 1, . . . , n−4,

(39) w1
ijk ∈ {0, 1}, i, j = 1, . . . , n : i 6= j, k = −1, . . . , n− 1,

(40) w2
ijmk ∈ {0, 1}, i, j,m = 1, . . . , n : i 6= j 6= m, k = −1, . . . , n− 1,

(41) w3
ijmℓk ∈ {0, 1}, i, j,m, l = 1, . . . , n : i 6= j 6= m 6= ℓ, k = −1, . . . , n− 1.

The objective function (33) minimizes the total traveled distance. Constraints
(34) set to zero the variables associated to road trips starting at the dummy rounds
-1 and 0, to road trips of size two and three starting at the last round and those of
size three starting at round n − 2. Constraints (35) ensure that each game occurs
exactly once. They represent the fact that each game (j, i) ∈ G should be played
in a road trip of team i formed by one, two, or three away games. Constraints (36)
enforce that team i is either playing an away game or another team is visiting it in
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each round. This is achieved by setting to one the sum of all variables associated
with road trips of team i which include round k and road trips of other teams which
visit i in round k. Constraints (37) forbid team i to be engaged in simultaneous
or consecutive (i.e., without returning to its home city) road trips in round k.
Constraints (38) state that team i must be outside its home city to play away at
least once along every four consecutive rounds. Constraints (39) to (41) guarantee
the integrality requirements.

Although the number of variables increases with respect to the previous formu-
lation, we notice that the number of constraints is quite smaller: this formulation
has O(n2) constraints of types (35) to (38).

4.3. Bounds. Theorems 1 and 2 in (Melo et al., 2009) prove that the bound LB5
provided by the second formulation, with O(n5) variables, is at least as good as the
bound LB3 given by the first, with O(n3) variables.

To further evaluate and compare the numerical results obtained by the two in-
teger programming formulations, Melo et al. (2009) derived ten test instances from
each national league (NL) and each circular (CIRC) benchmark TTP instance avail-
able in (Trick, 2010) and applied CPLEX 10.0 to solve them. The computational
experiments were performed on a Dell Optiplex machine, with a Pentium D 3.0
GHz processor and 2 GB of RAM memory.

Table 2. Linear relaxation lower bounds for random CIRC instances

n Feasible avg. avg. average value of maximum value of
instances LB3 LB5 (LB5− LB3)/LB3 (%) (LB5− LB3)/LB3 (%)

4 10 4.94 12.60 154.50 180.00
6 7 8.50 35.90 329.52 410.81
8 8 14.53 73.78 431.45 702.81
10 7 12.81 132.76 971.62 1197.72
12 10 15.03 214.23 1402.89 1667.04
14 8 16.35 326.62 1907.82 2179.34
16 10 18.90 471.70 2488.63 2860.97
18 8 19.24 649.38 3294.49 3528.10
20 8 20.83 869.29 4102.11 4252.44

The linear relaxations of the two formulations have been solved for all instances.
Since the results obtained for the different types of test problems are very similar,
we report in Table 2 the results obtained exclusively for the CIRC instances with
random assignments of venues. For each value of n, the second column of this table
displays the number of feasible instances (out of a total of ten). The third and fourth
columns give, respectively, the average lower bounds LB3 and LB5 for the feasible
instances. The two last columns give the average and maximum gaps between the
bounds LB3 and LB5, with the relative gap computed as 100 · (LB5−LB3)/LB3
informing by how much LB5 improves upon LB3. The average value of the lower
bound LB5 is far better than that of LB3. Considering e.g. the CIRC instances
with n = 20, the average bound LB5 is approximately 41 times greater than the
average bound LB3 for the random instances.
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5. Applications

In this section, we survey applications of optimization methods to scheduling
problems in different sport disciplines such as football, baseball, basketball, cricket,
and hockey. Basketball and football are the sports with more applications.

5.1. Football. In spite of the large number of papers reporting on applications of
integer programming and metaheuristics to the schedule of football tournaments,
Nurmi et al. (2010) noticed that only a few refer to real-life applications funded by
research and development contracts. Among them, Bartsch et al. (2006) applied
heuristics and branch-and-bound to schedule the professional football leagues of
Austria and Germany. Della Croce and Oliveri (2006) adapted the integer pro-
gramming approach of Nemhauser and Trick (1998) to schedule the Italian football
league. The proposed procedure is divided into three phases. The first phase gen-
erates a pattern set respecting the cable televisions requirements and several other
constraints. The second produces a feasible round robin schedule compatible with
the above pattern set. The third phase generates the actual calendar, assigning
teams to patterns.

Durán et al. (2007a; 2009) also used integer programming to schedule the Chilean
football league. Improvements to their solution approach have been proposed by
Durán et al. (2007b). Goossens and Spieksma (2009a) reported on the application
of integer programming to schedule the Belgian football league for the seasons
2006-2007 and 2007-2008. Rasmussen (2008) presented a solution approach using
a logic-based Benders decomposition and column generation to solve a triple round
robin tournament for the Danish football league.

Ribeiro and Urrutia (2007a; 2009; 2010) developed an integer programming de-
composition strategy to solve the bicriteria optimization problem arising from the
schedule of the Brazilian national football tournament, in which one of the objec-
tives consists in maximizing the number of games that may be broadcast by open
TV channels (to increase the revenues from broadcast rights) and the other con-
sists in finding a balanced schedule with a minimum number of home breaks and
away breaks (for sake of fairness). Their approach has been used in practice to
schedule the 2009, 2010, and 2011 editions of the tournament (Ribeiro and Urrutia,
2011). Fiallos et al. (2010) developed an integer programming model solvable by
CPLEX that was used for the first time in 2010 to schedule the double round robin
professional football tournament of Honduras, played by ten teams.

5.2. Basketball. Campbell and Chen (1976) have been the first to consider the
problem of scheduling a basketball conference of ten teams, corresponding to a
relaxed double round robin tournament. The teams were allowed to play at most
two consecutive away games without returning home. In the first phase, optimal
trips for each team were derived. This was shown to be equivalent to pairing the
teams two by two, such that the distances between the paired teams were minimized.
In the second phase, the optimal pairing was used to build a number of feasible
sequences using a constructive approach attempting to minimize the total traveled
distance. Ball and Webster (1977) tackled a similar problem. Travel distances
were minimized using an integer programming formulation, which was solved by a
heuristic very similar to the method developed in the previous reference.

For the National Basketball Association (NBA) in the United States, Bean and
Birge (1980) constructed schedules for 22 teams where each team played 82 games
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and resting times and building availabilities had to be taken into account. Methods
based on heuristics for the traveling salesman problem were proposed in order to
reduce the airline traveling costs.

Nemhauser and Trick (1998) combined integer programming and enumerative
techniques for determining the schedule of games of the nine universities in the
Atlantic Coast Conference (ACC). The problem involved many conflicting require-
ments and preferences. The solution procedure found a schedule that was accepted
by the ACC to be played in 1997-1998. Later, Henz (2001) provided a much faster
constraint programming approach for the same problem, finding in less than one
minute the 179 solutions for which Nemhauser and Trick (1998) reported an overall
running time of about 24 hours.

We conclude this section by noticing that Fronček (2001) proposed to construct
schedules for the Czech national basketball league using graph models, while Wright
(2006) described a real-life multi-objective problem in scheduling basketball tour-
naments in New Zealand, solved by a variant of simulated annealing and used to
produce the 2004 schedule.

It is also interesting to notice that most football tournaments correspond to
compact round robin schedules organized in rounds: every team plays exactly once
in each round and most rounds are held in weekends. Contrarily, most basketball
tournaments have more relaxed schedules, in which the games can take place at
any day of the week and the idea of a round is not very well established.

5.3. Cricket. Armstrong and Willis (1993) reported on the first attempt to use
optimization methods in the schedule of cricket competitions, addressing the sched-
uling of the 1992 Cricket World Cup tournament, co-hosted by Australia and New
Zealand. Each of the nine teams had to play each other once over two days in
the initial stage of the competition. A variety of constraints had to be respected,
which included satisfying local populations and worldwide TV audiences, together
with other practical and logistical considerations. The solution methodologies were
developed using a spreadsheet package. One of the proposed solution methods al-
lowed interaction with the users and was more useful, but took about four hours to
run. None of the schedules produced were completely satisfactory. One year later,
Willis and Terrill (1994) considered the scheduling of domestic cricket in Australia,
including both first class and one day matches. Simulated annealing was used and,
after some manual amendments, the schedule was used for the 1992-1993 season.
Simulated annealing was also used by Wright (2005) to produce the 2003-2004
schedule for New Zealand cricket and by Wright (1992) in a case study to produce
a four-year schedule (1992-1995) for English county cricket.

5.4. Baseball. Computer-aided heuristics have been used to schedule the Major
League Baseball clubs by Cain (1977). For the National American Baseball League,
schedules for 12 teams divided into two divisions have to be found, where each team
played 162 games (18 times against each team of its own division and 12 times
against each team of the other division). The objective consisted in determining a
schedule regarding fairness aspects, maximizing attendance, and minimizing travel
costs. Results have been reported for the seasons 1969 and 1975.

Russell and Leung (1994) devised cost effective schedules for a baseball league.
Two heuristics have been presented to enable a low cost schedule to be found. The
Texas Baseball League was used as a benchmark example instance.
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The research on the traveling tournament problem that lead to the seminal paper
of Easton et al. (2001) and the developments that followed have been motivated
by the problem of scheduling the Major League Baseball. Its formulation captures
the fundamental difficulties involved in minimizing the travel distance for a sports
league.

Hoshino and Kawarabayashi (2011a) considered a relaxed (non-compact) variant
of the TTP with additional balancing constraints to schedule Japan’s biggest and
most well-known professional sports league. According to the authors, they have
determined a league schedule that meets all conditions and constraints of the 12-
team pro baseball league in Japan, while considerably reducing the total travel
distance. In addition, Hoshino and Kawarabayashi (2011b;c) have also investigated
the bipartite traveling tournament problem, which is an inter-league extension of
the TTP. The decision version of the problem is proved to be NP-complete. They
proposed heuristics that have been applied to problem instances with data of the
Nippon Professional Baseball league in Japan.

5.5. Hockey. Ferland and Fleurent (1991) described a support system to assist
the manual creation of schedules for the National Hockey League (NHL), a relaxed
tournament with 21 teams. The tournament was divided into two conferences
and each conference into two divisions. The schedules were subject to a number
of constraints involving aspects such as the places where the games take place,
how often teams can play, the minimum time between two games with the same
opponents, and the traveling distances. In response to the National Hockey League
expanding from 21 teams, Fleurent and Ferland (1993) devised an integer linear
programming formulation to investigate how the increase in the number of teams
would add to the complexity of generating schedules. The paper considered various
scenarios and the solution accepted by the NHL managers for a 24-team problem
was shown, being used as the basis for a schedule to which other matches have
been manually added. Later, Costa (1995) investigated the hybridization of genetic
algorithms with tabu search to solve combinatorial optimization problems, using
the National Hockey League as an example to illustrate the effectiveness of the
approach.

6. Application: Scheduling the Brazilian football tournament

We describe with more detail in this section a recent application of integer pro-
gramming in the scheduling of the yearly first division football tournament in Brazil.

The yearly football tournament organized by the Brazilian Football Confedera-
tion (CBF) is the most important sport event in the country. Its major sponsor
is TV Globo, the largest media group and television network in Brazil. Fair and
balanced schedules for all teams are major issues for attractiveness and confidence
in the outcome of the tournament. Furthermore, TV sponsors condition their sup-
port to schedules that make it possible to broadcast the most important games by
open channels. Large cities hosting two or more teams and a large number of fans
impose additional security constraints to avoid clashes of fans before or after the
games.

The tournament lasts for seven months, from May to December, and is struc-
tured as a compact mirrored double round robin tournament played by n = 20
teams. There are 2 · (n− 1) = 38 rounds. Games of weekend rounds are played in
Saturdays and Sundays, while those of midweek rounds are played in Wednesdays
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and Thursdays. The dates available for game playing change from year to year
and have to be coordinated with other competitions such as regional tournaments,
Brazil’s Cup, South America’s Cup, and Santander Libertadores Cup. In accor-
dance with the definition of a compact mirrored double round robin tournament, if
the game between teams A and B is played in the first phase at the venue of A in
some round k = 1, . . . , n−1, then the second game between A and B will be played
in round k of the second phase (or in the overall round k + n− 1), but now at the
venue of B. More attractive games and those involving the strongest teams should
as much as possible be played on weekends. Teams are organized by pairs with
complementary home-away patterns of game playing. Usually, teams in the same
pair are based on the same home city. Team pairings are defined by the Brazilian
Football Confederation before the construction of the schedule and may differ from
year to year, since the participating teams necessarily change due to promotions to
and relegations from lower divisions at the end of each season.

The schedule should satisfy a number of hard and soft constraints, ranging from
fairness to security issues, and from technical to broadcasting criteria. Most of them
reflect strategies for maximizing revenues and tournament attractiveness, while
others attempt to avoid unfair situations that could benefit one team or another
with a more convenient sequence of games. These requirements have been discussed
and established over the years by teams, federations, city administrators, security
agencies, and sponsors.

In the quest for a fair and balanced schedule, CBF imposes additional constraints
to enforce a tight equilibrium to any two teams belonging to the same pair. Let
A and B be two teams belonging to the same pair and C and D two other teams
belonging to any other pair. If A plays with C at home (respectively away) in the
first phase, then it plays away (respectively at home) with D in this phase. Conse-
quently, B will play away (respectively at home) with C and at home (respectively
away) with D in this phase. The same constraints are automatically implied for the
second phase, since all its games have interchanged venues with respect to those
in the first phase. Such constraints lead to a strong equilibrium between teams in
the same cities and regions and are considered by CBF officials as among the most
important to be enforced. Figure 4 illustrates a possible perfect matching of six
paired teams, which applies to every subset of four teams organized in two pairs.

The maximization of gate attendances and TV audiences is the major issue at
stake. Most revenues earned by the teams come from broadcasting and merchan-
dising rights paid by the sponsors, which request good schedules drawing large
audiences. Fair and balanced schedules for all teams are also a major issue for the
attractiveness of the tournament and for the confidence in its outcome, playing a
major role in the success of the competition. To maximize gate attendances and
TV audiences, we seek a schedule with a maximum number of attractive games
played in weekends.

A detailed description of the problem, together with its integer programming
formulation and the decomposition solution approach, can be found in Ribeiro and
Urrutia (2010; 2011).

The complete optimization model and the software system coded in C++ have
been developed, tuned and validated during 2007 and 2008. Staff of CBF and TV
Globo participated actively in the formulation of the problem and in the validation
of the results it obtained.
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Figure 4. In this example of a perfect matching of six teams
paired into three pairs, an arrow in the arc from team i to team j
means that this game is played at the venue of team j.

In 2009, the system was first used as the official scheduler for Brazilian football
tournament. New criteria have been proposed and introduced in the system along
the decision process based on successive refinements of the solution, as the deci-
sion makers evaluated and filtered the different solutions. The organizers checked
each proposed schedule and imposed additional constraints (or removed existing
constraints) to handle specific situations that might be desired to fine-tune the
schedule. That tournament was the most attractive in recent times, with four
teams still in contention for the title when the last round started. All games in the
last round started simultaneously. The title changed hands several times, as the
scores of the ten games underway changed. The goal that decided the tournament
for Flamengo was scored only 20 minutes before the end of the tournament and
the champion was not known until the last game ended. This scenario was partly
the result of a fair and balanced schedule of games, in which no team had specific
advantages or disadvantages.

The optimization system was used for the second time in 2010. Once again, the
decision makers were happy with the alternative schedules the system computed
and with their choices. This was a particularly difficult tournament to schedule.
It had to be interrupted in June and July during the 2010 World Cup; thus, few
dates were available for game playing. As a result, there were more midweek rounds
and fewer weekend rounds, making it impossible to schedule all classic games (or
derbies) in weekend rounds as the organizers originally desired. The system sought
a schedule with a maximum number of classic games played at double weekend
rounds (i.e., with both matches between the same pair of teams associated with
a classic game being ideally played in weekend rounds). As in 2009, the title was
decided in the last round, with three teams still in contention for the title when
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their matches started. The goal that decided the tournament for Fluminense was
scored 25 minutes before the end of the tournament.

The construction of the schedule for the 2011 edition of the tournament placed
a new challenge to the system. As an attempt to make the tournament even more
thrilling, CBF decided to schedule all classic and most attractive matches between
teams with the same home city (local derbies) in the three last rounds of each
of its phases. The integer programming model was first used to show that such
constraints would make the problem necessarily infeasible. Therefore, the objective
function was changed to maximize the number of local derbies that could be played
in the last three rounds of each phase, with the secondary objective of maximizing
the number of attractive games that could be played in weekends. The solution
produced by the system could hardly be found by non-automatic methods and was
quickly adopted by CBF.

7. Concluding remarks

We have reviewed a number of fundamental problems and formulation issues
in sports scheduling, followed by a survey of applications of optimization methods
to scheduling problems in professional leagues of different sport disciplines such as
football, baseball, basketball, cricket, and hockey.

Although this paper focused mainly on problems and applications related to
professional leagues, a number of applications are also reported for amateur leagues.
Amateur leagues usually do not have access to the same investments and structure,
but tournaments and competitors abound, requiring coordination and logistical
efforts.

In the United States, for example, regional amateur leagues of several sports,
such as baseball, basketball, and football, have hundreds of games occurring every
weekend in different divisions. In a single league in California there might be up to
500 football games in a weekend, to be refereed by hundreds of certified referees. In
the MOSA (Monmouth & Ocean Counties Soccer Association) league, New Jersey,
boys and girls of ages 8 to 18 make up six divisions per age and gender group with
six teams per division, totalizing 396 games every Sunday.

Problems in amateur leagues often have a different nature, due to the diverse
interests involved. Knust (2010) and Schönberger et al. (2004) described vari-
ants of genetic algorithms for determining schedules of non-professional table-tennis
leagues. Duarte et al. (2007a;b) and Duarte and Ribeiro (2008) tackled single and
multiobjective versions of a referee assignment problem that are typical of large
amateur leagues such as those above mentioned. Referee assignment problems in
professional leagues have been addressed by Evans (1988); Evans et al. (1984);
Farmer et al. (2007); Ordonez and Knowles (1998); Wright (1991), and Yavuz et al.
(2008). In another context, problems of assigning judges to academic competitions
have been considered by Lamghari and Ferland (2007; 2010a;b).

The hardness of sports scheduling optimization problems has led to the use of dif-
ferent techniques in their solution. The best results are often obtained by methods
derived from the hybridization of integer programming, constraint programming,
and metaheuristics.

Devising optimal tournament schedules is crucial to players, teams, fans, cities,
security force, TV channels, and other sponsors. Fair and balanced schedules for
all teams, satisfying a large number of hard and soft constraints, are a major issue
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for the attractiveness and the confidence in the outcome of professional league
tournaments.

The success of real-life applications has shown that Operations Research has
certainly proved that it has its place in sports management. Besides the quality
of the solutions found, the main advantages of optimization-based computational
systems for scheduling sports leagues are their ease of use and the construction of
several alternative schedules, making it possible for the decision maker planning
the competition to compare and select the most attractive schedule from among
different alternatives, which can contemplate other secondary goals and constraints.
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