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ABSTRACT. Electric energy generation in a hydroelectric prevalent system is a time dependent process, 

since the present hydroelectric energy generation impacts the storage level of the reservoirs in the future. 

This fact implies dealing with economic and hydrologic uncertainties. This paper discusses the robustness 

of the techniques presently adopted for decision under uncertainty in the hydrothermal operation planning 

of the Brazilian system, and proposes the development of a bi-criteria decision support system that would 

systemize the necessary human participation in the decision.  
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1. HYDROTHERMAL OPERATION PLANNING IN BRAZIL FROM 1973 TO 2009 

Electrical energy is a product specially immersed in uncertainties. There are unreliable data, measuring 

errors, possibility of equipment and human failures, macroeconomic and hydrological unpredictability, 

exposition to atmospheric storms, instability in fuel availability and pricing, geopolitics questions and 

hidden competitive strategies.  

In thermal prevalent generation systems, however, operation planning is not affected by these 

uncertainties. In this case, the decisions can be obtained by sorting the thermal plants in increasing order 

of their operating costs, subject to electric reliability constraints. In a hydroelectric prevalent system, 

however, energy generation is a time dependent process, since the present hydroelectric energy 

generation impacts the storage level of the reservoirs in the future. This fact implies that, for deciding 

between thermal or hydro generation, there are uncertainties to deal with: macroeconomic and 

hydrological unpredictability and instability in fuel availability and pricing.  

Hydrothermal operation planning of the Brazilian system started in 1973, year in which an international 

treaty was signed between Brazil and Paraguay to build Itaipu, the world’s largest power plant until 

August 2009. It was established since 1973 that only the hydrological uncertainties would be considered, 

and that the Brazilian hydro plants would be represented, in pluri-annual analysis, by one equivalent 

energy reservoir by region (Fortunato et al., 1990).  

Since 1974, the operation planning decisions were taken to protect the system against the repetition of the 

worst historic hydrological conditions, represented by the critical period of the recorded historical inflows 

for the Brazilian Southeast region. The critical period is defined as the period in which the energy storage 

goes from completely full to completely empty, considering a fixed generation in every month since 

1931. For the Southeast, the critical period starts in 1952 and finishes in 1956.  

This method was replaced, in 1979, by a probabilistic approach, based on Stochastic Dynamic 

Programming (Terry et al., 1986), with the minimum cost criteria for a five-year horizon. This method 

required that a cost should be attributed to energy shortages.  

Due to the curse of dimensionality, since 1998, when the North-South interconnection was launched, the 

operation planning methodology used in Brazil is based on Stochastic Dual Dynamic Programming 

(Pereira, 1989), implemented in a computer model called NEWAVE. Under this method, the strategy 
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along a five-year horizon is calculated for a selected set of states, which are defined by the trajectories 

resulted from the simulation of a sample of possible inflow sequences.  

This approach reigned until the 2001/2002 rationing period in Brazil. After that, a risk aversion curve for 

the reservoirs storage was defined. It was implemented in the NEWAVE model, leading to the use of all 

thermal generation whenever the storage is below the risk aversion curve (Kligerman et al., 2005). This 

risk aversion approach, though, is still probabilistic, and in some cases the decisions given by the model 

have been overruled by deterministic considerations.  

In 2008, the wet period in the Southeast region, instead of starting in December, had not begun until mid-

January. This caused a special fear that put in motion the development of Short Term Operative 

Procedures (ONS, 2008), in which a security storage level is defined for the current month, based on a 

high confidence that minimum storage levels defined for the next two years are accomplished.    

In short, in 2009, the hydrothermal operation planning in Brazil is at the same time based on stochastic 

optimization and deterministic assurance. It results in huge processing resources and time to provide 

mostly overruled decisions that, given all uncertainties that are not considered, should never have been 

called optimal solutions (Clímaco, 2001). These facts create a condition that claims for the development 

of a decision support system (DSS) as a natural evolution for the recent Brazilian operation planning 

migration from a minimum cost criteria to an energy security criteria.  

 

2. THE HYDROLOGICAL UNCERTAINTY REPRESENTATION 

As hydrological uncertainties shall be considered by the proposed DSS, stochastic and deterministic 

approaches are analyzed in this paper. The deterministic approach has the advantage of allowing the 

detailed representation of the hydroelectric generation, at the expense of considering only one possible 

future inflow sequence.  

The stochastic optimization can be read as obtaining the minimum expected cost for a sample of inflow 

sequences, while the deterministic optimization can be read as obtaining the minimum cost for the 

expected inflow sequence (Figure 1). 

 

  

Figure 1: Stochastic and deterministic optimization approaches 

 

It is known that if a decision is taken many times for random scenarios using stochastic optimization, the 

average result is the optimal cost. In the operation planning, though, a decision is taken only once, and 

only the real life scenario happens. Based on this, after solving the stochastic optimization for a certain 

month, it would be possible to adjust a specific energy inflow sequence by region that would result, 

through deterministic optimization, in the same optimal cost of the stochastic optimization. This can be 

assured, because both the inflows and the cost are continuous variables. So, in fact we are comparing two 

deterministic optimizations, one with the expected inflow sequence, and another with a certain specific 

inflow sequence (Figure 2). 

Considering the hydrological uncertainty and some other uncertainties that are not represented, the two 

approaches can be taken as equivalent. As deterministic optimization is a faster procedure, it was chosen 

to be used in the proposed DSS.  
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Figure 2. Stochastic reduced to deterministic optimization 

 

3. THE PROPOSED DECISION SUPPORT SYSTEM 

 

3.1. The role of the human decision-maker 

Decision is a consequence of what is wanted, of what is known, and of what is possible. In the absence of 

uncertainty, each possible decision leads to a unique consequence. Once the desired consequence is 

chosen, the decision is taken. Thus, Decision Theory is not applicable to such situations. While 

uncertainty matters, however, a new question arises: who is the best decision maker: a human being or the 

machine?  

It can be stated that the machines are rational, while human choices are influenced by limited rationality. 

On the other hand, machines are not able to model all the available information, while a human decision 

maker can not only deal with all the available information, but also make associations. Computers, in 

their turn, are ideal for unbounded data storage and calculation, something impossible for humans. These 

facts imply that human beings and computers are complementary, and we state that decision making it is 

a role for humans, helped by computers. 

 

3.2. Workflow and criteria of the proposed DSS 

The proposed decision support system can be represented as in Figure 3. Models, tools and all available 

data are accessible by the decision maker through a powerful interface.   

 

 

Figure 3. The proposed DSS structure 

 

The workflow of the proposed DSS has the following steps: 

- Generation of a set of feasible solutions. 

- Selection of a reduced set of solutions, based on additional information. 

- Multicriteria analysis decision aid to choose the solution that will give the decisions to be taken. 

The hydrothermal operation planning is affected mostly by four conflicting criteria: cost, electric 

reliability, energetic security, and environmental security.  

Decision 
maker 
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Nevertheless, considering the Brazilian recent increase of energy security concerns into a strategy 

historically based on the minimum expected cost criteria, the proposed DSS is bi-criteria, dealing with 

cost and energetic security.  

 

4. GENERATION AND SELECTION OF A SET OF FEASIBLE SOLUTIONS  

To provide the set of feasible solutions to be considered in the proposed DSS, we propose to solve 76 

deterministic optimization problems, each one using a different inflow sequence. These inflow sequences 

(ONS, 2008b) are based on the historical record, available from 1931 to 2007. The optimization horizon 

is from the current month up to November of the year after.  

November is the last month before the wet season in the Southeast region. In consequence, a security 

target level is regulated by law, and applied to the Southeast and the Northeast energy storage levels at 

the end of November of each year. The deterministic optimization takes into account this target levels, 

and the optimization for each one of the 76 inflow sequences provides 76 solutions. Each solution 

corresponds to a thermal generation decision for the current month, and some solutions may result in the 

same decision. Therefore, the first selection is to keep only one solution for each different amount of 

thermal generation. 

 

4.1. Selecting decisions based on additional information 

Besides the official data that is used to generate the feasible solutions, the National Independent System 

Operator, ONS, performs its own climatologic and macroeconomic studies that provide additional 

information capable of improving the decision making. It is possible, from these studies, to obtain the 

forecast of load consumption deviation from the official data and the forecast of deviation from the 

autoregressive expected energy inflow. This information is considered up to the month of November of 

the current year, and consolidated according to expression (1):  

 

 

where  Δ = consolidated deviation based on additional information; 

 s = subsystem (region) index; 

 NS = number of subsystems;  

 Ds  = forecast of load consumption deviation up to November; and 

 Ts  = forecast of deviation from the autoregressive expected energy inflow up to November. 

Each of the inflow sequences can also be compared with the autoregressive expected energy inflow, and 

will have a consolidated deviation according to expression (2): 

 

 

where  Δ inflow sequencei = consolidated deviation from the autoregressive expected value; 

 i = inflow sequence index; 

 Ai,s  = energy of the inflow sequence i up to November in the subsystem s; and  

 Es  = expected autoregressive energy inflow up to November in the subsystem s. 

The decisions are selected based on the similarity of the consolidated inflow sequence deviation of 

expression (2) and the consolidated deviation based on additional information of expression (1). The 

percentage of selected decisions from the available set depends on the reliability of the additional 

information, varying from 20% for high reliability to 50% for low reliability.  

Δ =   Ts

NS

s=1

 –  Ds

NS

s=1

 ,          (1) 

 Δ inflow sequencei =  Ai,s

NS

s=1

-  Es

NS

s=1

,                      (2) 
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5. MULTICRITERIA ANALYSIS DECISION AID TO DETERMINE THE DECISION   

ELECTRE III and PROMETHEE II are two commonly used outranking methods for decision aid in 

multicriteria decision making (Collette and Siarry, 2003).  

PROMETHEE II was chosen to be used in the prototype of the proposed DSS for two main reasons, both 

considering its use in such sensitive issue as the electric system operation planning. First, because it has a 

transparent influence of each criterion and weight on the solution, which permits an investigation into the 

steps taken to reach the decision. Second, because it results in a complete rank order, letting the decision 

to be reproducible (Beynon, 2008).  

This method is based on a preference intensity measure associated with the distance dj(a,b) between two 

different solutions a and b for each criterion j. Each criterion may have a different preference function, in 

which the preference intensity varies from 0 (indifference) to 1 (strict preference). In the proposed DSS, 

the preference functions showed in Figures 4a and 4b were given for the two criteria, cost and energetic 

security (measured as a risk). In these graphics, Ls, Linf and Lsup shall be defined by the decision maker. 

 

Pj(a,b)

dj(a,b)

1

Ls

 

Pj(a,b)

dj(a,b)

Linf Lsup

1

 

Figure 4: Preference functions chosen for the proposed DSS 

This method follows with the calculation of the global preference for each pair of solutions, as in 

expression (3), using a normalized weight kj for each criteria, given by the decision maker: 

 

  𝑎, 𝑏 =  kj × Pj

j

 𝑎, 𝑏  (3) 

The input and output flows for each solution are also calculated. The input flow, Φ+ 𝑎 , means the 

intensity that a is preferred to the other solutions, and the output flow, Φ− 𝑎 , means the intensity that the 

other solutions are preferred to a:   

 

Φ+ 𝑎 =
1

N − 1
   𝑎, 𝑎𝑖 

N−1

i=1

 Φ− 𝑎 =
1

N − 1
  (𝑎i , 𝑎)

N−1

i=1

    (4) 

where N is the number of competing solutions in this phase. Finally, the general flow (5) is calculated for 

each solution:  

Φ 𝑎 = Φ+ 𝑎 − Φ− 𝑎 . 

The chosen decision is that with the greatest general flow.   

 

(5) 

(a) preference function for cost                           (b) preference function for risk  
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6. CASE STUDY: MAY 2009   

A case study was performed, considering the same conditions observed in May 2009. In this month, there 

were two relevant additional informations not considered in the original operation planning strategy. 

Concerning the energy inflow forecasts, the occurrence of the El Niño phenomenon in 2009 was already 

established at that time. Inflow forecasts should also consider the effect of the corresponding Pacific-

Ocean surface temperatures. The deviation above the expected autoregressive energy inflow up to 

November amounted to 3,400 MWmonth. Concerning the load consumption, the effects of the financial 

crisis was not entirely considered in the official data, and a negative deviation was forecasted, reaching 

1,000 MWmonth up to November.  

The solutions that were selected considering the additional information are shown in Table 1. Risk, in this 

table, represents the percentage of historic inflow sequences for which the adequate thermal generation in 

the first month should be greater than the amount given by the considered solution. 

 

Table 1. Selected solutions based on the additional information 

Solution index Inflow sequence Thermal generation (MW) Cost (103 R$) Risk (%) 

16 1953 1,980 170,113.50 36.5 

19 1958 1,574 118,055.17 51.4 

24 1947 570 21,130.79 62.1 

25 1955 370 7,636.15 67.6 

26 1993 114 1,590.34 74.3 

27 1935 0 0.00 75.7 

     

Using PROMETHEE II, with weights 0.6 for cost and 0.4 for risk, Linf = 5%, Lsup = 10%, and  

Ls = R$ 152,650,000.00, the chosen solution is given by the greatest general flow, as shown in Table 2.  

Table 2. Solution chosen by PROMETHEE II for the settings defined by the decision maker 

 Global preferences  (𝐚, 𝐛)    

Solution 24 16 19 25 26 27 𝚽+ 𝐚  𝚽− 𝐚  𝚽 𝐚  

16 0.00000 0.40000 0.40000 0.40000 0.40000 0.40000 0.4000 0.51804 -0.1180 
19 0.20462 0.00000 0.40000 0.40000 0.40000 0.40000 0.3609 0.42735 -0.0664 
24 0.58559 0.38097 0.00000 0.04000 0.40000 0.40000 0.3613 0.20258 0.1587 
25 0.60000 0.43401 0.05304 0.00000 0.13600 0.24800 0.2942 0.17876 0.1155 
26 0.60000 0.45777 0.07680 0.02376 0.00000 0.00000 0.2317 0.26845 -0.0368 
27 0.60000 0.46402 0.08306 0.03001 0.00625 0.00000 0.2367 0.28960 -0.0529 

  

The chosen solution, indexed as 24, represents 570 MW of thermal generation in the current month, using 

thermal plants whose costs amount up to 90.69 R$/MWh. 

 

7. SENSITIVITY ANALYSIS   

The proposed DSS is driven by the parameters attributed by the decision maker. To clarify how far the 

chosen parameters influence the output, we performed a sensitivity analysis, considering the same case 

study. We first consider that, in a risk aversion approach, the decision maker would assign a weight 0.6 

for risk, instead of 0.4. The results obtained by PROMETHEE II are shown in Table 3.  

 

Table 3. Solution chosen by PROMETHEE II considering a risk aversion approach 

 Global preferences  (𝐚, 𝐛)    

Solution 24 16 19 25 26 27 𝚽+ 𝐚  𝚽− 𝐚  𝚽 𝐚  

16 0.00000 0.60000 0.60000 0.60000 0.60000 0.60000 0.60000 0.34536 0.25464 

19 0.13641 0.00000 0.60000 0.60000 0.60000 0.60000 0.50728 0.35157 0.15571 

24 0.39039 0.25398 0.00000 0.06000 0.60000 0.60000 0.38087 0.26839 0.11249 

25 0.40000 0.28934 0.03536 0.00000 0.20400 0.37200 0.26014 0.25917 0.00097 

26 0.40000 0.30518 0.05120 0.01584 0.00000 0.00000 0.15445 0.40163 -0.24719 

27 0.40000 0.30935 0.05537 0.02001 0.00417 0.00000 0.15778 0.43440 -0.27662 
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In this case, the chosen solution, indexed as 16, corresponds to the use of thermal plants whose costs 

amount up to 168.12 R$/MWh. 

We now assume that the decision maker, considering the risk associated with each solution, increases the 

limit for increasing preference intensity (Lsup in Figure 4b) to 40%, instead of 10%. The new results 

obtained by PROMETHEE II appear in Table 4.  

 

Table 4. Solution chosen by PROMETHEE II considering increasing risk preference intensity 

 Global preferences  (𝐚, 𝐛)       

Solution 24 16 19 25 26 27 𝚽+ 𝐚  𝚽− 𝐚  𝚽 𝐚  

16 0.00000 0.08800 0.18311 0.23200 0.29156 0.30400 0.21973 0.51804 -0.29831 

19 0.20462 0.004000 0.05067 0.09956 0.15911 0.17156 0.13710 0.36495 -0.22785 

24 0.58559 0.38097 0.00000 0.00444 0.06400 0.07644 0.22229 0.08934 0.13295 

25 0.60000 0.43401 0.05304 0.00000 0.01511 0.02756 0.22594 0.07796 0.14799 

26 0.60000 0.45777 0.07680 0.02376 0.00000 0.00000 0.23167 0.10721 0.12446 

27 0.60000 0.46402 0.08306 0.03001 0.00625 0.00000 0.23667 0.11591 0.12076 

  

The new chosen solution, indexed as 25, corresponds to the use of thermal plants whose costs amount up 

to 51.93 R$/MWh. It is a slightly risky decision, resulting from the increase in the preference intensity for 

comparing each pair of solutions with respect to their risks. 

This analysis shows the relevance of the decision maker parameter assignments. It also illustrates the 

adequacy of the proposed DSS, conceived to systematize the trends of the operation planning managers, 

based on all the available information and on their accumulated experience, preserving at the same time 

the reproducibility of the decisions.  

 

8. CONCLUSION   

The proposed DSS is in line with the Brazilian hydrothermal operation planning recent migration from a 

minimum cost criteria to an energy security criteria. It provides the necessary systematization to consider 

additional information and reach a balanced bi-criteria decision making, improving the quality of the 

operational decisions. All the steps of the proposed DSS should be exactly documented, so as to make it a 

transparent and reproducible process.  
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