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Divisible load model

� Load may be split continuously into arbitrarily many small chunks

� No precedence constraints
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System model and problem formulation

� Interconnection topology: star network

� Dedicated grid

� Model: one master - n workers

� Master owns the total load W

� No communication/computation overlap in any processor

� No communication overlap through the master
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System model and problem formulation

� Single-round scheduling

� Each processor receives portion αi of total load
� Master takes gi +Giαi time units to send the data to processor Pi

� Processor Pi takes wiαi time units to process data
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Single-round scheduling

� Non-optimal scheduling:
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Single-round scheduling

� Optimal scheduling:
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Multi-round scheduling

� This work: single-round problem
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Single-round scheduling

� Problem consists of determining . . .

� the processors to be used,
� their activation order,
� and their loads,

� . . . so as to minimize the makespan
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BRKGA: Decoder for DLS-SR

� BRKGA for DLS-SR evolves a population of chromosomes that
consists of vectors of real numbers (keys).

� Each solution represented by keys in the range [0, 1), one key for
each processor.

� Each solution is decoded by a heuristic that receives the vector of
keys and builds a feasible solution for DLS-SR.

� Solution quality depends on the order in which the processors are
routed.

� The decoding consists of two steps: first, the processors are sorted.
in a non-decreasing order of their random keys; next, the resulting
order is used as the input for the decoder heuristic.
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BRKGA: Decoder for DLS-SR

� Decoder: AlgRap algorithm of Abib and Ribeiro (2009).

� Given a permutation of the processors in P , the decoder computes
in O(|P |) time the set of active processors and the amount of load
that has to be sent to each of them to minimize the makespan.

� In addition to the number of processors and all their data, this
algorithm takes as input a vector π describing the activation order,
such that π(i) = j indicates that processor j is the i -th to be
activated, for i , j = 1, . . . ,n.

� For instance, if n = 3 and π =< 2, 3, 1 >, then processor 2 is the
first to be activated, processor 3 is the second, and processor 1 is
the third.
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BRKGA: Decoder for DLS-SR

� Given some activation order, the algorithm starts by sending all
the load exclusively to the first processor.

� Number � of processors is iteratively increased from 1 to n, until
the makespan deteriorates (lines 10–12).

� Optimal number of processors is set as �∗ = �− 1 (lines 18–23).

� Compute the load α�∗ sent to the last processor (line 24).

� Loads αi , for i = 1, . . . , �∗ − 1, are recursively computed from �∗

(lines 25–27).

� Decoder implements these computations in time O(n).
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Test environment

� BRKGA-DLS implemented in C++ and compiled with GNU C++
version 4.6.3.

� Experiments performed on a Quad-Core AMD Opteron(tm)
Processor 2350, with 16 GB of RAM memory.

� Comparisons with CPLEX, HeuRet, and multistart procedure
MS-DLS.

� Version 12.6 of CPLEX was used and the maximum CPU time
was set to 24 hours.

� Ten runs of each heuristic for each instance, with different seeds
for the random number generator.
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Instances

� Instances used in the three first experiments: same proposed in
Abib and Ribeiro (2009).

� 120 grid configurations with n = 10, 20, 40, 80, 160 worker
processors and eight combinations of the parameters gi , Gi and wi ,
i = 1, . . . ,n, each of them ranging either in the interval [1, 100]
(low) or in the interval [1000, 100000] (high).
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Numerical results

� The first experiment: evaluates if BRKGA-DLS efficiently
identifies the relationships between keys and good solutions and
converges faster to near-optimal solutions.

� We compare its performance with that of the multi-start
procedure.

� Each iteration of MS-DLS procedure applies the same decoding
heuristic of BRKGA-DLS, but using randomly generated values
for the keys.

� BRKGA-DLS was run for 1000 generations and MS-DLS for
1000× |V | iterations, where |V | = 5× |P | is the population size of
BRKGA-DLS (same number of solutions are evaluated and
compared).
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Average percent relative reduction over the 720

instances of the best, average and worse solution values

found by BRKGA-DLS with respect to those obtained

by MS-DLS

� Average solution values found by BRKGA-DLS were 4.95% better
than those provided by MS-DLS.

� BRKGA-DLS identifies the relationships between keys and good
solutions, making the evolutionary process converge to better
solutions faster than MS-DLS.
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Summary of the numerical results obtained with

BRKGA-DLS, HeuRet, and MS-DLS for 720 test

instances

� In the second experiment, we compare BRKGA-DLS with HeuRet,
and MS-DLS. HeuRet is a deterministic algorithm, while the
others are randomized.

MS-DLS HeuRet BRKGA-DLS
Optimal values (over 497 instances) 177 320 413
Best values (over 720 instances) 189 313 645
Best values (over 7200 runs) 2166 - 6191
Score value 803 112 1

� “score” represents the sum over all instances of the number of
methods that found strictly better solutions than the specific
heuristic being considered: best heuristics have lower score values.

� BRKGA-DLS outperformed the previously existing HeuRet
heuristic and MS-DLS with respect to all measures considered.
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New instances

� 20 new, larger, and more realistic instances with |P | = 320 and
W = 10, 000.

� The values of Gi and gi have been randomly generated in the
ranges [1, 100] and [100, 100.000], respectively.

� Differently from Abib and Ribeiro (2009), the values of wi have
been randomly generated in the interval [200, 500].

� These values are more realistic, since the processing rate of a real
computer is always larger than its communication rate.

� BRKGA-DLS stops after |P | generations without improvement in
the best solution found.
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BRKGA vs. HeuRet on 320-processor instances

� Makespan obtained by BRKGA-DLS is always smaller than that
given by HeuRet.

� Coefficient of variation of BRKGA-DLS is very small, indicating
its robustness.

� Percent relative reduction of BRKGA-DLS with respect to HeuRet
amounted to 3.19% for instance dls.320.10 and to 2.38% on
average.

� Although the running times of BRKGA-DLS are larger than those
of HeuRet, their average values never exceeded the time taken by
HeuRet by more than 30 seconds.

� Larger running times are not a major issue in practice (parallel
processing).
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Extension: Multi-round scheduling

� Extension of this approach to the harder case of multi-round (or
multi-installment) scheduling.

� Load is distributed to the active processors in several consecutive
bursts, reducing the waste in each processor and making better use
of the resources to reduce the overall makespan.

� Concurrency between communication in burst k + 1 and
computation in burst k .

� Multi-round scheduling consists of determining . . .

� not only the processors to be used, their activation order, and their
loads,

� but also the number of rounds. . .

� . . . so as to minimize the makespan.

� On average, BRKGA improved the makespan obtained by closed
forms of Shokripour et al. (2012) by 12%.
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