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Wireless ad hoc networks

Definition

An ad hoc network consists of a collection of transceivers, in which
a packet may have to traverse multiple consecutive wireless links to
reach its final destination.

I Ad hoc networks can be represented by a set V of transceivers
(nodes) together with their locations or the distances between
them.
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Wireless ad hoc networks

I For each ordered pair (u, v) of transceivers, with u, v ∈ V , we are
given a non-negative arc weight e(u, v) = dεuv

I duv is the Euclidean distance between the transmitter u and
the receiver v

I ε is the loss exponent, typically equal to two.

Ad hoc network

e(u,v)

v

u
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Wireless ad hoc networks

I A transmission power pu is associated with each node u ∈ V .

Ad hoc network
Transmission power

e(u,v)

v

u
pu
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Wireless ad hoc networks

I A signal transmitted by the transceiver u can be received at node v
if and only if the transmission power of u is at least equal to
e(u, v), i.e. if pu ≥ e(u, v).

Ad hoc network

pu > e(u,v)

v

u
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Wireless ad hoc networks

I Wireless networks face a variety of constraints that do not
appear in wired networks.

I Power constraints:
I Nodes are battery powered: it is expensive and sometimes even

infeasible to recharge the device.
I Radios tend to be the major source of power dissipation.
I Instead of transmitting with maximum power, algorithms

adjust the transmission power of each node.

I Connectivity constraints:
I Fault-tolerance requirements, due to their critical application

domains and to the large number of failures.
I If there is only one path between a pair of nodes, failure of a

node or link between them will result in a disconnected graph.
I Topologies with multiple, disjoint paths between any pair of

nodes are often required.
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Problem statement

I Given the node set V and non-negative arc weights e(u, v) for
any u, v ∈ V :

Definition

The biconnected minimum power consumption problem consists of
finding an optimal assignment of transmission powers p : V → R+
to every node u ∈ V , such that the total power consumption∑

u∈V pu is minimized and the resulting transmission graph
G = (V ,E ), where E = {(u, v) : u ∈ V , v ∈ V , pu ≥ e(u, v)}, is
biconnected.

I This problem was proved to be NP-hard.
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System model

I Set V of transceivers, with |V | = n, each of them equipped
with an omnidirectional antenna which is responsible for
sending and receiving signals.

I Ad hoc network established by assigning a transmission power
pu to each transceiver u ∈ V .

I Each node can (possibly dynamically) adjust its transmitting
power, based on the distance to the receiving nodes and on
the background noise.
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System model

I Power requirement at node u for supporting transmissions
through a link from u to v :

e(u, v) ≥ dεuv .qv ,

I where:
I duv is the Euclidean distance between the transmitter u and

the receiver v ,
I ε is the loss exponent, and
I qv is the receiver’s power threshold for signal detection, usually

normalized to one.
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System model: symmetric input variant

I Power requirement for supporting transmissions between
nodes u and v are symmetric:

e(u, v) = e(v , u)

I Symmetric version widely accepted as reasonable:
I Holds for free-space environments with non-obstructed lines of

sight.
I Disregards reflections, scattering, and diffraction caused e.g.

by buildings and terrains.
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System model: asymmetric input variant

I There may exist pairs of transceivers u, v ∈ V such that

e(u, v) 6= e(v , u)

I Some situations:
I Batteries with different power levels.
I Heterogeneous nodes.
I Different levels of ambient noise in the regions containing the

two nodes.
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System model: unidirectional topology

I Communication from u to v enabled whenever pu ≥ e(u, v).

I Transmission graph G = (V ,E ) associated with a power
assignment p : V → R+:

E = {(u, v) : u ∈ V , v ∈ V , pu ≥ e(u, v)}

I All arcs established by the power settings are considered to
enforce the biconnectedness.
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System model: bidirectional topology

I Communication from u to v enabled whenever pu ≥ e(u, v)
and pv ≥ e(v , u).

I Restricted arc set considered to enforce the biconnectivity
constraints.

I Transmission graph G = (V ,B) associated with a power
assignment p : V → R+:

B = {(u, v) : u ∈ V , v ∈ V , pu ≥ e(u, v), pv ≥ e(v , u)} ⊆ E

I Edge [u, v ] is used as a communication link to enforce
biconnectedness if v is within the transmission range of u and
u is within the transmission range of v .
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System model: example with symmetric input

I Minimum biconnected unidirectional topology solution

I G (p) = (V ,E (p))

I Total power consumption: 44
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System model: example with symmetric input

I Minimum biconnected bidirectional topology solution

I G (p) = (V ,B(p))

I Total power consumption: 45
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System model: example with asymmetric input

I Minimum biconnected unidirectional topology solution

I G (p) = (V ,E (p))

I Total power consumption: 33
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System model: example with asymmetric input

I Minimum biconnected bidirectional topology solution

I G (p) = (V ,B(p))

I Total power consumption: 39
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Problem variants

I Four versions of the biconnected minimum power
consumption problem:

I Symmetric input with unidirectional topology
I Symmetric input with bidirectional topology
I Asymmetric input with unidirectional topology
I Asymmetric input with bidirectional topology
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Related work: symmetric input

Unidirectional topology
I Connected transmission graph

I Chen and Huang, 1989:
I NP-hardness
I 2-approximation algorithm

I Kirousis et al., 2000:
I NP-hardness in three-dimensional Euclidean space
I 2-approximation algorithm

I Biconnected transmission graph
I Calinescu and Wan, 2006:

I NP-hardness
I 4-approximation algorithm
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Related work: symmetric input

Bidirectional topology
I Connected transmission graph

I Calinescu etal., 2002:
I NP-completeness

I Althaus et al., 2006:
I (5/3 + ε)-approximation algorithm
I Branch-and-cut algorithm

I Biconnected transmission graph
I Lloyd et al., 2005:

I (2(2− 2/n)(2 + 1/n))-approximation algorithm
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Related work: asymmetric input

Unidirectional topology
I Connected transmission graph

I Krumke et al., 2003, Calinescu et al., 2003, Caragiannis et al.,
2006:

I O(log n)-approximation algorithm

Bidirectional topology
I Connected transmission graph

I Caragiannis et al., 2006:
I O(1.35 log n)-approximation algorithm

I Calinescu et al., 2003:
I O(log n)-approximation algorithm
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Integer programming formulation: variables

I Multicommodity network flow model (Magnanti and
Raghavan, 2005)

I C is a set of d|V |/2e commodities.
I For each commodity c ∈ C :

I o(c) is its origin
I d(c) is its destination

I For any node i ∈ V and any commodity c ∈ C :
I Dc(i) = −2 if i = o(c),
I Dc(i) = +2 if i = d(c),
I Dc(i) = 0 otherwise.

I For node i ∈ V and commodity c ∈ C , the binary variable f c
ij

represents the flow of commodity c through arc (i , j):
I f c

ij = 1, if arc (i , j) is used by commodity c for communication
from node i to j ,

I f c
ij = 0, otherwise.
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Integer programming formulation: variables

I Pi = [p1
i , . . . , p

φ(i)
i ] is a list of increasing power levels that can

be assigned to node i ∈ V , where:
I p1

i is the minimum power such that transmissions from i reach
at least one node in V \ {i}

I p`+1
i > p`i for ` = 1, . . . , φ(i)− 1

I p`i > 0 for ` = 1, . . . , φ(i)− 1
I p0

i = 0 for ease of representation

I T `
i 6= ∅ is the set of new nodes reachable from i if its power

level increases from p`−1
i to p`i , for ` = 1, . . . , φ(i).

30 / 56



Integer programming formulation: variables

2

3 3

8
5

a

b

c

d

e

f

I Pa = [2, 3, 5, 8]

I T 1
a = {b}, T 2

a = {c , d}, T 3
a = {e}, T 4

a = {f }
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Integer programming formulation: variables

I Nodes i ∈ V and power levels Pi = [p1
i , . . . , p

φ(i)
i ]

I Binary variables x`i determine the power level assigned to each
node i ∈ V :

I x`i = 1, if there is a node j ∈ T `
i such that link (i , j) is used for

communication from i to j ,
I x`i = 0, otherwise.

I p
¯̀(i)
i is the minimum power level such that transmissions from

i reach at least two nodes in V \ {i}.
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Integer programming formulation: model

min
∑
i∈V

φ(i)∑
`=1

(p`i − p`−1
i ) · x`i

subject to: ∑
j∈V

f c
ji −

∑
l∈V

f c
il = Dc(i), ∀c ∈ C ,∀i ∈ V

∑
j∈V

f c
ij ≤ 1, ∀c ∈ C ,∀i ∈ V : i 6= o(c), i 6= d(c)

x`i ≥ f c
ij , ∀i ∈ V ,∀c ∈ C ,∀j ∈ T `

i , ` = 1, . . . , φ(i)

x`+1
i ≤ x`i , ∀i ∈ V , ` = 1, . . . , φ(i)− 1

x`i = 1, ∀i ∈ V , ` = 1, . . . , ¯̀(i)

f c
ij ∈ {0, 1}, ∀i , j ∈ V ,∀c ∈ C

x`i ∈ {0, 1}, ∀i ∈ V , ` = 1, . . . , φ(i)
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Integer programming formulation: model

I Flow conservation equations:

∑
j∈V

f c
ji −

∑
l∈V

f c
il = Dc(i), ∀c ∈ C ,∀i ∈ V

I Node-disjointness:

∑
j∈V

f c
ij ≤ 1, ∀c ∈ C ,∀i ∈ V : i 6= o(c), i 6= d(c)

I x`i = 1 if there is a node j ∈ T `
i such that arc (i , j) is used for

communication from i to j by commodity c :

x`i ≥ f c
ij , ∀i ∈ V ,∀c ∈ C ,∀j ∈ T `

i , ` = 1, . . . , φ(i)
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Integer programming formulation: model

I x`+1
i = 0 if the previous level was not used:

x`+1
i ≤ x`i , ∀i ∈ V , ` = 1, . . . , φ(i)− 1

I Minimum power level ¯̀(i) reaches at least the two closest nodes:

x`i = 1, ∀i ∈ V , ` = 1, . . . , ¯̀(i)

I Integrality requirements:

f c
ij ∈ {0, 1}, ∀i , j ∈ V ,∀c ∈ C

x`i ∈ {0, 1}, ∀i ∈ V , ` = 1, . . . , φ(i)
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GRASP fundamentals

I A greedy randomized adaptive search procedure (GRASP) is a
multistart process.

I Each of its iterations consists of two phases:

1. Construction: a feasible solution is built
2. Local search (or improvement): a local optimum in the

neighborhood of the current solution is sought.

I Best overall solution is returned.

I GRASP heuristic for the asymmetric input with bidirectional
topology variant of the biconnected minimum power
consumption problem.
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GRASP fundamentals

Algorithm 1 Pseudo-code of a GRASP heuristic for minimization problems

Require: Max Iterations,Seed
Ensure: Best known solution x∗

1: f ∗ ←∞;
2: for iteration = 1, . . . ,Max Iterations do

3: x ← Greedy Randomized Construction(Seed);
4: x ← Local Search(x);
5: if cost(x) < f ∗ then
6: x∗ ← x ;
7: f ∗ ← cost(x);

8: return x∗;
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GRASP construction phase

I Randomized construction phase has two stages:

1. Builds a bidirectional connected graph H = (V ,E )
2. Extends E to produce a biconnected graph G = (V ,B)

I Greedy function that guides construction is based on the
wireless multicast advantage property: if pu is the current
power assigned to node u and there is a node v such that
e(u, v) > pu, then the additional power required to set up
communication from u to v is e(u, v)− pu.

Greedy function for any u, v ∈ V

g(u, v) = max{0, e(u, v)− pu}+ max{0, e(v , u)− pv}

I If g(u, v) = 0, bidirectional communication between u and v
is already set up.

39 / 56



GRASP construction phase: first stage

Algorithm 2 First stage of the randomized construction phase

Require: Node set V , initial node r ∈ V , parameter α ∈ [0, 1]
Ensure: Bidirectional connected graph H = (V ,E )

1: pu ← 0 for all u ∈ V ;
2: V ′ ← {r};
3: E ← ∅;
4: while V \ V ′ 6= ∅ do
5: for all u ∈ V \ V ′ do
6: g(u)← minv∈V ′{g(u, v)};
7: g ← minu∈V\V ′{g(u)};
8: g ← maxu∈V\V ′{g(u)};
9: Randomly select node u ∈ V \V ′ such that g(u) ≤ g +α(g −g);

10: V ′ ← V ′ ∪ {u};
11: E ← E ∪ {[u, v ]}, with v ∈ V ′ : g(u) = g(u, v);
12: Update the power assigments pu and pv ;
13: return H = (V ,E );
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GRASP construction phase: second stage

I Biconnected component of a graph: maximal subset of nodes
such that there are two disjoint paths between any two of
them.

I Articulation point: node belonging to more than one of its
biconnected components.

I Tarjan’s algorithm is used to compute the biconnected
components and articulation points of the current solution.

I Pairs of biconnected components are linked one by one.

I Second stage stops when a biconnected graph is built.
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GRASP construction phase: second stage

Algorithm 3 Second stage of the randomized construction phase

Require: Bidirectional connected graph H = (V ,E ), parameter α ∈ [0, 1]
Ensure: Biconnected graph G = (V ,B) with E ⊆ B

1: B ← E ;
2: pu ← maxv∈V {g(u, v) : [u, v ] ∈ B}, for all u ∈ V ;
3: while G is not biconnected do
4: for all u ∈ V that is not an articulation point do
5: g ′(u) = minv∈V {g(u, v) : u 6= v , v is not an articulation

point and does not belong to the same component as u};
6: g ′ = minu∈V {g ′(u) : u is not an articulation point};
7: g ′ = maxu∈V {g ′(u) : u is not an articulation point};
8: Randomly select node u ∈ V that is not an articulation point such

that g ′(u) ≤ g ′ + α(g ′ − g ′);
9: B ← B ∪ {[u, v ]}, with v ∈ V : g ′(u) = g(u, v);

10: Update the power assigments pu and pv ;
11: return G = (V ,B);

42 / 56



GRASP local search phase: operations

I Pi = [p1
i , . . . , p

φ(i)
i ] is a list of increasing power levels that can

be assigned to node i ∈ V .
I Basic operations applied to each node i ∈ V operating at the

power level p`i :

I Decrease its current power assignment from p`i to p`
′

i , where `′

is the highest level which supports a bidirectional edge: total
power is decreased by p`i − p`

′

i .
I Increase its current power assignment from p`i to p`+1

i : total
power is increased by at least p`+1

i − p`i .
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GRASP local search phase: moves

I Local search explores the neighborhood of the current
solution, attempting to reduce the total power consumption.

I A move starts by decreasing the power assignment of one
single node, followed by the increase of the power assignments
of as many nodes as needed to restablish biconnectivity.

I First improving move is accepted and the search moves to the
new solution.

I Procedure stops when no further improving moves exist.
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GRASP local search phase: acceleration

I Number of power increase operations investigated may be
reduced to speedup the local search.

I Whenever biconnectivity is destroyed by a power decrease, the
biconnected components are computed and two acceleration
schemes are implemented:

1. Reduced scheme: restricts power increases to pair of nodes
belonging to the same biconnected components of the pair of
nodes affected by the previous decrease.

2. Extended scheme: considers power increases involving any pair
of nodes from different biconnected components.

I Local search procedure first makes use of the reduced scheme
until no further improving moves can be found, then continues
using the extended scheme.
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Experimental settings

I Computational experiments carried out on two classes of
randomly generated asymmetric test problems with 10 to 800
nodes:

I Euclidean instances:
I Nodes uniformly distributed in the unit square grid.
I Weights e(u, v) = F · d2

u,v , with F ∈ [0.8, 1.2] being a random
perturbation generated from a uniform distribution.

I Random instances:
I Weights e(u, v) randomly generated in (0, 1].

I 15 test instances for each problem size and class.

I Intel Core 2 Quad machine with a 2.40 GHz clock and 8
Gbytes of RAM memory running under GNU/Linux 2.6.24.

I CPLEX 11.0 was was the integer programming solver.

I Heuristic implemented in C++ using GNU g++ version 4.1
as the compiler, with optimization parameter -O2.
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Optimal solutions

Asymmetric
Instance unidirectional bidirectional

|V | solved time (s) gap (%) solved time (s) gap (%)
10 15 0.89 11.06 15 0.47 7.51
15 15 16.20 13.75 15 7.55 10.34
20 15 177.59 13.40 15 66.61 8.10
25 15 1563.94 11.96 15 298.53 7.71

E
u

cl
id

ea
n

30 5 2837.09 7.47 12 1351.98 4.56
50 – – – – – –
10 15 0.07 1.19 15 0.48 5.98
15 15 0.16 0.00 15 6.99 10.83
20 15 0.87 0.01 15 117.36 10.87
25 15 2.36 0.01 15 872.44 13.48

R
a

n
d

o
m

30 15 5.69 0.02 1 5559.86 13.55
50 15 126.89 0.02 0 – –

Symmetric
Instance unidirectional bidirectional

|V | solved time (s) gap (%) solved time (s) gap (%)
10 15 0.78 10.90 15 0.48 7.25
15 15 16.03 14.23 15 7.24 10.14
20 15 179.02 12.80 15 47.26 8.27
25 15 1600.28 12.15 15 509.83 7.70

E
u

cl
id

ea
n

30 6 4875.97 11.51 12 1373.72 4.20
50 – – – – – –
10 15 0.11 1.56 15 0.15 0.82
15 15 0.74 0.40 15 0.23 0.22
20 15 6.78 0.29 15 2.69 0.28
25 15 20.43 0.32 15 10.95 0.12

R
a

n
d

o
m

30 15 102.12 0.22 15 73.71 0.24
50 12 2827.35 0.07 11 562.42 0.06
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Optimal solutions

I Minimum power consumption problem is hard to solve.

I Computation times increase very fast with |V |.
I CPLEX could not solve to optimality in three hours of

computation even moderately-sized networks with 30 nodes.

I Large duality gaps.
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GRASP results

I GRASP heuristic found the optimal solutions for all problems
with up to 25 nodes.

I Computation times to find the known optimal solutions with
|V | = 25:

I Euclidean instances solved in less than one second.
I Random instances were harder and took approximately 20

seconds on average.

I Average objective values over five runs (one instance) as the
running time limit increases from five to 3125 seconds:

|V | = 200
Instances 5 s 25 s 125 s 625 s 3125 s
Euclidean 1.74172 1.73922 1.73778 1.73714 1.73640
Random 17.72963 17.64030 17.58805 17.50900 17.46120

|V | = 400
Instances 5 s 25 s 125 s 625 s 3125 s
Euclidean 2.82601 2.82391 2.82177 2.82009 2.81920
Random 25.08528 24.91952 24.83406 24.74227 24.68739
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GRASP results

I Continuous improvement in solution quality along the
computation time for one Euclidean instance with |V | = 400:
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GRASP results: comparison (power consumption)

I GRASP vs. MST-Augmentation heuristic of Calinescu and
Wan, 2006:

I GRASP: one hour of computation time for each instance.
I MST-Augmentation is faster: a few seconds for |V | = 800.
I GRASP finds much better solutions.

MST-Augmentation GRASP
Instances power total power total gain

|V | (max.) power (max.) power (%)
25 0.18784 2.18646 0.15052 1.35089 38.22
50 0.11935 2.04944 0.07861 1.27900 37.59

100 0.06809 2.15343 0.04066 1.32409 38.51
200 0.03857 2.84844 0.02249 1.76355 38.09

E
u

cl
id

ea
n

400 0.03199 4.72278 0.01394 2.82529 40.18
800 0.02999 8.44331 0.01057 4.99252 40.87

25 0.92757 12.84646 0.55168 5.46654 57.45
50 0.95827 24.20324 0.48981 8.35444 65.48

100 0.97475 44.97218 0.41067 11.86145 73.62
200 0.99056 85.08285 0.31773 17.14185 79.85

R
a

n
d

o
m

400 0.99039 158.26410 0.23502 25.00776 84.20
800 0.99648 293.63736 0.18951 37.24512 87.32

52 / 56



GRASP results: comparison (graph structure)

MST-Augmentation GRASP
Instances arcs edges degree arcs edges degree

|V | (avg.) (avg.) (avg.) (avg.) (avg.) (avg.)
25 130.00 54.73 4.37 81.60 32.80 2.62
50 275.73 111.60 4.46 168.33 65.66 2.62

100 608.73 239.20 4.78 327.66 130.13 2.60
200 1481.66 556.53 5.56 681.00 254.73 2.54

E
u

cl
id

ea
n

400 4502.13 1524.40 7.62 1538.20 507.93 2.53
800 14707.06 4530.40 11.32 3705.60 1033.06 2.58

25 329.33 100.60 8.04 149.93 31.26 2.50
50 1224.93 332.13 13.28 432.80 61.40 2.45

100 4509.73 1083.60 21.67 1197.80 131.20 2.62
200 16972.53 3748.93 37.48 3385.40 264.53 2.64

R
a

n
d

o
m

400 63143.00 12738.66 63.69 9583.46 532.73 2.66
800 233383.66 43080.53 107.70 27377.60 1077.20 2.69

I GRASP solutions have fewer arcs/edges and smaller power
assignments (useful to mitigate interference).

I Average node degrees show that GRASP solutions are very
close to the theoretical lower bounds.

53 / 56



Contents

1 Wireless ad hoc networks
Definition
Constraints

2 Problem statement

3 System model and related work
Variants

4 Integer programming formulation
Variables
Model

5 GRASP heuristic
Construction phase
Local search phase

6 Numerical results
Experimental settings
Optimal solutions
GRASP approximate solutions

7 Concluding remarks
54 / 56



Concluding remarks

I Integer programming formulation for the bidirectional
topology variant of the biconnected minimum power
consumption problem.

I Formulation can be easily extended to problems with other
connectivity requirements.

I Formulation applied to four variants of the problem:
I Symmetric or asymmetric input graphs
I Unidirectional or bidirectional solutions

I State-of-the-art integer programming solver could not solve
large instances to optimality.
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Concluding remarks

I GRASP heuristic proposed to find good approximate solutions
for real-size problems.

I Heuristic applied to large instances of the asymmetric input
with bidirectional topology variant.

I Experimental results for large networks with up to 800 nodes
showed that:

I GRASP heuristic is relatively fast.
I GRASP heuristic finds effective solutions which significantly

improved those obtained by a literature heuristic.
I Solutions obtained by the GRASP heuristic are very close to

the optimal solutions.
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