Guidelines for Designing and Reporting on

Computational Experiments with Heuristic
Methods

Richard S. Barr*  Bruce L. Golden' James Kelly*
William R. Stewart® Mauricio G.C. Resende’

March 16, 2001

Abstract

This report studies the design of computational experiments to
test heuristic methods and provides guidelines for reporting on such
experimentation....

*Department of Computer Science and Engineering, Southern Methodist University,
Dallas, TX 75275, barr@seas.smu.edu

fCollege of Business, University of Maryland, College Park, MD,
bgolden@umdacc.umd.edu

fSchool of DBusiness, University of Colorado at Boulder, Boulder, CO,
james.kelly@colorado.edu

§School of Business Administration, The College of William and Mary, Williamsburg,
VA, wrstew@mail.wm.edu

TMathematical Sciences Research Center, ATT Bell Laboratories, Murray Hill, NJ
07974-2040, mgcr@Qresearch.att.com



The effectiveness of any proposed methodology for solving a given prob-
lems can be demonstrated by theoretical analysis and by empirical testing.
This report focuses on the issues involved in designing computational exper-
iments to test heuristic methods and gives guidelines for reporting on the
experimentation.

We follow in the footsteps of those who have championed high-quality
reporting on computational experiments with mathematical programming
software. These efforts began in the late 1970s with [12, 8, 5], with additional
writing on the subject appearing more recently in [11, 9, 2, 3].

Reporting on experimentation with heuristic methods involves many of
the same concerns as with optimization algorithms, but has its own distinc-
tive issues. While some elements of this topic have been explored elsewhere[15,
14, 19, 3], this paper takes a comprehensive view of the issues involved and
provides guidelines for researchers in this important and expanding area.

1 The Role of Heuristic Methods in Problem-
Solving

A heuristic method is a well-defined set of steps for quickly identifying a high
quality solution for a given problem, where a solution is a set of values for
the problem unknowns and “quality” is defined by a stated evaluation metric
or criterion. Heuristic methods are also called approximation algorithms,
wmezact procedures, incorrect algorithms, and simply heuristics.

One category of heuristic methods is associated with problems for which
an optimal, correct, or exact solution exists that may be computed by an
optimization, correct, or exact algorithm. Heuristic methods are often used
to identify “good,” approximate solutions to such problems in less time than
is required for an exact algorithm (if one exists) to uncover an exact solution.

Hence the role of heuristic methods is to identify problem solutions where
no exact algorithm exists, or where time is more important than solution
quality (or the knowledge of quality). A superior heuristic method is one that
quickly identifies solutions, identifies high-quality solutions, and is robust,
performing well across a wide range of of problems and tuning-parameter
settings (and is simple to implement?). To claim superiority over other ap-
proaches, a given method should excel on one or more of these dimensions.



Superior performance of a heuristic method can be demonstrated by a
theoretical analysis and, indirectly, through empirical testing. Testing is
accomplished by implementing the methodology as a computer program and
experimenting with the program. The sections that follow discuss how to
design and execute these computational experiments, how performance can
be measured, and how best to report the experimental results.

2 Computational Experiments with Heuris-
tics

An experiment is “a test under controlled conditions that is made to demon-
strate a known truth, examine the validity of a hypothesis, or determine the
efficacy of something previously untried.[1]” “Experiments are carried out by
investigators in all fields of study to discover something about a particular
process or to compare the effect of several factors on some phenomena.[18]”

In computational testing of algorithms, including heuristic methods, a
typical experiment consists of solving a given problem instance using a com-
puter implementation of the algorithm. Usually the objective of the exper-
iment is to demonstrate the efficiency or effectiveness of the software (and,
by implication, the underlying methodology) in this particular instance. By
running a series of such experiments and comparing the results with those
obtained using other approaches, the relative effectiveness of the software on
the problem set (and, implicitly, other problems) is established.

The experimenter has great latitude in selecting the problem, implement-
ing the algorithm, choosing a computing environment, selecting performance
measures, and reporting the results, and each choice made can have a signif-
icant effect on the outcome of the experiment. Therefore, to ensure that the
reported information is meaningful, the researcher should use a carefully con-
structed experimental design and document all factors that could influence
the results.

2.1 Experimental Designs (under construction)

What is meant by an experimental design? (Define) While all testing involves
a design, some designs are more illuminating than others.



What are the goals of experimentation and experimental designs? (demon-
strate some truth, validate a hypothesis, examine the performance of some-
thing) Relate to our situation.

In the physical sciences, engineering, and medicine, approved experimen-
tal practices are highly developed and well-defined. Standards for empirical
testing in the computing and mathematical sciences remain much less rigor-
ous, and there is a broad range of accepted practice. Despite regular exhor-
tations for high standards of reporting, demonstration or proof-of-concept
studies with minimal or ad hoc testing is more the norm than carefully con-
structed experimental designs with statistically validated conclusions.

What constitutes a good experiment and experimental design? Good
experiment: (define) Good design: unbiased, achieves experimentation goals,
clearly demonstrates the performance of the tested process, uncovers the
reasons for performance, has a justifiable rationale, generates supportable
conclusions, is repeatable.

Best: statistical experimental design methods[18, 16]. See [14, 19, 2]
for examples of their use in testing optimization and heuristic algorithms.
Not always an option when problem factors cannot be controlled by the
experimenter.

Helpful: results on standard benchmark problems and problems of prac-
tical interest.

We encourage greater rigor and the use of statistical design principles
wherever possible.

2.2 Measuring Performance

The measurement of performance is a critical issue when reporting compu-
tational results obtained through the use of a heuristic method. The liter-
ature contains numerous attempts to demonstrate the quality of heuristic
performance. Essentially, most researchers and practitioners are interested
in answering the following questions:

1. What is the best solution found?
2. How long does it take to determine the best solution?

3. How quickly does the algorithm find good solutions?



4. How robust is the method?

The first two questions can be directly answered. Readers may also be
interested in the total time that the heuristic is run as well as the setup time
needed to begin a run. The third question can be conveniently addressed by
a graph of performance as a function of time. The shape of this graph clearly
demonstrates the performance of a heuristic and is useful to practitioners as
well as researchers.

The question of robustness is more difficult to address. Clearly, a heuristic
that can only obtain an excellent solution for one instance of a problem
is not robust and arguably not very interesting. Generally, robustness is
based on the ability of a heuristic to perform well over a wide range of test
problems. Furthermore, heuristic strategies and parameters should either
remain constant over the set of test problems or should be set based on
individual test problem attributes. Robustness should be demonstrated prior
to fine-tuning a heuristic for a single problem instance.

Finally, authors should be encouraged to report negative results. For
example, if a heuristic performs well over a wide range of problems but fails
on a specific type, then the authors should report all of the results.

2.3 Test Problems

Clearly, the set of test problems used to evaluate a heuristic can affect per-
formance results. If possible, benchmark problems taken from the literature
should be used. This allows for a direct comparison with other heuristics. If
problems are generated by the developer, then the generation process should
be clearly described and the newly generated problems should be archived
so that other researchers can use them in the future. Generated problem
instances should be representative of problems likely to found in the field.
Problem instances generated from real data are preferred and should be in-
cluded in the analysis whenever possible. In general, the more test problems
evaluated the better the analysis. Large numbers of results are best displayed
graphically.

Heuristics typically contain multiple strategies and multiple parameters
that control these strategies. Readers are not only interested in the final
results but are also interested in the relative contributions of the various
strategies. Computational testing should be included to clearly demonstrate



the contribution of each strategy within a complex heuristic. This approach
identifies innovative ideas that may be used in other problems. Actual pa-
rameter settings should be clearly defined. Furthermore, the process used
to determine these settings should also be described. Parameter sensitivity
analyses are useful in evaluating the robustness of a heuristic.

2.4 Comparing Heuristic Methods

It is desirable and often necessary to compare a heuristic to other approaches.
If well-known or published techniques exist, then the new heuristic should
be compared against them. It is preferable to obtain the competing method
software and make comparisons on the same platform. If other methods
do not exist, then a general method, such as one based linear or integer
programming, should be developed for comparisons. The comparisons should
be made based on the analyses described above. The performance / time
graph is an excellent way to compare different heuristics. Use statistics See
upcoming JOC article by McGeogh “Statistics in the Analysis of Algorithms”

3 Reporting on Computational Experiments
with Heuristic Methods

Heuristics or approximate algorithms fall into two categories, finite algo-
rithms that produce a feasible (usually suboptimal) solution to a problem
in number of iterations that is proportionate to the size of the problem and
unbounded algorithms that essentially search for better and better solutions
until that reach some arbitrary stopping point. Greedy algorithms that stop
when these are no further improvements possible are examples of the former,
and metaheuristics, such as simulated annealing, tabu search and genetic
algorithms, heuristics, which drive local search algorithms are examples of
the latter. The reporting requirements for these two categories of heuristics
differ in several ways. In particular, most metaheuristic techniques require
one or more parameters be set tune the heuristic and tell it when to stop.
With a finite heuristic, the search stops occurred or when no further improve-
ments can be made. In the material that follows, reporting guidelines will
be discussed for heuristic algorithms that fall in each of these categories.



3.1 What should be reported?

In an ideal world, competing algorithms would be coded by the same expert
programmer and run on the same test problems on the identical computer
configuration. The results of these runs in terms of time to solution and
quality of the solution produced on each problem instance would be directly
comparable for the two heuristics. Absent this ideal situation, the conscien-
tious researcher should do what is possible to help the reader understand the
results and enable that reader to do the comparisons.

Fundamental to this end is that all computational results be accompanied
with detail of the machine configuration on which the heuristic being tested
was run (e.g. brand, model, size of memory, CPU speed, and operating
system). In addition, the versions of relevant software such as compilers
and operating systems along with the settings used (e.g. optimize should
be reported. With this information in hand, the reader can hopefully draw
some conclusions regarding the speed of the algorithm being distributed. In
terms of problems solved, all problem instances in the open literature should
be treated and the results included, even if some of these are failure of the
heuristic on particular problems.

Besides the differentiation as to whether the heuristic procedure is a finite
or potentially infinite, there are three reasons why a new heuristic could be of
interest to the research community, it produces higher quality solutions (i.e.
solutions closer to the optimal solution) than its competitors, it produces
high quality solutions faster than its competitors, or it introduces a new and
innovative heuristic technique that is creative in its own right and may in
time lead to better and faster heuristics. Whichever the accomplishment
of the heuristic being reported, some computational experimentation will be
necessary to demonstrate that procedure is effective in doing what the author
claims it will do.

For all heuristics whether they be finite or infinite, or whether the author
is preparing a new way of looking at problems, a number of standard practices
should be adhered to in presenting the results.

3.2 Reproducibility

The heuristic should be described in sufficient detail so that it could be
replicated by another researcher and the author’s results.



3.3 Environment

The machine environment and versions of software used in computational
tests should be fully reported.

3.4 Test problems

For many standard problems (i.e. traveling salesman, bin packing, etc.) there
exists a bank of well-studied test problems that are available in the literature
and generally in electronic form (e.g. TSPLIG ref [ ] ). A new heuristic
should be tested on all available problems for which it was designed. Where
an author generates his/her own test problems, some effort should be given
to the description of how these problems were generated, and whether they
are generally representative of this class of problem. In some cases, problem
characteristics make problems easy to solve by just about any heuristic. For
this reason, where test problems have been generated to test a new heuristic,
some effort must be given to demonstrating that these test problems are
indeed representative of the class of problem for which the heuristic was
designed.

3.5 Quality of solutions

When testing an algorithm that finds an optimal solution to a given prob-
lem, the important issues are speed and rate of convergence to the optimal
solution. For heuristics, the additional consideration of how close the heuris-
tic solution comes to the optimal is generally the primary concern of the
researcher. Where possible, when optimal solutions to a problem exist, the
heuristic solutions obtained should be compared to those optimal solutions.
Generally the percent deviation from optimal is reported. When the opti-
mal solution is unavailable, the percent deviation from a tight lower (upper)
bound can be an effective measure of the quality of solution (see [13]). How-
ever, a gap of 20-30% between the bound and heuristic solution is probably
not tight enough to convey useful information.

For most standard problems heuristic results exist in the open litera-
ture and direct comparison of a heuristic algorithm’s performance to earlier
heuristic solutions should be made in much the same way as comparisons are
made to optimal solutions.



3.6 Timing

In most cases, absent the ideal environment described at the beginning of this
section, timing comparisons across platforms and programmers are imprecise
at best. Where the complexity of the heuristic can be analyzed in terms of
the order (0 [] ) operator, this should be done to give the reader an asymp-
totic estimate of the computational efficiency of the heuristic. However, for
practical purposes most researchers must in the end run their heuristics on
standard test problems and report the results in terms of quality of solution
and time to solution. In terms of the timings, no guidelines can hope to
anticipate all the possible forms that computational testing can take on, nor
should they presume to set impossible standards that must be adhered to
an all occasions. Rather, what follows are a set of standards that should
reasonably be followed in reporting the timing of heuristic testing.

1. Time to solution. The time it takes the heuristic to find and report
the solution the author is using in assessing the quality of the solution
produced by that heuristic. This timing should include all processing
involved (e.g. computation of distance matrices, etc.) along with an
preprocessing. Where the heuristic is composite (i.e. initial solution,
improved solution) the timing of each phase and the quality of solution
at the end of each phase should also be reported. For open ended
heuristics such as tabu search and simulated annealing, the time for
the total run, not just the time to the best solution, should also be
reported.

2. Empirical growth function. While the complexity operator can give
some idea of how solution times might grow with problem size, an
empirical estimate of this growth can be quite useful in assessing how
a heuristic will perform on large instances of a problem.

3. Benchmark testing. Where possible, some idea of the speed of the
machine and software being used should be given the reader, if only the
execution of some standard algorithm, such as a greedy heuristic, for
the problem at hand should help in assessing the power of the machine
used.



3.7 Experimental Design

When comparing the results of one heuristic to another, it is incumbent on
the author to demonstrate that his/her approach had made a contribution.
When the area of contribution is superior quality of solution or faster time
to solution, some thought should be given to a statistical comparison of
the author’s results to established results from the literature. Many non
parametric tests exist that can help in this endeavor (sign test, runs test,
Wilcoxon test).

Generally a paper with statistically significant results will be superior to
one where the reader is left to compare pairs of numbers from two columns
in a table. The empirical growth function mentioned above is an example of
a statistically fit curve that answers an empirical question for the reader.

3.8 Metaheuristics

Perhaps the most ambiguous arena for reporting on the performance of a
metaheuristic algorithm that employs some version of a local search heuris-
tic and drives beyond a single solution to explore many local optimal solu-
tions. Metaheuristics like simulated annealing and tabu search are examples
of heuristics that are essentially unbounded in the time they can use to solve
a problem. With these heuristics in particular, special care must be given
to reporting the results. In particular, most metaheuristics involve parame-
ters who values must be properly set for the heuristic to operate effectively.
Since the performance of most metaheuristics is tied to the parameter set-
tings, much of the research effort can be spent in determining the appropriate
values for these settings.

In reporting heuristic results for metaheuristics, the following points should
be addressed.

1. Values of any parameters employed in by the heuristic should be re-
ported. Where these values are problem dependents, the rules for es-
tablishing appropriate values should be specified. In general, if there
should be a reliable way of setting effective parameter values for a new
instance of the problem the heuristic is designed to solve.

2. The process employed to determine appropriate parameter settings
should be reported. This may involve some sampling and statistical
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analysis. Heuristics which perform well over a range of parameter val-
ues (robust) are generally superior to heuristics which require unique
settings for every problem instance.

3. Computational Results. Given that most metaheuristics can be run for
an indefinite period of time, special care must be given to reporting the
time to the best solution. In particular, the time required to produce
the reported solution and the total length of the run that produced
that solution should be reported. All reported solutions should be for
either a single set of parameter values or a specific rule should be used
to establish the parameter values for each instance. When the best
solution is reported from a set of runs with differing parameter values,
this should be clearly reported.

4. Robustness. Where parameter values are chosen, some measure of the
robustness of the heuristic performance to small changes in parameter
settings should be offered for the readers (see [21]).

5. Speed of convergence. While heuristics that produce superior solutions
are important, the speed with which these heuristics converge to a
solution close to that “best found” solution needs to be reported. A
graphical display of the quality of solution versus the time the algorithm
such as shown in [21] would be helpful in this respect. Additionally
some measure of how fast the heuristic converges to such a good solution
is needed.

As an example of such a measure, report the ratio of time to produce
a solution within 5 percent of the best found to the time to produce
that “best found” solution.

time to within 5% of best
time to best found

T0.05 =

4 Guidelines for Testing and Reporting on
Heuristics

We propose the following guidelines for researchers to use in reporting on
computational experiments with heuristic methods (based on [3]).
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e Thoroughly document the process.

— Describe the code being tested. This includes the heuristic or
algorithm on which it is based, including any modifications; the
overall design; the data structures used; and the available tuning
parameters.

— Document the computing environment for the experimentation.
Report all pertinent characteristics of the machine used, including
the manufacturer, model, types and number of processors, inter-
processor communication schemes, size of memories, and configu-
ration.

— Describe the testing environment and methodology. State how
times were measured. Report all values of tuning parameters.

e Use a well-considered experimental design

— Focus on the real time and cost required to solve difficult problems.

— Try to identify those factors that contribute to the results pre-
sented, and their effects. This includes the impacts of problem
characteristics and tuning-parameter strategy.

— Provide points of reference. If possible, use well-known codes and
problems to determine reference values, even if testing must be
performed on different machines.

— Perform final, reported testing on a dedicated or lightly loaded
system.

— Employ statistical experimental design techniques. This power-
ful, often neglected, methodology can highlight those factors that
contributed to the results, as well as those that did not.

e Provide a comprehensive report of the results

— Use the graph of solution quality versus computational effort ex-
pended (elapsed time, number of iterations, etc.) where possible
for describing your results.

— For summary measures, use measures of central tendency, vari-
ability, and cost-effectiveness.
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— Use graphics where possible and when informative.

— Provide as much detail as possible. If a journal will not publish
all pertinent data—perhaps due to space limitations—make them
available in a research report.

— Describe the sensitivity of the code to changes in the tuning strat-
egy.

— Be courageous and include your “failures,” since they provide in-
sight also.

These standards should be viewed as guidelines, not as a fixed set of norms
that cannot be violated.

5 Conclusions and Future Directions

e An alternative approach to algorithm analysis and testing is being in-
vestigated: algorithm modeling[17, 10].

e Larger, more accessible, computer-based archives of benchmark prob-
lems and test beds.

e Support for the experimentation process by the Journal of Heuristics.
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