A hybrid heuristic for minimizing weighted carry-over effects in round robin tournaments

Allison C. B. **Guedes** Celso C. **Ribeiro**

Summary

- Optimization problems in sports
- Preliminary definitions
- The carry-over effects minimization problem
 - Weighted version
- Approaches
 - Proposed algorithm
- Computational results
 - Weighted instances
- Conclusion and future research

- Multidisciplinary area
 - Combinatorial optimization
 - Operations Research
 - Schedulling theory
 - Graph theory
 - Integer programming
 - Constraint programming
 - Applied math
- Increasing importance in the last two decades
 - A sub-area on its own

- Sports competitions organization
 - Multiple decision makers
 - Organizers
 - Media
 - Public security authorities
 - Big investments
 - Athletes
 - Merchandising
 - Others

- Sports competitions organization
 - Different conflicting objectives
 - Maximize revenue
 - Some games in specific days
 - Transmission rights
 - Minimize costs (traveled distance)
 - Maximize athlete performance (time to rest)
 - Fairness (avoid playing many strong teams in a row)
 - Avoid conflicts (rival fans)

- Sports competitions organization
 - Different conflicting objectives
 - Maximize revenue
 - Some games in specific days
 - Transmission rights
 - Minimize costs (traveled distance)
 - Maximize athlete performance (time to rest)

Fairness (avoid playing many strong teams in a row)

Avoid conflicts (rival fans)

this work

- Single round robin tournaments
 - Competition involving n (even) teams
 - Each team plays against every other exactly once
 - Compact tournament: n 1 rounds
 - Each team plays exactly once per round.

• Single round robin tournaments – an example:

Teams

in round robin tournaments

- 1-factors and 1-factorizations
 - Mathematical objects defined over a graph G = (V, E)
 - This work: complete graph

- 1-factors and 1-factorizations
 - Mathematical objects defined over a graph G = (V, E)
 - This work: complete graph
 - Factor
 - Spanning sub-graph of G
 - 1-Factor
 - 1-regular factor

- 1-factors and 1-factorizations
 - Mathematical objects defined over a graph G = (V, E)
 - This work: complete graph
 - Factorization
 - Set of edge-disjoint factors G¹=(V,E¹), ..., G^p=(V,E^p), such that E¹∪...∪E^p = E
 - 1-Factorization
 - Factorization containing only 1-factors

- 1-factorizations and round robin tournaments
 - Vertex $\leftarrow \rightarrow$ Team
 - Edge $\leftarrow \rightarrow$ Game
 - -1-Factor $\leftarrow \rightarrow$ Round
 - -1-Factorization $\leftarrow \rightarrow$ Competition fixture

- Carry-over effects
 - Team B receives a carry-over effect (COE) due to team A if there is a team X that plays against A in round r and against B in round r+1

- Carry-over effects
 - Team B receives a carry-over effect (COE) due to team A if there is a team X that plays against A in round r and against B in round r+1

- Carry-over effects matrix
 - SRRT and carry-over effects matrix (COEM)

• RRT and carry-over effects matrix (COEM)

RRT

COE Matrix

COE matrix

$$COEV = \sum_{i=A}^{H} \sum_{j=A}^{H} (COEM_{ij})^{2}$$

i=A j=A

minimize!!!

- Example: Karate-Do competitions
- Groups playing round-robin tournaments
 - Pan-american Karate-Do championship
 - Brazilian classification for World Karate-Do championship

- Example: Karate-Do competitions
- Open-weight categories
 - Phisically strong contestants may fight weak ones.
 - A competitor could consecutively fight (phisically) weak opponents coming from matches against strong athletes.
 - This situation should be avoide

A hybrid heuris

- Problem statement:
 - Find a schedule with minimum COEV
 - RRT distributing the carry-over effects as evenly as possible among the teams.
- Best solution approaches to date in literature:
 - Random generation of permutations of 1-factors
 - Constraint programming
 - Combinatorial designs
 - Starters

- A weight is assigned to each carry-over effect.
- Generalization of the original problem, in which weights set to one.

- Motivation:
 - Original problem assumes equally strong teams and athletes
 - Real competitions: there are no stronger or weaker teams or athletes
 - Estimates of teams or athletes strengths are usually known beforehand.

$$COEV = \sum_{i=A}^{H} \sum_{j=A}^{H} w_{ij} \cdot (COEM_{ij})^{2}$$

• Mathematical formulation by integer programming

•
$$y_{kij} = \begin{cases} 1, \text{ if team i plays against team j in round k} \\ 0, \text{ otherwise} \end{cases}$$

Minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \cdot (z_{ij})^{2}$$

with
$$z_{ij} = \sum_{A \text{ hybrid Heuristic for minimizing weighted carry-over effects}}^{n-1} (y_{kli} * y_{(k+1)li}), \text{ for } i \neq j$$

• subject to:

(1)
$$y_{kij} = y_{kji}$$
, for $i, j, k = 1, ..., n$

(2)
$$\sum_{i=1}^{n} y_{kij} = 1$$
, for $j, k = 1, ..., n$

$$\begin{array}{c} A & B & C & D & E & F & G & H \\ \hline 1 & H & C & B & E & D & G & F & A \\ 2 & C & D & A & B & G & H & E & F \\ 3 & D & E & F & A & B & C & H & G \\ 4 & E & F & H & G & A & B & D & C \\ 5 & F & G & E & H & C & A & B & D \\ A & 6 & vursifie for minimizing weighted carry-over effects A & B \\ 7 & B & in rough robing tournaments H & D & C & E \end{array}$$

• subject to:

(3)
$$\sum_{k=1}^{n-1} y_{kij} = 1$$
 , for $i, j = 1, ..., n : i \neq j$

(4)
$$y_{kii} = 0$$
 , for $i, k = 1, ..., n$

• subject to:

(5)
$$y_{nij} = y_{1ij}$$
, for $i, j = 1, ..., n$

(6)
$$y_{kij} \in \{0,1\}$$
 , for $i,j,k=1,...,n$

Previous approaches

- Russel (1980)
 - First proposed method.
 - Provides optimal solutions when $n = 2^{p}$
- Anderson (1997)
 - Makes use of pre-enumerated starters.
 - Work not well-known.

Previous approaches

- Trick (2000), Henz et al. (2001)
 - Methods not tailored to the problem in hand
- Miyashiro and Matsui (2006)
 - Random generation os solutions
 - Constraint programming

Solution approach

- Multi-start + ILS heuristic
- Solutions represented by 1-factorizations
 - Canonical factorizations
 - Binary 1-factorizations
- Constructive algorithms
 - Rearragment of the 1-factors of a solution (TSP-like greedy algorithms)
 - Nearest neighbor
 - Arbitrary insertion

Solution approach

- Local search
 - Round Swap (RS)
 - Team Swap (TS)
 - Partial Round Swap (PRS)
 - Partial Team Swap (PTS)
- Pertubations
 - Ejection chain: Game Rotation (GR)

META'08, October 2008

Multi-start + ILS heuristic

- Multi-start phase: generation of 100 solutions
 - 50% based on canonical 1-factorizations
 - 50% based on binary 1-factorizations (whenever possible)
 - Constructive methods applied to the 1-factors of the 1-factorizations
 - Local search
- Best solution of the multi-start phase is the input for the ILS algorithm

Multi-start + ILS heuristic

For iteration = 1 to NUMBER OF ITERATIONS Do For try = 1 to 100 Do $S \leftarrow Initial_Solution();$ $S \leftarrow Local_Search(S);$ $S^* \leftarrow Update Best Solution(S, S^*);$ End-For: $S \leftarrow S^*$; While Not Stopping-Criterion Do $S' \leftarrow Pertubation(S);$ $S' \leftarrow Local Search(S');$ $S \leftarrow Acceptance Criterion(S, S');$ $S^* \leftarrow Update_Best_Solution(S, S^*);$ End-While;

End-For;

- Weighted instances
 - Random instances
 - Linear instances
 - Perturbed linear instances
 - Real-life inspired instances
- Link:

http://www.esportemax.org/index.php/Instances_fo
 r_the_Problem_of_Minimizing_the_Weighted_Carr
 y-Over_Effects_Value

- Weighted instances
 - Random instances
 - Weight w_{ii} is a random number in the interval [1..2*n*]
 - Linear instances
 - Each team is assigned a strength s(i) = i
 - Weight w_{ij} is set to |s(i) s(j)|
 - Perturbed linear instances
 - Each team is assigned a strength s(i) = i
 - Weight w_{ij} is set to |s(i) s(j) + a|

-a is a number in the interval [-n/2..n/2]

- Weighted instances
 - Real-life inspired instances
 - Based on the Brazillian soccer championship
 - Double round robin tournament
 - Editions of 2003, 2004, 2005, 2006, 2007, 2008
 - Each team is assigned a strength s(i)
 - s(i) = number of points obtained
 - Weight w_{ij} is set to |s(i) s(j)|
- Non-weighted instances
 - Unitary weights
 - Equivalent to original problem

• Real-life inspired instances

Instances	Average	Best	Average	Largest
	COEV	COEV	time (s)	time (s)
Inst24brazil2003	7730,4	7542,0	13897,8	15755,0
Inst24brazil2004	7179,6	7088,0	12992,8	13468,0
Inst22brazil2005	5228,8	5158,0	10599,0	13959,0
Inst20brazil2006	5310,0	5236,0	5705,4	6358,0
Inst20brazil2007	4876,0	4834,0	2715,8	3655,0
Inst20brazil2008	4045,6	3944,0	6805,6	8308,0

• Non-weighted instances

n	Average	Best	Average	Largest
	COEV	COEV	time (s)	time (s)
4	12,0	12,0	0,2	1,0
6	60,0	60,0	0,4	1,0
8	56,0	56,0	5,4	6,0
10	111,6	108,0	12,0	13,0
12	164,8	160,0	24,6	26,0
14	254,0	254,0	8,8	9,0
16	259,2	240,0	129,8	140,0
18	401,6	400,0	28,8	31,0
20	491,2	486,0	65,2	72,0

• Non-weighted instances

n	Bost	Proposed	
	Dest	Порозец	
	known COEV	method	
4	12	12	
6	60	60	
8	56	56	
10	108	108	
12	176	<u>160</u>	
14	234	254	
16	240	240	
18	340	400	
20	380	486	

Concluding remarks

- Minimizing carry-over effects in round robin tournaments
 - Weighted version
 - Mathematical formulation
 - ILS metaheuristic:
 - Reveals itself as a very appropriate approach for similar problems.
 - Benchmark instances:
 - Online

