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ABSTRACT. This paper describes a perl language program to create time-to-target so-
lution value plots for measured CPU times that are assumed to fit a shifted exponential
distribution. This is often the case in local search based heuristics for combinatorial op-
timization, such as simulated annealing, genetic algorithms, iterated local search, tabu
search, WalkSAT, and GRASP. Such plots are very useful in the comparison of different
algorithms or strategies for solving a given problem and have been widely used as a tool
for algorithm design and comparison. We first discuss how TTT plots are generated. This
is followed by a description of the perl program tttplots.pl.

1. INTRODUCTION

It has been observed that in many implementations of local search based heuristics
for combinatorial optimization problems, such as simulated annealing, genetic algorithms,
iterated local search, tabu search, WalkSAT, and GRASP [4, 5, 11, 12, 23, 19, 31, 38, 43,
47], the random variable time to target solution value is exponentially distributed or fits a
two-parameter shifted exponential distribution, i.e. the probability of not having found a
given target solution value in t time units is given by P(t) = e−(t−µ)/λ, with λ ∈ R+ and
µ ∈ R. Hoos and Stützle [22, 23] conjecture that this is true for all local search based
methods for combinatorial optimization.

Time-to-target (TTT) plots display on the ordinate axis the probability that an algorithm
will find a solution at least as good as a given target value within a given running time,
shown on the abscissa axis. TTT plots were used by Feo, Resende, and Smith [13] and
have been advocated by Hoos and Stützle [18, 21] as a way to characterize the running
times of stochastic algorithms for combinatorial optimization.

This paper describes a perl program to create time-to-target plots for measured CPU
times that are assumed to fit a shifted exponential distribution. Such plots are very useful
in the comparison of different algorithms or strategies for solving a given problem and
have been widely used as a tool for algorithm design and comparison. In the next section,
we discuss how TTT plots are generated, following closely Aiex, Resende, and Ribeiro
[4]. The perl program tttplots.pl is described in Section 3. The source code is avail-
able from the Electronic Supplementary Material page of Optimization Letters. Section 4
presents an example and concluding remarks are made in Section 5.

2. TIME-TO-TARGET PLOTS

The hypothesis here is that CPU times fit a two parameter, or shifted, exponential dis-
tribution. For a given problem instance, we measure the CPU time to find a solution with
an objective function value at least as good as a given target value. The heuristic is run n
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FIGURE 1. Cumulative probability distribution plot of measured data.

times on the fixed instance and using the given target solution value. For each of the n runs,
the random number generator is initialized with a distinct seed and, therefore, the runs are
assumed to be independent. To compare the empirical and the theoretical distributions, we
follow a standard graphical methodology for data analysis [7]. This methodology is used
to produce the TTT plots. In the remainder of this section we describe this methodology.

For each instance/target pair, the running times are sorted in increasing order. We asso-
ciate with the i-th sorted running time ti a probability pi = (i−1/2)/n, and plot the points
zi = [ti, pi], for i = 1, . . . ,n. Figure 1 illustrates this cumulative probability distribution plot
for a instance/target pair obtained by repeatedly applying a GRASP heuristic to find a so-
lution with objective function value at least as good as a given target value. In this figure,
we see that the probability of the heuristic finding a solution at least as good as the target
value in at most 2 seconds is about 50%, in at most 4 seconds is about 80%, and in at most
6 seconds is about 90%.

The plot in Figure 1 appears to fit a shifted exponential distribution. We would like
to estimate the parameters of the two-parameter exponential distribution. To do this, we
first draw the theoretical quantile-quantile plot (or Q-Q plot) for the data. To describe Q-Q
plots, we recall that the cumulative distribution function for the two-parameter exponential
distribution is given by F(t) = 1− e−(t−µ)/λ, where λ is the mean of the distribution data
(and also is the standard deviation of the data) and µ is the shift of the distribution with
respect to the ordinate axis.

For each value pi, i = 1, . . . ,n, we associate a pi-quantile Qt(pi) of the theoretical
distribution. For each pi-quantile we have, by definition, that F((Qt(pi)) = pi. Hence,
Qt(pi) = F−1(pi) and therefore, for the two-parameter exponential distribution, we have
Qt(pi) =−λ ln(1− pi)+µ. The quantiles of the data of an empirical distribution are simply
the (sorted) raw data.

A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by plotting
the quantiles of the data of an empirical distribution against the quantiles of a theoretical
distribution. This involves three steps. First, the data (in our case, the measured times) are
sorted in ascending order. Second, the quantiles of the theoretical exponential distribution
are obtained. Finally, a plot of the data against the theoretical quantiles is made.
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FIGURE 2. Q-Q plot showing fitted line.

In a situation where the theoretical distribution is a close approximation of the empirical
distribution, the points in the Q-Q plot will have a nearly straight configuration. In a plot of
the data against a two-parameter exponential distribution with λ = 1 and µ = 0, the points
would tend to follow the line y = λ̂x + µ̂. Consequently, parameters λ and µ of the two-
parameter exponential distribution can be estimated, respectively, by the slope λ̂ and the
intercept µ̂ of the line depicted in the Q-Q plot.

The Q-Q plot shown in Figure 2 is obtained by plotting the measured times in the
ordinate against the quantiles of a two-parameter exponential distribution with λ = 1 and
µ = 0 in the abscissa, given by − ln(1− pi) for i = 1, . . . ,n. To avoid possible distortions
caused by outliers, we do not estimate the distribution mean with the data mean or by
linear regression on the points of the Q-Q plot. Instead, we estimate the slope λ̂ of the line
y = λx+µ using the upper quartile qu and lower quartile ql of the data. The upper and lower
quartiles are, respectively, the Q(1/4) and Q(3/4) quantiles. We take λ̂ = [zu−zl ]/[qu−ql ]
as an estimate of the slope, where zu and zl are the u-th and l-th points of the ordered
measured times, respectively. This informal estimation of the distribution of the measured
data mean is robust since it will not be distorted by a few outliers [7]. Consequently,
the estimate for the shift is µ̂ = zl − λ̂ql . To analyze the straightness of the Q-Q plots,
we superimpose them with variability information. For each plotted point, we show plus
and minus one standard deviation in the vertical direction from the line fitted to the plot.
An estimate of the standard deviation for point zi, i = 1, . . . ,n, of the Q-Q plot is σ̂ =

λ̂[pi/(1− pi)n]
1
2 . Figure 3 shows an example of a Q-Q plot with superimposed variability

information.
When observing a theoretical quantile-quantile plot with superimposed standard de-

viation information, one should avoid turning such information into a formal test. One
important fact that must be kept in mind is that the natural variability of the data gener-
ates departures from the straightness, even if the model of the distribution is valid. The
most important reason for portraying standard deviation is that it gives us a sense of the
relative variability of the points in the different regions of the plot. However, since one is
trying to make simultaneous inferences from many individual inferences, it is difficult to
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FIGURE 3. Q-Q plot with variability information.
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FIGURE 4. Superimposed empirical and theoretical distributions.

use standard deviations to judge departures from the reference distribution. For example,
the probability that a particular point deviates from the reference line by more than two
standard deviations is small. However, the probability that at least one of the data points
deviates from the line by two standard deviations is probably much greater. In order sta-
tistics, this is made more difficult by the high correlation that exists between neighboring
points. If one plotted point deviates by more than one standard deviation, there is a good
chance that a whole bunch of them will too. Another point to keep in mind is that standard
deviations vary substantially in the Q-Q plot, as can be observed in the Q-Q plot in Figure 3
that the standard deviation of the points near the high end are substantially larger than the
standard deviation of the other end.
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TABLE 1. Files produced by tttplots.pl.

empirical exponential distribution data file input filename-ee.dat

theoretical exponential distribution data file input filename-te.dat

empirical QQ-plot data file input filename-el.dat

theoretical QQ-plot data file input filename-tl.dat

theoretical upper 1 standard deviation QQ-plot data input filename-ul.dat

theoretical lower 1 standard deviation QQ-plot data input filename-ll.dat

theoretical vs empirical TTT plot gnuplot file input filename-exp.gpl

theoretical vs empirical QQ-plot gnuplot file input filename-qq.gpl

theoretical vs empirical TTT plot PostScript file input filename-exp.ps

theoretical vs empirical QQ-plot PostScript file input filename-qq.ps

Once the two parameters of the distribution are estimated, a superimposed plot of the
empirical and theoretical distributions can be made. Figure 4 shows this plot corresponding
to the Q-Q plot in Figure 3.

3. THE PERL PROGRAM

tttplots.pl 1 is a perl program that takes as input a file with with CPU times. To be
able to produce the plots, tttplots.pl requires that gnuplot 2 be installed.

To run tttplots.pl, simple type: perl tttplots.pl -f input filename where
input filename.dat is the input data file with n CPU time data points, one time point
per line.

Two plots are produced by ttplots.pl:
(1) Q-Q plot with superimposed variability information (as in Figure 3); and
(2) Superimposed empirical and theoretical distributions (as in Figure 4).

Besides printing to the standard output some basic statistics of the data file and the esti-
mated parameters, tttplots.pl also creates some output files. A list of the files produced
by tttplots.pl is shown in Table 1. Files of type .dat contain data points that are plotted
by gnuplot with files of type .gpl. Postscript files of type .ps are generated by gnuplot.

4. AN EXAMPLE

In this section, we show an example of the plots produced by tttplots.pl. We ran
the GRASP with path-relinking heuristic for the MAX-CUT problem described in [16] on

1tttplots.pl can be downloaded from http://www.research.att.com/˜mgcr/tttplots.
2gnuplot can be downloaded from the gnuplot homepage at http://www.gnuplot.info.
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FIGURE 5. Empirical versus theoretical distributions on left and QQ-
plots with variability information on right: 10, 20, and 30 data points.

instance G13 with a target solution value of 572. We produce plots after 10, 20, 30, 50,
75, 100, 125, 150, and 200 runs. These plots are shown in Figures 5, 6, and 7. These plots
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FIGURE 6. Empirical versus theoretical distributions on left and QQ-
plots with variability information on right: 50, 75, and 100 data points.

were obtained by running tttplots.pl using as input files with the CPU times that each
of the runs took to find a solution with value at least as good as the target value.
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FIGURE 7. Empirical versus theoretical distributions on left and QQ-
plots with variability information on right: 125, 150, and 200 data points.

We notice that the larger is the number of runs n (i.e. the number of points plotted),
the closer the empirical distribution is to the theoretical distribution. This be seen in the
time-to-target plots, as well as in the Q-Q plots. We have observed in practice that using
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n = 200 gives very good approximations of the theoretical distributions. Furthermore, we
also notice that the use of “easy” target solution values should be discouraged, since in
this case the CPU times are very small in almost all runs and the exponential distribution
degenerates to a step function.

5. CONCLUDING REMARKS

In this paper, we described a perl language program to create time-to-target plots from
a set of running times that are exponentially distributed.

Most time-to-target plots seen in the literature are created from a set of repeated runs of
an algorithm on a fixed problem instance. An exception to this was in Feo, Resende, and
Smith [13], where the time-to-target plots were created by running an algorithm a single
time on many randomly generated instances having a fixed characteristic (e.g. size and
density).

Besides being used to help establish the probability distribution of time-to-target ran-
dom variables for various stochastic algorithms [1, 2, 3, 4, 9, 19, 24, 32, 34, 35, 42], TTT
plots have been used in a number of studies to analyze the comparison of

• different heuristics [1, 2, 6, 8, 10, 14, 15, 16, 20, 24, 27, 30, 34, 35, 36, 37, 41, 42,
44, 45];
• parallel implementations using different number of processors or parallelization

strategies [1, 2, 3, 28, 34, 35];
• the same algorithm on several instances [1, 2, 13, 17, 23, 29, 42];
• algorithms using different strategies [2, 28, 33, 34, 35, 39, 40, 42, 45, 46]; and
• an algorithm using different parameter settings [6, 25, 26, 39, 40, 46].
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[21] H.H. Hoos and T. Stützle. Evaluation Las Vegas algorithms - Pitfalls and remedies. In Proc. of the 14th
Conf. on Uncertainty in Artificial Intelligence, pages 238–245, 1998.

[22] H.H. Hoos and T. Stützle. Some surprising regularities in the behaviour of stochastic local search. In M. Ma-
her and J.-F. Puget, editors, CP’98, volume 1520 of Lecture Notes in Computer Science, page 470. Springer-
Verlag, 1998.
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