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Abstract. The main drawback of most metaheuristics is the absence
of effective stopping criteria. Most implementations of such algorithms
stop after performing a given maximum number of iterations or a given
maximum number of consecutive iterations without improvement in the
best known solution value, or after the stabilization of the set of elite
solutions found along the search. We propose effective probabilistic stop-
ping rules for randomized metaheuristics such as GRASP. We show how
the probability density function of the solution values obtained along the
iterations of such algorithms can be used to implement stopping rules
based on the tradeoff between solution quality and the time needed to
find a solution that might improve the best solution found. We show
experimentally that, in the particular case of GRASP heuristics, the so-
lution values obtained along its iterations fit a Normal distribution that
may be used to give an online estimation of the number of solutions ob-
tained in forthcoming iterations that might be at least as good as the
incumbent. This estimation is used to validate the stopping rule based on
the tradeoff between solution quality and the time needed to find a solu-
tion that might improve the incumbent. The robustness of this strategy
is illustrated and validated by a thorough computational study reporting
results obtained with GRASP implementations to four different combi-
natorial optimization problems.

1 Introduction and motivation

Metaheuristics are general high-level procedures that coordinate simple heuris-
tics and rules to find good approximate solutions to computationally difficult
combinatorial optimization problems. Among them, we find simulated anneal-
ing, tabu search, GRASP, VNS, genetic algorithms, scatter search, ant colonies,
and others. They are based on distinct paradigms and offer different mecha-
nisms to escape from locally optimal solutions, contrarily to greedy algorithms
or local search methods. Metaheuristics are among the most effective solution
strategies for solving combinatorial optimization problems in practice and they
have been applied to a large variety of areas and situations. The customization
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(or instantiation) of some metaheuristic to a given problem yields a heuristic to
the latter.

A number of principles and building blocks blended into different and often
innovative strategies are common to different metaheuristics. Randomization
plays a very important role in algorithm design. Metaheuristics such as simu-
lated annealing, GRASP, VNS, and genetic algorithms rely on randomization to
sample the search space. Randomization can also be used to break ties, so that
different trajectories can be followed from the same initial solution in multistart
methods or to sample fractions of large neighborhoods.

One particularly important use of randomization appears in the context of
greedy randomized algorithms, which are based on the same principle of pure
greedy algorithms, but make use of randomization to build different solutions
at different runs. Greedy randomized algorithms are used in the construction
phase of GRASP heuristics or to create initial solutions to population-based
metaheuristics such as genetic algorithms or scatter search.

Randomization is also a major component of metaheuristics such as simulated
annealing and VNS, in which a solution in the neighborhood of the current one
is randomly generated at each iteration.

The main drawback of most metaheuristics is the absence of effective stop-
ping criteria. Most implementations of such algorithms stop after performing a
given maximum number of iterations or a given maximum number of consecutive
iterations without improvement in the best known solution value, or after the
stabilization of the set of elite solutions found along the search. In some cases,
the algorithm may perform an exaggerated and non-necessary number of itera-
tions, when the best solution is quickly found (as it often happens in GRASP
implementations). In other situations, the algorithm may stop just before the
iteration that could find an optimal solution. Dual bounds may be used to imple-
ment quality-based stopping rules, but they are often hard to compute or very
far from the optimal values, which make them unusable in both situations.

Although Bayesian stopping rules have already been proposed in the past,
they were not followed by too many applications or computational experiments
and results. Bartkutė et al. [1, 2] made use of order statistics, keeping the value
of the k-th best solution found. A probabilistic criterion is used to infer with
some confidence that this value will not change further. The method proposed
for estimating the optimal value with an associated confidence interval is im-
plemented for optimality testing and stopping in continuous optimization and
in a simulated annealing algorithm for the bin-packing problem. The authors
observed that the confidence interval for the minimum value can be estimated
with admissible accuracy when the number of iterations is increased.

Boender and Rinnooy Kan [3] observed that the most efficient methods for
global optimization are based on starting a local optimization routine from an
appropriate subset of uniformly distributed starting points. As the number of
local optima is frequently unknown in advance, it is a crucial problem when to
stop the sequence of sampling and searching. By viewing a set of observed minima
as a sample from a generalized multinomial distribution whose cells correspond to
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the local optima of the objective function, they obtain the posterior distribution
of the number of local optima and of the relative size of their regions of attraction.
This information is used to construct sequential Bayesian stopping rules which
find the optimal trade off between solution quality and computational effort.

Dorea [6] described a stochastic algorithm for estimating the global minimum
of a function and derived two types of stopping rules. The first is based on the
estimation of the region of attraction of the global minimum, while the second
is based on the existence of an asymptotic distribution of properly normalized
estimators. Hart [12] described sequential stopping rules for several stochastic
algorithms that estimate the global minimum of a function. Stopping rules are
described for pure random search and stratified random search (which partitions
the search domain into a finite set of subdomains, with samples being selected
from every subdomain according to a fixed distribution). These stopping rules
use an estimation of the probability measure of the ǫ-close points to terminate
the algorithms when a specified confidence has been achieved. Numerical results
indicate that these stopping rules require fewer samples and are more reliable
than the previous stopping rules for these algorithms. They also show that the
proposed stopping rules can perform as well as Bayesian stopping rules for mul-
tistart local search. The authors claimed an improvement on the results reported
in [6].

Orsenigo and Vercellis [17] developed a Bayesian framework for stopping
rules aimed at controlling the number of iterations in a GRASP heuristic. Two
different prior distributions are proposed and stopping conditions are explicitly
derived in analytical form. The authors claimed that the stopping rules lead to
an optimal trade-off between accuracy and computational effort, saving from
unnecessary iterations and still achieving good approximations.

Stopping rules have also been discussed in [7, 33] in another context. The
statistical estimation of optimal values for combinatorial optimization problems
as a way to evaluate the performance of heuristics was also addressed in [20, 29].

In this paper, we propose effective probabilistic stopping rules for randomized
metaheuristics. In the next section, we show how an estimation of the probabil-
ity density function of the solution values (obtained by a stochastic local search
heuristic) can be used to implement stopping rules based on the tradeoff between
solution quality and the time needed to find a solution that might improve the
best solution found until the current iteration. In Section 3, we give a tem-
plate of GRASP heuristics for minimization problems and we describe the test
instances of the four combinatorial optimization problems that have been con-
sidered in the computational experiments: the 2-path network design problem,
the p-median problem, the quadratic assignment problem, and the set k-covering
problem. Next, we show experimentally in Section 4 that, in the particular case
of GRASP algorithms, the solution values obtained along its iterations fit a Nor-
mal distribution. This result is validated by thorough numerical experiments on
the four combinatorial optimization problems cited above. This approximation is
used in Section 5 to give an online estimation of the number of solutions obtained
in forthcoming iterations that might be at least as good as the the best known
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solution at the time of the current iteration. This estimation is used to validate
the stopping rule based on the tradeoff between solution quality and the time
needed to find a solution that might improve the incumbent. The robustness of
this strategy is illustrated and validated by a computational study reporting re-
sults obtained with the GRASP implementations for the four selected problems.
Concluding remarks are made in the last section, together with a discussion of
extensions to other heuristics, including more general memory-based methods
such as GRASP with path-relinking.

2 Probabilistic stopping rule

We denote byX the random variable associated with the objective function value
the local minimum obtained at each GRASP iteration. The probability density
function and the cumulative probability distribution of the random variable X
are given by fX(.) and FX(.), respectively. Let fk be the solution value obtained
at iteration k and f1, . . . , fk be a sample formed by the solution values obtained
along the k first iterations. We shall make use later in this paper of the estimated
mean and standard deviation of the sample f1, . . . , fk, which will be denoted by
mk and Sk, respectively. Furthermore, let fk

X(.) and F k
X(.) be estimates of fX(.)

and FX(.), respectively, obtained after the k first GRASP iterations.
We show in this section that fk

X(.) and F k
X(.) can be used to give an online

estimation of the number of solutions obtained in forthcoming iterations that
might be at least as good as the best known solution at the time of the current
iteration. This estimation will used to implement the stopping rules based on
the time needed to find a solution that might improve the incumbent.

Let UBk be the value of the best solution found along the k first iterations of
the heuristic. Therefore, the probability of finding a solution value smaller than
or equal to UBk in the next iteration can be estimated by

F k
X(UBk) =

∫ UBk

−∞

fk
X(τ)dτ. (1)

For sake of computational efficiency, the value of F k
X(UBk) may be recomputed

periodically or whenever the value of the best known solution improves, and not
at every iteration of the heuristic.

For any given threshold β, the GRASP iterations can be interrupted when
F k
X(UBk) becomes smaller than or equal to β, i.e., as soon as the probability

of finding in the next iteration a solution at least as good as the current best
becomes smaller than or equal to the threshold β. Therefore, the probability
value F k

X(UBk) may be used to estimate the number of iterations that must be
performed by the algorithm to find a new solution that is at least as good as
the currently best one. Since the user is able to account for the average time
taken by each GRASP iteration, the threshold defining the stopping criterion
can either be fixed or determined online, so as to limit the computation time
when the probability of finding improving solutions becomes very small.



5

This strategy will be validated in the next section for GRASP implementa-
tions.

3 GRASP and experimental environment

In this section, we give a template for a GRASP heuristic and we describe the op-
timization problems and test instances that have been used in all computational
experiments reported in this paper.

3.1 A template for GRASP

We consider in what follows the combinatorial optimization problem of mini-
mizing f(x) over all solutions x ∈ F , which is defined by a ground set E =
{e1, . . . , en}, a set of feasible solutions F ⊆ 2E, and an objective function
f : 2E → R. The ground set E, the objective function f(.), and the constraints
defining the set of feasible solutions F are defined and specific for each problem.
We seek an optimal solution x∗ ∈ F such that f(x∗) ≤ f(x), ∀x ∈ F .

GRASP [9] is a multistart metaheuristic, in which each iteration consists of
two phases: construction and local search. The construction phase builds a feasi-
ble solution. The local search phase investigates the neighborhood of the latter,
until a local minimum is found. The best overall solution is kept as the result;
see [10, 11, 21–24] for surveys on GRASP and its extensions and applications.

The pseudo-code in Figure 1 gives a template illustrating the main blocks of
a GRASP procedure for minimization, in which MaxIterations iterations are
performed and Seed is used as the initial seed for the pseudo-random number
generator.

procedure GRASP(MaxIterations, Seed)
1. Set f∗ ←∞;
2. for k = 1, . . . , MaxIterations do

3. x← GreedyRandomizedAlgorithm(Seed);
4. x← LocalSearch(x);
5. if f(x) < f∗ then

6. x∗ ← x;
7. f∗ ← f(x);
8. end;
9. end;
10. return x∗, f∗;
end.

Fig. 1. Template of a GRASP heuristic for minimization.

An especially appealing characteristic of GRASP is the ease with which it
can be implemented. Few parameters need to be set and tuned, and therefore
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development can focus on implementing efficient data structures to assure quick
iterations. Basic implementations of GRASP rely exclusively on two parameters:
the stopping criterion (which is usually set as a predefined number of iterations)
and the parameter used to limit the size of the restricted candidate list within
the greedy randomized algorithm used by the construction phase. In spite of its
simplicity and ease of implementation, GRASP is a very effective metaheuris-
tic and produces the best known solutions for many problems, see [10, 11] for
extensive surveys of applications of GRASP.

The four combinatorial optimization problems and the test instances used in
our computational experiments are reported below.

3.2 The 2-path network design problem

Given a connected undirected graph G = (V,E) with non-negative weights
associated with its edges, together with a set formed by K pairs of origin-
destination nodes, the 2-path network design problem consists in finding a min-
imum weighted subset of edges containing a path formed by at most two edges
between every origin-destination pair. Applications can be found in the design
of communication networks, in which paths with few edges are sought to en-
force high reliability and small delays. Its decision version was proved to be
NP-complete by Dahl and Johannessen [5]. The GRASP heuristic that has been
used in the computational experiments with the 2-path network design problem
was originally presented in [26, 27]. The main characteristics of the four instances
involved in the experiments are summarized in Table 1.

Table 1. Test instances of the 2-path network design problem.

Instance |V | |E| K

2pndp50 50 1225 500
2pndp70 70 2415 700
2pndp90 90 4005 900
2pndp200 200 19900 2000

3.3 The p-median problem

Given a set F of m potential facilities, a set U of n customers, a distance func-
tion d : U × F → R, and a constant p ≤ m, the p-median problem consists
in determining which p facilities to open so as to minimize the sum of the dis-
tances from each costumer to its closest open facility. It is a well-known NP-hard
problem [14], with numerous applications to location [30] and clustering [19, 32]
problems. The GRASP heuristic that has been used in the computational ex-
periments with the p-median problem was originally presented in [25]. The main
characteristics of the four instances involved in the experiments are summarized
in Table 2.
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Table 2. Test instances of the p-median problem.

Instance m n p

pmed10 200 800 67
pmed15 300 1800 100
pmed25 500 5000 167
pmed30 600 7200 200

3.4 The quadratic assignment problem

Given n facilities and n locations represented, respectively, by the sets F =
{f, . . . , fn} and L = {ℓ1, . . . , ℓn}, the quadratic assignment problem proposed
by Koopmans and Beckman [15] consists in determining to which location each
facility must be assigned. Let An×n = (aij) be a matrix where each of its en-
tries aij ∈ R

+ represents the flow between facilities fi and fj . Let B
n×n = (bij)

be a matrix where each of its entries bij ∈ R
+ represents the distance between

locations ℓi and ℓj . Let p : {1, . . . , n} → {1, . . . , n} be an assignment with cost
c(p) =

∑n
i=1

∑n
j=1 ai,jbp(i),p(j). We seek a permutation vector p ∈ Πn that min-

imizes the assignment cost c(p), where Πn stands for the set of all permutations
of {1, . . . , n}. The quadratic assignment problem is well known to be strongly
NP-hard [28]. The GRASP heuristic that has been used in the computational ex-
periments with the quadratic problem was originally presented in [16]. The main
characteristics of the four instances involved in the experiments are summarized
in Table 3.

Table 3. Test instances of the quadratic assignment problem.

Instance n

tai30a 30
tai35a 35
tai40a 40
tai50a 50

3.5 The set k-covering problem

Given a set I = {1, . . . ,m} of objects, let {P1, . . . , Pn} be a collection of subsets
of I, with a non-negative cost cj associated with each subset Pj , for j = 1, . . . , n.

A subset Ĵ ⊆ J = {1, . . . , n} is a cover of I if ∪j∈ĴPj = I. The cost of a

cover Ĵ is
∑

j∈Ĵ cj . The set covering problem consists in finding a minimum cost
cover J∗. The set multi-covering problem is a generalization of the set covering
problem, in which each object i ∈ I must be covered by at least ℓi ∈ Z+ elements
of {P1, . . . , Pn}. A special case of the set multi-covering problem arises when
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ℓi = k, for all i ∈ I. Following [31], we refer to this problem as the set k-
covering problem. The problem finds applications in the design of communication
networks and in computational biology. The GRASP heuristic that has been used
in the computational experiments with the quadratic problem was originally
presented in [18]. The main characteristics of the four instances involved in the
experiments are summarized in Table 4.

Table 4. Test instances of the set k-covering problem.

Instance m n k

scp42 200 1000 2
scp47 200 1000 2
scp55 200 2000 2
scpa2 300 3000 2

4 Normal approximation for GRASP iterations

In this section, we assume that the solution values obtained by a GRASP pro-
cedure fit a Normal distribution. This hypothesis is validated experimentally for
all problems and test instances described in the previous section.

Let f1, . . . , fN be a sample formed by all solution values obtained along N
GRASP iterations. We assume that the null (H0) and alternative (H1) hypothe-
ses are:

H0: the sample f1, . . . , fN follows a Normal distribution; and
H1: the sample f1, . . . , fN does not follow a Normal distribution.

The chi-square test is the most commonly used to determine if a given set of
observations fits a specified distribution. It is very general and can be used to
fit both discrete or continuous distributions [13].

First, a histogram of the sample data is estimated. Next, the observed fre-
quencies are compared with those obtained from the specified density function.
If the histogram is formed by k cells, let oi and ei be the observed and expected
frequencies for the i-th cell, with i = 1, . . . , k. The test starts by computing

D =

k∑
i=1

(oi − ei)
2

ei
. (2)

If the null hypothesis holds, thenD follows a chi-square distribution with k−1
degrees of freedom. Since the mean and the standard deviation is estimated from
the sample, then two degrees of freedom are lost to compensate for that. The
null hypothesis cannot be rejected at a level of significance α if D is less than
the value tabulated for χ2

[1−α;k−3].
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Let m and S be, respectively, the average and the standard deviation of
the sample f1, . . . , fN . A normalized sample f ′

i = (fi − m)/S is obtained by
subtracting the average m from each value fi and dividing the result by the
standard deviation S, for i = 1, . . . , N . Then, the null hypothesis stating that the
original sample fits a Normal distribution with mean m and standard deviation
S is equivalent to compare the normalized sample with the N(0, 1) distribution.

We show below that the solution values obtained along N GRASP itera-
tions fit a Normal distribution, for all problems and test instances presented in
Sections 3.2 to 3.5. In all experiments, we used α = 0.1 and k = 14, correspond-
ing to a histogram with the intervals (−∞,−3.0), [−3.0,−2.5), [−2.5,−2.0),
[−2.0,−1.5), [−1.5,−1.0), [−1,−0.5), [−0.5, 0.0), [0.0, 0.5), [0.5, 1.0), [1.0, 1.5),
[1.5, 2.0), [2.0, 2.5), [2.5, 3.0), and [3.0,∞).

For each instance, we illustrate the Normal fittings after N = 50, 100, 500,
1000, 5000, and 10000 GRASP iterations.

Table 5 reports the application of the chi-square test to the four instances
of the 2-path network design problem after N = 50 iterations. We observe that
already after as few as 50 iterations, the solution values obtained by the GRASP
heuristic fit very close a Normal distribution.

Table 5. Chi-square test for 1 − α = 90% confidence level: 2-path network design
problem.

Instance Iterations D χ2
[1−α;k−3]

2pndp50 50 0.398049 17.275000
2pndp70 50 0.119183 17.275000
2pndp90 50 0.174208 17.275000
2pndp200 50 0.414327 17.275000

To further illustrate that this close fitting is maintained when the number of
iterations increase, we present in Table 6 the main statistics for each instance and
for increasing values of the number N = 50, 100, 500, 1000, 5000, and 10000 of
GRASP iterations: mean, standard deviation, skewness (η3), and kurtosis (η4).
The skewness and the kurtosis are computed as follows [8]:

η3 =

√
N ·∑N

i=1(fi −m)3

[
∑N

i=1(fi −m)2]3/2
(3)

η4 =
N ·∑N

i=1(fi −m)4

[
∑N

i=1(fi −m)2]2
. (4)

The skewness measures the symmetry of the original data, while the kurtosis
measures the shape of the fitted distribution. Ideally, they should be equal to 0
and 3, respectively, in the case of a perfect Normal fitting. We first notice that
the mean is either stable or converges very quickly to a steady-state value when
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Table 6. Statistics for Normal fittings: 2-path network design problem.

Instance Iterations Mean Std. dev. Skewness Kurtosis

50 372.920000 7.583772 0.060352 3.065799
100 373.550000 7.235157 -0.082404 2.897830

2pndp50 500 373.802000 7.318661 -0.002923 2.942312
1000 373.854000 7.192127 0.044952 3.007478
5000 374.031400 7.442044 0.019068 3.065486
10000 374.063500 7.487167 -0.010021 3.068129

50 540.080000 9.180065 0.411839 2.775086
100 538.990000 8.584282 0.314778 2.821599

2pndp70 500 538.334000 8.789451 0.184305 3.146800
1000 537.967000 8.637703 0.099512 3.007691
5000 538.576600 8.638989 0.076935 3.016206
10000 538.675600 8.713436 0.062057 2.969389

50 698.100000 9.353609 -0.020075 2.932646
100 700.790000 9.891709 -0.197567 2.612179

2pndp90 500 701.766000 9.248310 -0.035663 2.883188
1000 702.023000 9.293141 -0.120806 2.753207
5000 702.281000 9.149319 0.059303 2.896096
10000 702.332600 9.196813 0.022076 2.938744

50 1599.240000 13.019309 0.690802 3.311439
100 1600.060000 14.179436 0.393329 2.685849

2pndp200 500 1597.626000 13.052744 0.157841 3.008731
1000 1597.727000 12.828035 0.083604 3.009355
5000 1598.313200 13.017984 0.057133 3.002759
10000 1598.366100 13.066900 0.008450 3.019011

the number of iterations increases. Furthermore, the mean after 50 iterations
is already very close to that of the Normal fitting after 10000 iterations. The
skewness values are consistently very close to 0, while the measured kurtosis of
the sample is always close to 3.

Figure 2 displays the Normal distribution fitted for each instance and for
each number of iterations. Together with the statistics reported above, these
plots illustrate the robustness of the Normal fittings to the solution values ob-
tained along the iterations of the GRASP heuristic for the 2-path network design
problem.

Table 7 reports the application of the chi-square test to the four instances
of the p-median problem after N = 50 iterations. As before, we observe that
already after as few as 50 iterations the solution values obtained by the GRASP
heuristic for this problem also fit very close a Normal distribution.

Table 8 gives the main statistics for each instance of the p-median problem
and for increasing values of the number N = 50, 100, 500, 1000, 5000, and 10000
of GRASP iterations: mean, standard deviation, skewness, and kurtosis. As for
the previous problem, we notice that the mean value converges or oscillates
very slightly when the number of iterations increases. Furthermore, the mean
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Fig. 2. Normal distributions: fitted probability density functions for the 2-path network
design problem.

after 50 iterations is already very close to that of the Normal fitting after 10000
iterations. Once again, the skewness values are consistently very close to 0, while
the measured kurtosis of the sample is always close to 3.

Figure 3 displays the Normal distribution fitted for each instance and for
each number of iterations. Once again, the statistics and plots in these tables
and figure illustrate the robustness of the Normal fittings to the solution values
obtained along the iterations of the GRASP heuristic for the p-median problem.

Results obtained with the GRASP heuristic for the quadratic assignment
problem are reported in Tables 9 and 10 and in Figure 4. The same statistics and
plots provided for the previous problems lead to similar findings: they illustrate
the robustness of the Normal fittings to the solution values obtained along the
iterations of the GRASP heuristic for the quadratic assignment problem.

Finally, we report in Tables 11 and 12 and in Figure 5 the results obtained
with the GRASP heuristic for the set k-covering problem. The same statistics
and plots already given to the other problems show that also for the set k-
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Table 7. Chi-square test for 1− α = 90% confidence level: p-median problem.

Instance Iterations D χ2
[1−α;k−3]

pmed10 50 0.196116 17.275000
pmed15 50 0.167526 17.275000
pmed25 50 0.249443 17.275000
pmed30 50 0.160131 17.275000

covering problem the Normal fittings to the solution values obtained along the
iterations of the GRASP heuristic are very robust.

We conclude this section by observing that the null hypothesis cannot be
rejected with 1 − α = 90% of confidence. Therefore, we may approximate the
solution values obtained along N iterations of a GRASP heuristic by a Normal
distribution that can be progressively fitted and improved as more iterations are
performed and more information is available. This approximation will be used in
the next section to validate the probabilistic stopping rule proposed in Section 2
for some GRASP heuristics.

5 Validation of the probabilistic stopping rule

We recall from Section 2 that X is the random variable representing the values of
the objective function associated with the local minima obtained by each GRASP
iteration. The sample f1, . . . , fk is formed by the solution values obtained along
the k first iterations of the heuristic, whose estimated mean and standard de-
viation are mk and Sk, respectively. Denoting by UBk = min{f1, . . . , fk} the
value of the best solution found along the k first iterations of the heuristic, the
probability of finding a solution value smaller than or equal to UBk in the next
iteration can then be estimated by equation (1):

F k
X(UBk) =

∫ UBk

−∞

fk
X(τ)dτ.

We have shown in the previous section that, in the case of implementations
of the GRASP metaheuristic, the random variable X can be approximated by
a Normal distribution N(mk, Sk) with average mk and standard deviation Sk,
whose probability density function and cumulative probability distribution are,
respectively, fk

X(.) and F k
X(.).

However, we observe that although the Normal N(mk, Sk) already gives a
good approximation to the random variable X , this estimation may be further
improved. First, we suppose that ℓ and u are lower and upper bounds, respec-
tively, of the value obtained by the heuristic at each of its iterations. For all
minimization test problems considered in this work, trivial bounds can be ob-
tained, for example, by setting ℓ = 0 and u equal to the sum of all positive costs,
as if the corresponding variables were set to 1 and the others to 0. Better, and
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Table 8. Statistics for Normal fittings: p-median problem.

Instance Iterations Mean Std. dev. Skewness Kurtosis

50 1622.020000 57.844097 -0.179163 3.255009
100 1620.890000 59.932611 -0.364414 3.304588

pmed10 500 1620.332000 63.484721 0.111186 3.142248
p = 67 1000 1619.075000 64.402076 0.074091 2.964164

5000 1617.875200 63.499795 0.043152 2.951273
10000 1618.415400 63.415181 0.087909 2.955408

50 2170.500000 58.880642 -0.041262 1.949923
100 2168.450000 65.313609 0.270892 2.693553

pmed15 500 2173.060000 65.881958 0.202400 2.828056
p = 100 1000 2173.484000 65.590272 0.129234 2.784433

5000 2174.860000 64.639604 0.086450 2.940204
10000 2175.651600 65.101495 0.096328 2.954639

50 2277.780000 54.782220 0.330959 3.028905
100 2279.610000 58.034799 0.360133 3.466265

pmed25 500 2271.546000 56.029848 0.219415 3.311486
p = 167 1000 2274.182000 56.915366 0.081878 3.068963

5000 2276.305200 56.985195 -0.041096 3.108109
10000 2277.151600 57.583524 -0.041570 3.073374

50 2434.660000 57.809899 -0.130383 2.961249
100 2446.560000 57.292464 -0.259531 2.667470

pmed30 500 2444.638000 56.109134 -0.189935 2.691882
p = 200 1000 2441.465000 57.265005 -0.053183 2.858399

5000 2441.340400 54.941836 -0.013377 3.054188
10000 2441.277700 54.978827 0.006407 3.066879

easily computable bounds reported in Table 13, can be obtained as follows for
each problem instance:

– 2-path network design problem: set ℓ = 0 and u to the sum over all K
demand pairs of the longest 2-path between each origin-destination pair.

– p-median problem: set ℓ to the sum over all customers of the distance from
each customer to its closest facility. Similarly, set u to the sum over all
customers of the distance from each customer to its most distant facility.

– Quadratic assignment problem: bounds for the quadratic assignment prob-
lem have been collected from [4].

– Set k-covering problem: set ℓ to the optimal value of the linear relaxation,
whose value for each test instance is available in [18]. To compute u, create
a list associated with each row of the constraint matrix, formed by the k
largest costs of the variables that cover this row. Next, build the set of
variables formed by the union of the m individual lists and set u to the sum
of the costs of these variables.

Since there may be no solution whose solution value is smaller than ℓ or
greater than u, the Normal approximation of the random variable X can be
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Table 9. Chi-square test for 1 − α = 90% confidence level: quadratic assignment
problem.

Instance Iterations D χ2
[1−α;k−3]

tai30a 50 0.127260 17.275000
tai35a 50 0.213226 17.275000
tai40a 50 0.080164 17.275000
tai50a 50 0.075752 17.275000

Table 10. Statistics for Normal fittings: quadratic assignment problem.

Instance Iterations Mean Std. dev. Skewness Kurtosis

50 1907129.960000 15106.752548 -0.068782 2.562099
100 1906149.760000 16779.060456 0.112965 3.028193

tai30a 500 1907924.412000 17663.997163 -0.005122 3.071314
1000 1908292.204000 17241.785219 -0.058100 2.982074
5000 1907542.144400 17484.852454 0.077001 2.978316
10000 1907411.800800 17354.183037 0.044985 2.982363

50 2544227.480000 24293.234765 0.260849 2.906127
100 2541730.980000 21782.204670 0.374843 3.131055

tai35a 500 2541151.156000 20167.926106 0.098408 2.990821
1000 2541735.064000 20809.432271 0.079094 3.073285
5000 2541625.512800 20952.352020 0.057649 3.069945
10000 2541104.138000 21191.460956 0.055055 3.089498

50 3289069.880000 23456.147422 -0.043084 2.503491
100 3287766.120000 25032.774604 -0.162022 2.395749

tai40a 500 3291146.756000 24690.208400 0.058502 2.745715
1000 3290388.372000 23935.199864 0.020905 2.800432
5000 3290638.646000 24404.060084 -0.006498 2.942513
10000 3290795.196400 24493.025438 0.032977 2.980864

50 5172456.560000 32336.075962 -0.080097 2.622378
100 5175961.000000 31507.868139 -0.010372 2.451724

tai45a 500 5175471.476000 32557.814838 0.100482 2.705749
1000 5175322.794000 32090.270871 0.027317 2.919791
5000 5175315.985600 31907.168093 0.045656 2.968253
10000 5174955.537200 31883.827203 0.048446 2.981676

Table 11. Chi-square test for 1− α = 90% confidence level: set k-covering problem.

Instance Iterations D χ2
[1−α;k−3]

scp42 50 0.119939 17.275000
scp47 50 0.147765 17.275000
scp55 50 0.164476 17.275000
scpa2 50 0.092947 17.275000
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Table 12. Statistics for Normal fittings: set k-covering problem.

Instance Iterations Mean Std. dev. Skewness Kurtosis

50 1692.200000 122.108968 0.346549 2.485267
100 1707.790000 138.210513 0.747575 3.727116

scp42 500 1682.012000 129.047681 0.453641 3.395710
1000 1677.603000 127.209156 0.424774 3.437712
5000 1678.960800 129.853048 0.481598 3.395114
10000 1678.848600 130.216475 0.478711 3.328128

50 1596.560000 133.676050 0.551858 2.722159
100 1604.100000 132.584200 0.589321 3.260413

scp47 500 1610.160000 135.050740 0.577331 3.677277
1000 1603.936000 134.173380 0.528879 3.560794
5000 1598.799600 133.743778 0.424347 3.147632
10000 1600.043100 134.398671 0.428076 3.160244

50 1105.160000 149.749439 0.139493 2.671918
100 1115.010000 154.429304 0.585166 4.036000

scp55 500 1146.800000 157.817350 0.299096 3.059246
1000 1146.450000 155.945348 0.332401 3.045766
5000 1151.254200 164.425966 0.384420 3.099880
10000 1154.463700 164.456147 0.397244 3.144651

50 1383.340000 169.200072 0.092324 2.373417
100 1395.780000 174.312282 0.085142 2.453907

scpa2 500 1392.900000 184.297428 0.070337 2.920209
1000 1395.541000 183.278641 0.210396 2.873949
5000 1398.725200 185.724296 0.326508 3.088006
10000 1400.956100 186.330231 0.335011 3.087160

Table 13. Lower and upper bounds.

Problem Instance ℓ u

2pndp50 0 6244
2-path 2pndp70 0 10353

2pndp90 246 14621
2pndp200 0 37314

pmed14 2968 5898
p-median pmed15 1729 9791

pmed25 1828 16477
pmed30 1989 19826

tai30a 1706855 8596620
QAP tai35a 2216627 11803330

tai40a 2843274 15469120
tai50a 4390920 24275700

scp42 1205 37132
set k-covering scp47 1115 36570

scp55 550 38972
scpa2 560 58550
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Fig. 3. Normal distributions: fitted probability density functions for the p-median prob-
lem.

improved to a doubly-truncated Normal distribution at x = ℓ in the left and at
x = u in the right. Let

fk
X(x) = 1/(Sk

√
2π) · e

−(x−m
k)2

2Sk2 (5)

be the probability density function of the Normal approximation N(mk, Sk).

The probability density function f̂k
X(x) of the truncated Normal approximation

is given below, depending on the existence of each of the lower and upper bounds.

– If there exists only a lower bound, then we have a left-truncated Normal at
x = ℓ:

f̂k
X(x) = 1/(1− F k

X(ℓ)) · fk
X(x), ℓ ≤ x. (6)

– If there exists only an upper bound, then we have a right-truncated Normal
at x = u:

f̂k
X(x) = 1/F k

X(u) · fk
X(x), x ≤ u. (7)
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Fig. 4. Normal distributions: quadratic assignment problem.

– If there exist both lower and upper bounds, then we have a doubly-truncated
Normal at x = ℓ in the left and at x = u in the right:

f̂k
X(x) = 1/[(1− F k

X(ℓ)) · F k
X(u)] · fk

X(x), ℓ ≤ x ≤ u. (8)

The three cases above are illustrated in Figure 6, where ℓ = −1.5 and u =
1.5, which depicts the probability density functions of the truncated Normal
distributions. We remark that the bounds ℓ and u can eventually be further
elaborated and improved. Furthermore, we notice that the tighter the bounds
are, the better will be the doubly-truncated Normal approximation.

Therefore, if UBk denotes the value of the best solution found along the k
first iterations of the heuristic, the probability of finding a solution value smaller
than or equal to UBk in the next iteration can be better estimated by using the
cumulative probability function of the truncated Normal distribution, which is
given by

F̂ k
X(UBk) =

∫ UBk

ℓ

f̂k
X(τ)dτ. (9)

We consider the stopping rule proposed in Section 2: for any given threshold
β, stop the iterations of the heuristic whenever F̂ k

X(UBk) ≤ β. The iterations
will be interrupted as soon as the probability of finding in the next iteration a
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Fig. 5. Normal distributions: set k-covering problem.

solution at least as good as the current best becomes smaller than or equal to
the threshold β.

This strategy will be validated for some GRASP implementations already
considered in Section 4, using the fact that the probability F̂ k

X(UBk) can be used
to give an online estimation of the number of solutions obtained in forthcoming
iterations that might be at least as good as the best known solution at the
current iteration.

To validate and assess the effectiveness of the proposed stopping rule based
on the estimation of F k

X(UBk), we have devised and performed the following
experiment for each problem and test instance already considered in Section 4.
For each value of the threshold β, we run the GRASP heuristic until F̂ k

X(UBk)
becomes less than or equal to β. Let us denote by k the iteration counter where
this condition is met and by UB the best known solution value at this time. At

this point, we may estimate by N̂≤ = ⌊N · F̂ k
X(UB)⌋ the number of solutions

whose value will be at least as good as UB if N additional GRASP iterations
are performed. We empirically set N = 1000000. Next, we perform N additional
iterations and we count the number N≤ of solutions whose value is smaller than
or equal to F̂ k

X(UB).
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(a) Left-truncated Normal (0,1) at ℓ = −1.5 (b) Right-truncated Normal (0,1) at u = 1.5
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Fig. 6. Probability density functions of the truncated Normal distributions.

The computational results displayed in Tables 14 and 15 show that N̂≤ is
a good estimation for the number N≤ of solutions found after N additional
iterations whose value is smaller than or equal to the best solution value at the
time the algorithm would stop for each threshold value β. Using the threshold
β = 10−1 is not appropriate, since at this point we are usually still very far from

the optimal value and F̂ k
X(UB) does not give a good estimate of the probability

of finding a solution at least as good as the best known at this time. We also
observe that for both the quadratic assignment and the set k-covering problems,
whose results are depicted in Table 15, it has not been possible to reach a solution
satisfying the threshold β = 10−4 for any of their instances.

Therefore, the probability F̂ k
X(UBk) may be used to estimate the number

of iterations that must be performed by the algorithm to find a new solution
at least as good as the currently best one. The threshold β used to implement
the stopping criterion may either be fixed a priori as a parameter or iteratively
computed. In the last case, since the user is able to account for the average
time taken by each GRASP iteration, this threshold can be determined online
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Table 14. 2-path network design and p-median problems: stopping criterion vs. es-
timated and counted number of solutions at least as good as the incumbent after
N = 1000000 additional iterations.

Problem Instance Threshold Iteration Probability Estimation Count

β k F̂ k
X(UB) N̂≤ N≤

10−1 3 0.079046 79046 1843
10−2 25 0.009970 9970 1843

2pndp50 10−3 318 0.000757 757 738
10−4 4778 0.000001 1 0
10−5 4778 0.000001 1 0
10−1 3 0.078669 78669 148028
10−2 102 0.008923 8923 9537

2pndp 2pndp70 10−3 1870 0.000643 643 465
10−4 32771 0.000036 36 26
10−5 49633 0.000005 5 4
10−1 4 0.085933 85933 2066
10−2 41 0.009257 9257 2066

2pndp90 10−3 722 0.000326 326 190
10−4 5209 0.000015 15 7
10−5 270618 0.000001 1 0
10−1 23 0.028989 28989 32151
10−2 232 0.001821 1821 1539

2pndp200 10−3 556 0.000566 566 503
10−4 5377 0.000100 100 95
10−5 77448 0.000001 1 1

10−1 4 0.060647 60647 79535
10−2 21 0.008542 8542 7507

pmed14 10−3 608 0.000786 787 215
10−4 217169 6.93×10−5 69 5
10−5 437422 5.55×10−6 6 0
10−1 5 0.069694 69694 117054
10−2 56 0.009214 9214 16968

p-median pmed15 10−3 3533 0.000626 626 311
10−4 10264 6.36×10−5 63 26
10−5 235853 9.99×10−6 10 3
10−1 3 0.089011 89011 12428
10−2 34 0.009309 9309 4176

pmed25 10−3 1060 0.000998 998 1232
10−4 2760 2.82×10−5 28 38
10−5 81382 4.84×10−6 5 4
10−1 4 0.089941 89941 120598
10−2 40 0.004635 4635 1426

pmed30 10−3 320 0.000992 992 1133
10−4 29142 2.86×10−6 3 1
10−5 29142 2.86×10−6 3 1
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Table 15. Quadratic assignment and set k-covering problems: stopping criterion vs.
estimated and counted number of solutions at least as good as the incumbent after
N = 1000000 additional iterations.

Problem Instance Threshold Iteration Probability Estimation Count

β k F̂ k
X(UB) N̂≤ N≤

10−1 4 0.045151 45151 94107
tai30a 10−2 82 0.003773 3773 3759

10−3 755 0.000996 996 1031
10−1 10 0.098051 98051 39090

tai35a 10−2 57 0.009754 9754 5389
Quadratic assignment 10−3 1440 0.000999 1000 1152

10−1 4 0.064517 64517 15748
tai40a 10−2 21 0.009094 9094 15748

10−3 1212 0.000121 121 111
10−1 3 0.078783 78783 281757

tai50a 10−2 35 0.009633 9633 10214
10−3 1737 0.000477 477 373

10−1 6 0.090414 90414 111059
scp42 10−2 78 0.009679 9679 5944

10−3 283340 0.000457 457 0
10−1 7 0.088826 88826 125995

scp47 10−2 142 0.008171 8171 1897
set k-covering 10−3 58788 0.000359 359 0

10−1 4 0.058515 58515 36119
scp55 10−2 221 0.004957 4957 604

10−3 137239 0.000999 1000 7
10−1 3 0.078973 78973 160036

scpa2 10−2 155 0.009952 9952 8496
10−3 359 0.000199 199 0

so as to limit the computation time when the probability of finding improving
solutions becomes very small and the time needed to find improving solutions
could become very large.

The pseudo-code in Figure 7 extends the previous template of a GRASP pro-
cedure for minimization, implementing the termination rule based on stopping
the GRASP iterations whenever the probability F̂ k

X(UBk) of improving the best
known solution value gets smaller than or equal to β. Lines 11 and 12 update the
sample f1, . . . , fk and the best known solution value UBk = f∗ at each iteration
k. The mean mk and the standard deviation sk of the fitted Normal distribu-
tion in iteration k are estimated in line 13. The probability of finding a solution
whose value is better than the currently best known solution value is computed
in line 14 and used in the stopping criterion implemented in line 15.

Another promising avenue of research consists in investigating stopping rules
based on estimating the number of iterations needed to improve the value of the
best solution found by different amounts. Figure 8 displays the results obtained
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procedure GRASP(β, Seed)
1. Set f∗ ←∞;
2. Set k ← 0;
3. repeat

4. x← GreedyRandomizedAlgorithm(Seed);
5. x← LocalSearch(x);
6. if f(x) < f∗ then

7. x∗ ← x;
8. f∗ ← f(x);
9. end;
10. k ← k + 1;
11. fk ← f(x);

12. UBk ← f∗;
13. Update the average mk and the standard deviation Sk of f1, . . . , fk;

14. Compute the estimate F̂ k
X(f∗) = F̂ k

X(UBk) =
∫ f∗

−∞
f̂k
X(τ )dτ ;

15. until F̂ k
X(f∗) < β;

16. return x∗, f∗;
end.

Fig. 7. Template of a GRASP heuristic for minimization with the probabilistic stopping
criterion.

for instance 2pndp90 of the 2-path network design problem with the threshold
β set at 10−3. For each percent improvement that is sought in the objective
function, the figure plots the expected additional number of iterations needed to
find a solution that improves the best known solution value by this amount. For
instance, we may see that the expected number of iterations needed to improve
by 0.5% the best solution value found at termination is 12131. If one seeks a
percent improvement of 1%, then the expected number of additional iterations
to be performed increases to 54153.

6 Concluding remarks

The main drawback of most metaheuristics is the absence of effective stopping
criteria. Most implementations of such algorithms stop after performing a given
maximum number of iterations or a given maximum number of consecutive it-
erations without improvement in the best known solution value, or after the
stabilization of a population of elite solutions. In some cases, the algorithm may
perform an exaggerated and non-necessary number of iterations. In other situa-
tions, the algorithm may stop just before the iteration that could find a better,
or even optimal, solution.

In this paper, we proposed effective probabilistic stopping rules for random-
ized metaheuristics. We first showed experimentally that the solution values
obtained by a randomized heuristic such as GRASP fit a Normal distribution.
Next, we used this Normal approximation to estimate the probability of finding
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in the next iteration a solution at least as good as the currently best known
solution. This probability also gives an estimate of the expected number of iter-
ations that must be performed by the algorithm to find a new solution at least
as good as the currently best one. The stopping rule is based on the trade-off
between solution quality and the time (or the number of additional iterations)
needed to improve the best known solution.

Since the average time consumed by each GRASP iteration is known, another
promising avenue of research consists in investigating stopping rules based on
estimating the amount of time needed to improve the best solution value for
some amount and evaluating the trade-off between these two quantities. Figure
8 illustrated this issue, displaying the expected additional number of iterations
needed to improve the best solution value by different percent values.

The robustness of the proposed strategy was illustrated and validated by a
thorough computational study reporting results obtained with GRASP imple-
mentations to four combinatorial optimization problems. We are investigating
extensions and applications of the proposed approach to other metaheuristics
that rely on randomization to sample the search space, such as simulated anneal-
ing, VNS, genetic algorithms and, in particular, to implementations of GRASP
with path-relinking.
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