New Heuristics and Integer Programming Formulations for Scheduling Divisible Load Tasks

Elbio R. Abib (Microsoft, USA) Celso C. Ribeiro (UFF, Brazil)

IEEE CISched 2009, Nashville

Agenda

- Divisible load model
 - □ System model and problem formulation
 - Single- and multi-installment scheduling
- Single-installments: mixed integer programming
- Linear-time algorithm for a given activation order
- Fast constructive heuristic with feedback
- Computational experiments
- Multiple-installments: mixed integer programming

Divisible load model

Divisible load model

- Load may be split continuously into arbitrarily many small chunks
- No precedence constraints

System model and problem formulation

- Interconnection topology: star network
 - Dedicated grid
- Model: one master n workers

Master owns the total load W

- No communication/computation overlap in any processor
- No communication overlap through the master

System model and problem formulation

Single-installment scheduling

- \Box Each processor receives portion α_i of total load
- □ Master takes $g_i + G_i \alpha_i$ time units to send the data to processor P_i
- \Box Processor P_i takes $w_i \alpha_i$ time units to process data

Single-installment scheduling

	Optimal scheduling	makespan
P6		
P1		
P8		
P7		
P9		
P5		
P3		
P10		72
P4		77773
P2		

makespan

Non-optimal scheduling

Graphical	schedule Grid Schedule Trace File
PЗ	
P9	
P10	
P4	
P8	
P2	
ж	
м	
м	
м	

Multi-installment scheduling

Related work

- Divisible load model introduced by Cheng and Robertazzi (1988)
- Effect of latency in communication studied by Blazewicz and Drozdowski (1997)
- Beaumont et al. (2005): non-linear integer programming formulation for single-installment systems with latencies
- Linear integer programming formulations for single- and multi-installment systems with latencies not available

Single-installment mixed integer programming formulation

Single-installment scheduling

- Problem consists of determining
 the processors to be used (and their number),
 their activation order,
 and their loads,
- so as to minimize the makespan.

 x_{ij} =1, if processor P_i is the j-th to be activated and to receive data x_{ij} =0, otherwise

 α_{ij} >0, is the amount of data sent to P_i if it is the j-th to be activated α_{ij} =0, otherwise

$T^* = \min T$ \frown makespa	an (1)
subject to: $\sum_{i=1}^{n} x_{ij} \le 1$	$j = 1, \dots, n$ (2)
$\sum_{j=1}^{n} x_{ij} \le 1$	$i = 1, \dots, n$ (3)
$\sum_{i=1}^{n} x_{ij} \ge \sum_{i=1}^{n} x_{i,j+1}$	$j = 1, \dots, n-1$ (4)
$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} = W$ $\alpha_{ij} \leq W x_{ij}$	$ (5) i, j = 1, \dots, n (6) $
$ \begin{aligned} t_1 &= 0 \\ t_j &\ge t_{j-1} + \sum_{i=1}^n \left(g_i x_{i,j-1} + G_i \alpha_{i,j-1} \right) \end{aligned} $	(7)
$T_{i} = t_{i} + \sum_{i=1}^{n} (g_{i}x_{ij} + (G_{i} + w_{i})\alpha_{ij}) = T$	(8) $j = 1, \dots, n$
$x_{ij} \in \{0,1\}$	(9) $i, j = 1, \dots, n$ (10)
$\alpha_{ij} \ge 0$	$i, j = 1, \dots, n.$ (11)

 x_{ij} =1, if processor P_i is the j-th to be activated and to receive data x_{ij} =0, otherwise

 α_{ij} >0, is the amount of data sent to P_i if it is the j-th to be activated α_{ij} =0, otherwise

$T^* = \min T$		(1)
subject to:		1
$\sum_{i=1}^{n} x_{ij} \le 1$	At most one processor can	$j = 1, \dots, n$ (2)
$\sum_{j=1}^{n} x_{ij} \le 1$	be the j-th to be activated	$i = 1, \dots, n \tag{3}$
$\sum_{i=1}^{n} x_{ij} \ge \sum_{i=1}^{n} x_{ij}$	i,j+1	$j = 1, \dots, n - 1$ (4)
$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} = V$	V	(1)
$\Delta_{ij} \leq W x_{ij}$	$i, j = 1, \ldots, n$	
		(6)
$t_1 = 0$		(7)
$t_j \ge t_{j-1} + \sum_{i=1}^n \left(g\right)$	$j = 2, \dots, n$ (8)	
$t_j + \sum_{i=1}^n \left(g_i x_{ij} + (g_i x_{ij}) \right) $	$j = 1, \dots, n \tag{9}$	
$x_{ij} \in \{0,1\}$	$i, j = 1, \dots, n$ (10)	
$\alpha_{ij} \ge 0$	$i, j = 1, \dots, n.$ (11)	
		()

 x_{ij} =1, if processor P_i is the j-th to be activated and to receive data x_{ij} =0, otherwise

 α_{ij} >0, is the amount of data sent to P_i if it is the j-th to be activated α_{ij} =0, otherwise

$T^* = \min T$		(1)
subject to:	[
$\sum_{i=1}^{n} x_{ij} \le 1$	A processor may in at most one po	
$\sum_{j=1}^{n} x_{ij} \le 1$		$i = 1, \dots, n \tag{3}$
$\sum_{i=1}^{n} x_{ij} \ge \sum_{i=1}^{n} x_{ij}$	i,j+1	$j = 1, \dots, n-1$ (4)
$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} = \mathbf{V}$	W	(5)
$\alpha_{ij} \le W x_{ij}$		$i, j = 1, \dots, n$ (6)
$t_1 = 0$		(7)
$t_j \ge t_{j-1} + \sum_{i=1}^n \left(g \right)$	$g_i x_{i,j-1} + G_i \alpha_{i,j-1})$	$j = 2, \dots, n \tag{8}$
$t_j + \sum_{i=1}^n \left(g_i x_{ij} + \right)$	$(G_i + w_i)\alpha_{ij}) = T$	$j = 1, \dots, n \tag{9}$
$x_{ij} \in \{0,1\}$		$i, j = 1, \dots, n$ (10)
$\alpha_{ij} \ge 0$		$i, j = 1, \dots, n.$ (11)

 x_{ij} =1, if processor P_i is the j-th to be activated and to receive data x_{ij} =0, otherwise

 α_{ij} >0, is the amount of data sent to P_i if it is the j-th to be activated α_{ij} =0, otherwise

$T^* = \min T$		(1)
subject to: $\sum_{i=1}^{n} x_{ij} \le 1$	A processor may to be activated on	
$\sum_{j=1}^{n} x_{ij} \le 1$	other j processors activated	already
$\sum_{i=1}^{n} x_{ij} \ge \sum_{i=1}^{n} x_{ij}$	$x_{i,j+1}$	$j = 1, \dots, n - 1$ (4)
$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} =$	W	(5)
$\alpha_{ij} \le W x_{ij}$	$i, j = 1, \dots, n$ (6)	
$t_1 = 0$		(7)
$t_j \ge t_{j-1} + \sum_{i=1}^n \left(\right)$	$j = 2, \dots, n$ (8)	
$t_j + \sum_{i=1}^n \left(g_i x_{ij} + \right)$	$j = 1, \dots, n$ (9)	
$x_{ij} \in \{0,1\}$	$i, j = 1, \dots, n$ (10)	
$\alpha_{ij} \ge 0$	$i, j = 1, \dots, n.$ (11)	

 x_{ij} =1, if processor P_i is the j-th to be activated and to receive data x_{ij} =0, otherwise

 α_{ij} >0, is the amount of data sent to P_i if it is the j-th to be activated α_{ij} =0, otherwise

$$T^{*} = \min T \qquad (1)$$
subject to:

$$\sum_{i=1}^{n} x_{ij} \leq 1 \qquad j = 1, \dots, n \qquad (2)$$

$$\sum_{j=1}^{n} x_{ij} \leq 1 \qquad i = 1, \dots, n \qquad (3)$$

$$\sum_{i=1}^{n} x_{ij} \geq \sum_{i=1}^{n} x_{i,j+1} \qquad j = 1, \dots, n - 1 \qquad (4)$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} = W \qquad (5)$$

$$Total \ load W \qquad has to be \qquad processed$$

$$t_{1} = 0 \qquad (5)$$

$$t_{j} \geq t_{j-1} + \sum_{i=1}^{n} (g_{i}x_{i,j-1} + G_{i}\alpha_{i,j-1}) \qquad j = 2, \dots, n \qquad (8)$$

$$t_{j} + \sum_{i=1}^{n} (g_{i}x_{ij} + (G_{i} + w_{i})\alpha_{ij}) = T \qquad j = 1, \dots, n \qquad (9)$$

$$x_{ij} \in \{0, 1\} \qquad i, j = 1, \dots, n \qquad (10)$$

$$\alpha_{ij} \geq 0 \qquad i, j = 1, \dots, n. \qquad (11)$$

 x_{ij} =1, if processor P_i is the j-th to be activated and to receive data x_{ij} =0, otherwise

 α_{ij} >0, is the amount of data sent to P_i if it is the j-th to be activated α_{ij} =0, otherwise

$T^* = \min T$ subject to:	(1)
$\sum_{i=1}^{n} x_{ij} \le 1$	$j = 1, \dots, n$ (2)
$\sum_{j=1}^{n} x_{ij} \le 1$	$i = 1, \dots, n \tag{3}$
$\sum_{i=1}^{n} x_{ij} \ge \sum_{i=1}^{n} x_{i,j+1}$	$j = 1, \dots, n - 1$ (4)
$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} = W$	(5)
$\alpha_{ij} \le W x_{ij} \blacktriangleleft$	$i, j = 1, \dots, n$ (6)
$t_1 = 0$	Processor i can
$t_j \ge t_{j-1} + \sum_{i=1}^n (g_i x_{i,j-1} + G_i \alpha_{i,j-1})$	only receive
$J = J = \underline{\square} \iota = I (J = J) J = J = J = J = J = J = J = J = J$	load as the j-th
$t_j + \sum_{i=1}^n (g_i x_{ij} + (G_i + w_i)\alpha_{ij}) = T$	if it is the j-th to be activated
$x_{ij} \in \{0,1\}$	$i, j = 1, \dots, n$ (10)
$\alpha_{ij} \ge 0$	$i, j = 1, \dots, n.$ (11)

 x_{ij} =1, if processor P_i is the j-th to be activated and to receive data x_{ij} =0, otherwise

 α_{ij} >0, is the amount of data sent to P_i if it is the j-th to be activated α_{ij} =0, otherwise

$$T^{*} = \min T \qquad (1)$$
subject to:

$$\sum_{i=1}^{n} x_{ij} \leq 1 \qquad j = 1, \dots, n \qquad (2)$$

$$\sum_{j=1}^{n} x_{ij} \leq 1 \qquad i = 1, \dots, n \qquad (3)$$

$$\sum_{i=1}^{n} x_{ij} \geq \sum_{i=1}^{n} x_{i,j+1} \qquad j = 1, \dots, n - 1 \qquad (4)$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} = W \qquad (5)$$

$$\alpha_{ij} \leq W x_{ij} \qquad First \text{ processor} \\ is activated at \\ time t_{1}=0 \qquad time t_{1}=0 \qquad (8)$$

$$t_{j} + \sum_{i=1}^{n} (g_{i}x_{i,j} + (G_{i} + w_{i})\alpha_{i,j}) = T \qquad j = 1, \dots, n \qquad (9)$$

$$x_{ij} \in \{0, 1\} \qquad i, j = 1, \dots, n \qquad (10)$$

$$\alpha_{ij} \geq 0 \qquad i, j = 1, \dots, n \qquad (11)$$

 x_{ii} =1, if processor P_i is the j-th to be activated and to receive data x_{ii}=0, otherwise

 α_{ii} >0, is the amount of data sent to P_i if it is the j-th to be activated α_{ii}=0, otherwise

t_i is the time in which the j-th processor to be activated starts receiving its data

= minimum Tsubject to: $\sum^{n} r \cdots < 1$

$$\sum_{i=1}^{x_{ij}} \sum_{j=1}^{x_{ij}}$$

 T^*

 x_{ij}

 α_{ij}

$$\sum_{j=1}^{n} x_{ij} \le 1$$

 $\sum_{i=1}^{n} x_{ij} \ge \sum_{i=1}^{n} x_{i,j+1}$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} = W$ $\alpha_{ij} \leq W x_{ij}$

(j-1)-th finishes $t_1 = 0$ $t_j \ge t_{j-1} + \sum_{i=1}^n (g_i x_{i,j-1} + G_i \alpha_{i,j-1}) \quad j = 2, \dots, n$

$$f_j + \sum_{i=1}^n (g_i x_{ij} + (G_i + w_i)\alpha_{ij}) = T \qquad j = 1, \dots, n$$
(9)

$$\begin{array}{ll} \in \{0,1\} & \qquad i,j=1,\ldots,n \\ & (10)\\ \geq 0 & \qquad i,j=1,\ldots,n. \end{array}$$

(1)

$$(2)$$
 $i = 1, \dots, n$

Communication

link is sequentially

used: j-th activated

receiving data after

processor starts

 $j=1,\ldots,n$

(3)

(8)

(11)

 x_{ij} =1, if processor P_i is the j-th to be activated and to receive data x_{ij} =0, otherwise

 α_{ij} >0, is the amount of data sent to P_i if it is the j-th to be activated α_{ij} =0, otherwise

$$T^* = \min T \qquad (1)$$
subject to:

$$\sum_{i=1}^{n} x_{ij} \leq 1 \qquad j = 1, \dots, n \qquad (2)$$

$$\sum_{j=1}^{n} x_{ij} \leq 1 \qquad i = 1, \dots, n \qquad (3)$$

$$\sum_{i=1}^{n} x_{ij} \geq \sum_{i=1}^{n} x_{i,j+1} \qquad j = 1, \dots, n - 1 \qquad (4)$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} = W \qquad (5)$$

$$\alpha_{ij} \leq W x_{ij} \qquad i, j = 1, \dots, n \qquad (6)$$

$$t_1 = 0 \qquad (7)$$

$$t_j \geq t_{j-1} + \sum_{i=1}^{n} (g_i x_{i,j-1} + G_i \alpha_{i,j-1}) \qquad j = 2, \dots, n \qquad (8)$$

$$t_j + \sum_{i=1}^{n} (g_i x_{ij} + (G_i + w_i) \alpha_{ij}) = T \qquad j = 1, \dots, n \qquad (9)$$

$$x_{ij} \in \{0, 1\} \qquad (9)$$

$$x_{ij} \geq 0 \qquad (1)$$

Blazewicz and Drozdowski (1997): if the activation order and the number of processors are known, the optimal loads are:

$$\alpha_k = \alpha_\ell \prod_{j=k+1}^\ell f_j + \sum_{j=k+1}^\ell \left(\frac{g_j}{w_{j-1}} \prod_{i=k+1}^{j-1} f_i\right), \quad k = 1, \dots, \ell-1$$
(14)

$$\alpha_{\ell} = \frac{W - \sum_{k=1}^{\ell-1} \sum_{j=k+1}^{\ell} \left(\frac{g_j}{w_{j-1}} \prod_{i=k+1}^{j-1} f_i\right)}{1 + \sum_{k=1}^{\ell-1} \prod_{j=k+1}^{\ell} f_j}$$
(15)
$$V(\ell) = \frac{g_{\ell}}{w_{\ell-1}} \sum_{k=1}^{\ell-1} \prod_{i=k+1}^{\ell-1} f_i + V(\ell-1).$$

• $F(\ell) = \sum_{k=1}^{\ell-1} \prod_{i=k+1}^{\ell-1} f_i$ may be recursively defined as

 $F(1) = 0, F(2) = 1, \text{ and } F(\ell) = 1 + F(\ell - 1)f_{\ell-1}$

$$V(\ell) = \frac{g_{\ell}}{w_{\ell-1}}F(\ell) + V(\ell-1)$$
 may be computed in time O(1)

Optimal solution has the maximum number l* of processors such that

$$V(\ell^*) \le W$$

Algorithm:

- \Box Compute F(k) for k=1,..., n in time O(n)
- \Box Compute V(k) for k=1,..., n in time O(n)
- □ Optimal number of processors is the largest number of processors k such that $V(k) \le W$
- Load assigned to each processor can be computed in time O(n) as described by Blazewicz and Drozdowski (1997)

Fast constructive heuristic with feedback

- Heuristic for scheduling divisible loads may be seen as any algorithm that generates a "good" activation order and computes the associated optimal loads.
- Constructive feedback heuristic makes use of the idea of equivalent processors
- Each solution is uniquely associated with:
 - \square activation order given by a vector π
 - 🗆 makespan T

Equivalent processor:

- □ Given a time period T, if a load $\alpha_i = (T-g_i) / (w_i+G_i)$ is sent to P_i then it remains busy with communication and processing for this full time period
- □ Equivalent to a processor P_i^{eq} with the same processing power, no communication latency, and throughput $1/G_i^{eq} = 1/[G_i + (g_i / \alpha_i)]$
- Optimal activation order for a system with no latencies: processors with higher communication throughput receive data first

Create activation order π with higher throughput processors first

UB = optimal makespan for activation order π

Repeat

BestOrder = π T^{*} = UB

Compute new order π

UB = optimum makespan for new activation order π Until UB \geq T^{*}

Create activation order π with higher throughput processors first

UB = optimal makespan for activation order π

Repeat

BestOrder = π

 $T^* = UB$

For j = 1, ..., n do

Compute equivalent processor P_i^{eq} for each P_i not in π[1], ..., π[j-1]
π[j] = processor whose equivalent has the highest throughput
Update remaining time UB by subtracting the time taken by that processor

UB = optimum makespan for activation order π

Until UB \geq T^{*}

- 120 grid configurations
 - □ Number of processors: 10, 20, 40, 80, and 160
 - \Box 24 configurations of w_i, G_i , and g_i
- Load W: 100, 200, 400, 800, 1600, and 3200
- CPLEX time limit 3600 seconds

CPLEX solved 490 out of 720 test instances

TABLE I

OPTIMAL SOLUTIONS AND RUNNING TIMES IN SECONDS

			<u>n</u> =	= <mark>1</mark> 0	n =	20	<u>n</u> =	= 40	n =	80	n =	160
w_i	g_i	G_i	opt.	time	opt.	time	opt.	time	opt.	time	opt.	time
low	low	low	18	0.25	18	0.81	18	43.81	5		1	: <u></u> :
low	low	high	18	0.05	18	0.08	18	0.36	18	1.37	18	4.94
low	high	low	18	0.08	18	0.20	18	0.46	18	2.78	18	9.27
low	high	high	18	0.14	18	0.25	18	0.50	18	1.20	18	3.57
high	low	low	18	14.64	0	_	0	_	0	<u> </u>	0	_
high	low	high	18	0.06	18	9.37	16	_	0	_	0	_
high	high	low	18	2.85	5	_	1	_	2	_	0	_
high	high	high	18	0.13	18	0.68	18	52.52	8	_	2	_

Feedback heuristic found optimal solutions for 398 out of the 490 instances for which CPLEX found the optimum TABLE II

PROVABLE OPTIMAL SOLUTIONS FOUND BY THE FEEDBACK HEURISTIC

			Processors (n)					
w_i	g_i	G_{i}	10	20	40	80	160	
low	low	low	11	10	4	1	0	
low	low	high	18	18	18	18	17	
low	high	low	13	17	17	11	13	
low	high	high	18	18	18	18	14	
high	low	low	18	_	_	_	-	
high	low	high	18	18	16	_	_	
high	high	low	16	1	0	1	_	
high	high	high	14	14	5	3	2	

3

Average deviation from optimal value smaller than 0.5% for most of the remaining 92 instances solved to optimality by CPLEX

Heuristic ran for 3ms on average and never for more than 32ms

Multiple-installment mixed integer programming formulation

Model 2 Multiple-installment mixed integer program $T^* = \min T$ (18)subject to: $\sum_{i=1}^{n} x_{kij} \leq 1$ $j=1,\ldots,n,$ $k = 1, \ldots, p$ (19) $\sum_{j=1}^{n} x_{kij} \le 1$ $i=1,\ldots,n,$ $k = 1, \dots, p$ (20) $\sum_{i=1}^{n} x_{kij} \geq \sum_{i=1}^{n} x_{ki,j+1}$ $i = 1, \ldots, n - 1$. $k = 1, \ldots, p$ (21) $\sum_{k=1}^{p} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{kij} = W$ (22) $\alpha_{kij} \leq W x_{kij}$ $i, j = 1, \ldots, n$ $k = 1, \ldots, p$ (23) $t_{11} = 0$ (24) $t_{kj} \ge t_{k,j-1} +$ $\sum_{i=1}^{n} (g_i x_{ki,i-1} + G_i \alpha_{ki,i-1})$ $j=2,\ldots,n,$ $k = 1, \dots, p$ (25)

In this case, model also determines the optimal number of installments.

$$t_{k,j} + \sum_{i=1}^{n} (g_i x_{kij} + G_i \alpha_{kij}) \geq t_{k-1,j} + \sum_{i=1}^{n} (g_i x_{k-1,ij} + (G_i + w_i) \alpha_{k-1,ij}) \quad j = 1, \dots, n, \\ k = , \dots, p \quad (26)$$

$$t_{k1} \geq t_{k-1,n} + \sum_{i=1}^{n} (g_i x_{k-1,in} + G_i \alpha_{k-1,in}) \quad k = 2, \dots, p \quad (27)$$

$$t_{pj} + \sum_{i=1}^{n} (g_i x_{pij} + (G_i + w_i) \alpha_{pij}) = T \quad j = 1, \dots, n \quad (28)$$

$$x_{kij} \in \{0, 1\} \quad i, j = 1, \dots, n, \\ k = 1, \dots, p \quad (29)$$

$$\alpha_{kij} \geq 0 \quad i, j = 1, \dots, n, \\ k = 1, \dots, p \quad (20)$$

$$(30)$$

Model 2 Multiple-installment mixed integer

 $T^* = \min T$

subject to:

 $t_{11} =$

$$\sum_{i=1}^{n} x_{kij} \le 1$$

$$\sum_{j=1}^{n} x_{kij} \le 1$$

 $\sum_{i=1}^{n} x_{kij} \geq \sum_{i=1}^{n} x_{ki,j+1}$

 $\sum_{k=1}^{p} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{kij} = W$ $\alpha_{kij} \leq W x_{kij}$

$$k = 1, \dots, p \quad (23)$$
(24)

 $j=1,\ldots,n,$

 $i=1,\ldots,n.$

 $k = 1, \dots, p$ (19)

 $k = 1, \dots, p$ (20)

 $j = 1, \ldots, n - 1$.

 $k = 1, \ldots, p$ (21)

 $i, j = 1, \ldots, n$

(22)

(24)

$$t_{kj} \ge t_{k,j-1} + \sum_{i=1}^{n} (g_i x_{ki,j-1} + G_i \alpha_{ki,j-1}) \qquad j = 2, \dots, n, \\ k = 1, \dots, p \quad (25)$$

Preliminary results show significant improvements in the makespans are possible, with respect to those obtained by single- and multiround heuristics.

$$t_{k,j} + \sum_{i=1}^{n} (g_i x_{kij} + G_i \alpha_{kij}) \geq t_{k-1,j} + \sum_{i=1}^{n} (g_i x_{k-1,ij} + (G_i + w_i) \alpha_{k-1,ij}) \quad j = 1, \dots, n, k = , \dots, p \quad (26)$$

$$t_{k1} \geq t_{k-1,n} + \sum_{i=1}^{n} (g_i x_{k-1,in} + G_i \alpha_{k-1,in}) \quad k = 2, \dots, p \quad (27)$$

$$t_{pj} + \sum_{i=1}^{n} (g_i x_{pij} + (G_i + w_i) \alpha_{pij}) = T \quad j = 1, \dots, n \quad (28)$$

$$x_{kij} \in \{0, 1\} \quad i, j = 1, \dots, n, k = 1, \dots, p \quad (29)$$

$$\alpha_{kij} \geq 0 \quad i, j = 1, \dots, n, k = 1, \dots, p \quad (30)$$

Concluding remarks

- New mixed integer programming formulations for single- and multi-round schedulings.
- Linear-time algorithm for the special case in which the processor activation order is known.
- Fast and effective greedy-with-feedback heuristic.
- Randomized multistart version of feedback heuristic with local search.
- Extension to multi-round schedulings.