
1

New Heuristics and Integer
Programming Formulations for
Scheduling Divisible Load
Tasks

Elbio R. Abib (Microsoft, USA)
Celso C. Ribeiro (UFF, Brazil)

IEEE CISched 2009, Nashville

2

Agenda
Divisible load model

System model and problem formulation
Single- and multi-installment scheduling

Single-installments: mixed integer
programming
Linear-time algorithm for a given activation
order
Fast constructive heuristic with feedback
Computational experiments
Multiple-installments: mixed integer
programming

Divisible load model

4

Divisible load model
Load may be split continuously into arbitrarily
many small chunks
No precedence constraints

Interconnection topology: star network
Dedicated grid

Model: one master - n workers
Master owns the total load W

No communication/computation overlap in
any processor

5

System model and problem
formulation

No communication
overlap through the
master

6

System model and problem
formulation

Single-installment scheduling
Each processor receives portion αi of total load
Master takes gi + Gi αi time units to send the data to
processor Pi

Processor Pi takes wi αi time units to process data
Fixed latency gi

Variable communication
time Gi αi

Variable computation
time wi αi

7

Single-installment scheduling
makespanOptimal scheduling

makespan
Non-optimal scheduling

8

Multi-installment scheduling

New period New period

Communication/computation
concurrency

Related work
Divisible load model introduced by Cheng and
Robertazzi (1988)
Effect of latency in communication studied by
Blazewicz and Drozdowski (1997)
Beaumont et al. (2005): non-linear integer
programming formulation for single-installment
systems with latencies
Linear integer programming formulations for
single- and multi-installment systems with
latencies not available

9

Single-installment mixed integer
programming formulation

Problem consists of determining
the processors to be used (and their number),
their activation order,
and their loads,

... so as to minimize the makespan.

11

Single-installment scheduling

12

Formulation
xij=1, if processor Pi is
the j-th to be activated
and to receive data
xij=0, otherwise

αij>0, is the amount of
data sent to Pi if it is
the j-th to be activated
α ij=0, otherwise

tj is the time in which
the j-th processor to
be activated starts
receiving its data

makespan

13

Formulation
xij=1, if processor Pi is
the j-th to be activated
and to receive data
xij=0, otherwise

αij>0, is the amount of
data sent to Pi if it is
the j-th to be activated
α ij=0, otherwise

tj is the time in which
the j-th processor to
be activated starts
receiving its data

At most one
processor can
be the j-th to be
activated

14

Formulation
xij=1, if processor Pi is
the j-th to be activated
and to receive data
xij=0, otherwise

αij>0, is the amount of
data sent to Pi if it is
the j-th to be activated
α ij=0, otherwise

tj is the time in which
the j-th processor to
be activated starts
receiving its data

A processor may be activated
in at most one position

15

Formulation
xij=1, if processor Pi is
the j-th to be activated
and to receive data
xij=0, otherwise

αij>0, is the amount of
data sent to Pi if it is
the j-th to be activated
α ij=0, otherwise

tj is the time in which
the j-th processor to
be activated starts
receiving its data

A processor may be the (j+1)-th
to be activated only if there are
other j processors already
activated

16

Formulation
xij=1, if processor Pi is
the j-th to be activated
and to receive data
xij=0, otherwise

αij>0, is the amount of
data sent to Pi if it is
the j-th to be activated
α ij=0, otherwise

tj is the time in which
the j-th processor to
be activated starts
receiving its data

Total load W
has to be
processed

17

Formulation
xij=1, if processor Pi is
the j-th to be activated
and to receive data
xij=0, otherwise

αij>0, is the amount of
data sent to Pi if it is
the j-th to be activated
α ij=0, otherwise

tj is the time in which
the j-th processor to
be activated starts
receiving its data

Processor i can
only receive
load as the j-th
if it is the j-th to
be activated

18

Formulation
xij=1, if processor Pi is
the j-th to be activated
and to receive data
xij=0, otherwise

αij>0, is the amount of
data sent to Pi if it is
the j-th to be activated
α ij=0, otherwise

tj is the time in which
the j-th processor to
be activated starts
receiving its data

First processor
is activated at
time t1=0

19

Formulation
xij=1, if processor Pi is
the j-th to be activated
and to receive data
xij=0, otherwise

αij>0, is the amount of
data sent to Pi if it is
the j-th to be activated
α ij=0, otherwise

tj is the time in which
the j-th processor to
be activated starts
receiving its data

Communication
link is sequentially
used: j-th activated
processor starts
receiving data after
(j-1)-th finishes

20

Formulation
xij=1, if processor Pi is
the j-th to be activated
and to receive data
xij=0, otherwise

αij>0, is the amount of
data sent to Pi if it is
the j-th to be activated
α ij=0, otherwise

tj is the time in which
the j-th processor to
be activated starts
receiving its data

All processors
finish at the same
time T

Linear-time algorithm for
a given activation order

22

Linear-time algorithm for a given
activation order

Blazewicz and Drozdowski (1997): if the
activation order and the number of processors
are known, the optimal loads are:

23

Linear-time algorithm for a given
activation order

may be recursively defined as

may be computed in
time O(1)

Optimal solution has the maximum number of
processors such that

Algorithm:
Compute F(k) for k=1,…, n in time O(n)
Compute V(k) for k=1,…, n in time O(n)
Optimal number of processors is the largest number
of processors k such that V(k) ≤ W
Load assigned to each processor can be computed
in time O(n) as described by Blazewicz and
Drozdowski (1997)

24

Linear-time algorithm for a given
activation order

Fast constructive heuristic
with feedback

Constructive feedback heuristic
Heuristic for scheduling divisible loads may be
seen as any algorithm that generates a “good”
activation order and computes the associated
optimal loads.
Constructive feedback heuristic makes use of
the idea of equivalent processors
Each solution is uniquely associated with:

activation order given by a vector π
makespan T

Constructive feedback heuristic
Equivalent processor:

Given a time period T, if a load αi = (T-gi) / (wi+Gi) is
sent to Pi then it remains busy with communication
and processing for this full time period

Equivalent to a processor Pi
eq with the same

processing power, no communication latency, and
throughput 1/Gi

eq =1/[Gi + (gi / αi)]

Optimal activation order for a system with no
latencies: processors with higher communication
throughput receive data first

Create activation order π with higher throughput processors first

UB = optimal makespan for activation order π
Repeat

BestOrder = π
T* = UB

Compute new order π

UB = optimum makespan for new activation order π
Until UB ≥ T*

Constructive feedback heuristic

Create activation order π with higher throughput processors first

UB = optimal makespan for activation order π
Repeat

BestOrder = π
T* = UB

For j = 1, ..., n do

Compute equivalent processor Pi
eq for each Pi not in π[1], ..., π[j-1]

π[j] = processor whose equivalent has the highest throughput
Update remaining time UB by subtracting the time taken by that

processor

UB = optimum makespan for activation order π
Until UB ≥ T*

Constructive feedback heuristic

Computational experiments

31

Computational experiments

120 grid configurations
Number of processors: 10, 20, 40, 80, and 160

24 configurations of and

Load W: 100, 200, 400, 800, 1600, and 3200

CPLEX time limit 3600 seconds

32

Computational experiments
CPLEX solved 490 out of 720 test instances

33

Computational experiments
Feedback heuristic found optimal solutions for 398
out of the 490 instances for which CPLEX found
the optimum

34

Computational experiments
Average deviation from optimal value smaller than
0.5% for most of the remaining 92 instances solved
to optimality by CPLEX

Heuristic ran
for 3ms on
average and
never for more
than 32ms

Multiple-installment mixed
integer programming formulation

Introduction

36

Formulation In this case, model also
determines the optimal
number of installments.

37

FormulationPreliminary results show significant
improvements in the makespans
are possible, with respect to those
obtained by single- and multi-
round heuristics.

Concluding remarks

New mixed integer programming formulations for
single- and multi-round schedulings.
Linear-time algorithm for the special case in which
the processor activation order is known.
Fast and effective greedy-with-feedback heuristic.
Randomized multistart version of feedback
heuristic with local search.
Extension to multi-round schedulings.

	New Heuristics and Integer Programming Formulations for�Scheduling Divisible Load Tasks
	Agenda
	Divisible load model
	Divisible load model
	System model and problem formulation
	System model and problem formulation
	Single-installment scheduling
	Multi-installment scheduling
	Related work
	Single-installment mixed integer programming formulation
	Single-installment scheduling
	Formulation
	Formulation
	Formulation
	Formulation
	Formulation
	Formulation
	Formulation
	Formulation
	Formulation
	Linear-time algorithm for �a given activation order
	Linear-time algorithm for a given activation order
	Linear-time algorithm for a given activation order
	Linear-time algorithm for a given activation order
	Fast constructive heuristic �with feedback
	Constructive feedback heuristic
	Constructive feedback heuristic
	Computational experiments
	Computational experiments
	Computational experiments
	Computational experiments
	Computational experiments
	Multiple-installment mixed �integer programming formulation
	Formulation
	Formulation
	Concluding remarks

