Referee Assignment in Sports Tournaments

Celso C. Ribeiro*
Alexandre R. Duarte
Sebastián Urrutia

EURO XXI

Reykjavik, Iceland, July, 2006
Summary

• Motivation
• Referee assignment
• Problem statement
• Solution approach
 – Greedy constructive heuristic
 – Local search and neighborhoods
 – ILS-based scheme
 – Repair heuristic
 – Improvement heuristic
• Numerical results
• Conclusions and future work
Motivation

- Optimization in sports is a field of increasing interest
 - Traveling tournament problem
 - Playoff elimination
 - Tournament scheduling
 - Referee assignment

- Regional amateur leagues in the US (baseball, basketball, soccer): hundreds of games every weekend in different divisions
Motivation

- In a single league in California there might be up to 500 soccer games in a weekend, to be refereed by hundreds of certified referees.

- MOSA (Monmouth & Ocean Counties Soccer Association) League (NJ): boys & girls, ages 8-18, six divisions per age/gender group, six teams per division: 396 games every Sunday (US$ 40 per ref; US$ 20 per linesman, two linesmen).

- Problem: assign referees to games.

- Referee assignment involves many constraints and multiple objectives.
Referee assignment

• **Possible constraints:**
 – Different number of referees may be necessary for each game
 – Games require referees with different levels of certification: higher division games require referees with higher skills
 – A referee cannot be assigned to a game where he/she is a player
 – Timetabling conflicts and traveling times
Referee assignment

• **Possible constraints (cont.):**

 – Referee groups: cliques of referees that request to be assigned to the same games (relatives, car pools)

 • Hard links

 • Soft links

 – Number of games a referee is willing to referee

 – Traveling constraints

 – Referees that can officiate games only at a certain location or period of the day
Referee assignment

- Possible objectives:
 - Difference between the target number of games the referee is willing to referee and the number of games he/she is assigned to
 - Traveling time between consecutive games
 - Number of inter-facility travels
 - Waiting time between consecutive games
 - Number of games assigned outside his/her preferred time-slots or facilities
 - Number of violated soft links
Problem statement

• Games are already scheduled (facility – time slot)
• Each game has a number of refereeing positions to be assigned to referees
• Each refereeing position to be filled by a referee is called a refereeing slot
• $S = \{s_1, s_2, \ldots, s_n\}$: refereeing slots to be filled by referees
• $R = \{r_1, r_2, \ldots, r_m\}$: referees
Problem statement

- \(p_i \): skill level of referee \(r_i \)
- \(q_j \): minimum skill level a referee must have to be assigned to refereeing slot \(s_j \)
- \(M_i \): maximum number of games referee \(r_i \) can officiate
- \(T_i \): target number of games referee \(r_i \) is willing to officiate
- Each referee may choose a set of time slots where he/she is not available to officiate
Problem statement

• **Problem:** assign a referee to each refereeing slot

• **Constraints:**
 – Referees officiate in a single facility on the same day
 – Minimum skill level requirements
 – Maximum number of games
 – Timetabling conflicts and availability

• **Objective:** minimize the sum over all referees of the absolute value of the difference between the target and the actual number of games assigned to each referee (0-1 integer linear programming model)
Solution approach

- Three-phase heuristic approach
 1. Greedy constructive heuristic
 2. ILS-based repair heuristic to make the initial solution feasible (if necessary)
 3. ILS-based procedure to improve a feasible solution
Solution approach

Algorithm RefereeAssignmentHeuristic (MaxIter)

1. \(S^* \leftarrow \text{BuildGreedyRandomizedSolution}() \);
2. **If not** isFeasible \((S^*)\) **then**
3. \(S^* \leftarrow \text{RepairHeuristic} (S^*, \text{MaxIter}); \)
4. **If** isFeasible \((S^*)\) **then**
5. \(S^* \leftarrow \text{ImprovementHeuristic} (S^*); \)
6. **Else** “infeasible”
7. **Return** \(S^* \)
Greedy constructive heuristic

• Assign refereeing slots to referees that are also players (hard facility constraint)
• While there are unassigned refereeing slots and unassigned referees do:
 – Select the highest skill level (hSL) among all unassigned referees
 – Greedily select the facility with unassigned slots with the strongest need for a referee with skill level hSL
 – Assign a referee with skill level hSL to refereeing slots in this facility
• Complete the solution with infeasible assignments
Local search and neighborhoods

• Solutions built by a construction algorithm are not necessarily optimal.

• Local search algorithm successively replaces the current solution by a better one in a neighborhood of the first, terminating at a local optimum.

• First improving strategy: the current solution is replaced by the first neighbor whose cost function value improves that of the current solution.
Local search and neighborhoods

- **Swap moves**: referees assigned to two refereeing slots are swapped (number of games assigned to each referee does not change)
- **Exchange moves**: referee assigned to a refereeing slot is replaced by another referee (number of games assigned to each referee either increases or decreases by one unit)
- **Only moves involving referees that officiate at the same facility (or do not officiate at all) are allowed**
ILS-based scheme

- Both the repair and the improvement heuristics use similar ILS (iterated local search) schemes:
 - Apply first improving local search (first exchange moves, next swap moves) to the initial solution
 - For a given number of iterations, apply a perturbation to the current solution, followed by local search considering only the facilities involved in the perturbation, and accept the new solution if it is better than the current solution
Algorithm ILS_Scheme (S, MaxIter)

1. **For** each facility f **do**
 2. \(S \leftarrow \text{LocalSearch}(f, S) \);
3. **For** \(i = 1 \ldots \text{MaxIter} \) **do**
4. \(S^{\text{current}}, f_1, f_2 \leftarrow \text{Perturbation}(S) \);
5. \(S^{\text{current}} \leftarrow \text{LocalSearch}(f_1, S^{\text{current}}) \);
6. \(S^{\text{current}} \leftarrow \text{LocalSearch}(f_2, S^{\text{current}}) \);
7. \(S \leftarrow \text{AcceptanceCriterion}(S, S^{\text{current}}) \);
8. \(S^* \leftarrow \text{UpdateGlobalBestSolution}(S, S^*) \);
9. **Return** \(S^* \)
Repair heuristic

• Referees do not travel in the solutions built by the greedy constructive heuristic

• Possibly violated constraints:
 – timetabling conflicts
 – referee availability
 – skill levels
 – maximum number of games

• Approach: minimize the number of violations (no violations in feasible solutions)
Repair heuristic

• Perturbation
 – Select a facility f_k with infeasible assignments
 – Select the maximum minimum skill level over all refereeing slots in this facility assigned to referees with at least one violation
 – Search for a referee r_i that officiates at another facility (or does not officiate at all) whose skill level is at least as large as the above
Repair heuristic

- **Perturbation (cont.)**
 - Randomly select referees that officiate at the same facility to be assigned to the refereeing slots currently assigned to r_i
 - Finally, assign referee r_i to a refereeing slot at facility f_k which is currently assigned to a referee with at least one violation
Improvement heuristic

- Minimize the sum over all referees of the difference between the target and the actual number of games assigned to each of them
- Only exchange moves and perturbations that maintain feasibility are considered
- Swap moves are not applied, since they cannot reduce the value of the objective function
Improvement heuristic

- **Perturbation**
 - Select two referees officiating at different facilities, such that the swap of all their assignments is feasible
 - Look ahead: check if there are other games that could be officiated by these referees after the swap
 - Only refereeing slots assigned to referees that are officiating too many games (more than their target) are considered (exchange moves involving other referees cannot reduce the objective function)
 - The first pair of referees whose swap can reduce the objective function is selected and all their assignments are swapped
Numerical results

- Randomly generated instances following patterns similar to real-life applications
- Instances with up to 500 games and 1,000 referees
 - Different number of facilities
 - Different patterns of the target number of games
- Five different instances for each configuration
- MaxIter = 1,000
Numerical results

- For each test instance, average time and average objective value over ten runs
- Codes implemented in C
- Results obtained on a 2.0 GHz Pentium IV processor with 256 Mbytes of RAM
- Initial solutions:
 - greedy constructive heuristic
 - random assignments (to test the repair heuristic)
Numerical results

<table>
<thead>
<tr>
<th>Instances</th>
<th>Constructive heuristic</th>
<th>Repair heuristic</th>
<th>Improvement heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method</td>
<td>T_1 (s)</td>
<td>Obj_1</td>
</tr>
<tr>
<td>I1</td>
<td>greedy</td>
<td>0.02</td>
<td>1277.80</td>
</tr>
<tr>
<td>I2</td>
<td>greedy</td>
<td>0.02</td>
<td>1359.60</td>
</tr>
<tr>
<td>I3</td>
<td>greedy</td>
<td>0.02</td>
<td>1275.80</td>
</tr>
<tr>
<td>I4</td>
<td>greedy</td>
<td>0.03</td>
<td>—</td>
</tr>
<tr>
<td>I5</td>
<td>greedy</td>
<td>0.02</td>
<td>1326.00</td>
</tr>
<tr>
<td>I1</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I2</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I3</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I4</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I5</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 1: Instances with 500 games, 750 referees e 65 facilities
Numerical results

<table>
<thead>
<tr>
<th>Instances</th>
<th>Constructive heuristic</th>
<th>Repair heuristic</th>
<th>Improvement heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method</td>
<td>T_1 (s)</td>
<td>Obj$_1$</td>
</tr>
<tr>
<td>I1</td>
<td>greedy</td>
<td>0.03</td>
<td>—</td>
</tr>
<tr>
<td>I2</td>
<td>greedy</td>
<td>0.03</td>
<td>—</td>
</tr>
<tr>
<td>I3</td>
<td>greedy</td>
<td>0.03</td>
<td>—</td>
</tr>
<tr>
<td>I4</td>
<td>greedy</td>
<td>0.03</td>
<td>—</td>
</tr>
<tr>
<td>I5</td>
<td>greedy</td>
<td>0.03</td>
<td>—</td>
</tr>
<tr>
<td>I1</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I2</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I3</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I4</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I5</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 2: Instances with 500 games, 750 referees and 85 facilities
Numerical results

<table>
<thead>
<tr>
<th>Instances</th>
<th>Constructive heuristic</th>
<th>Repair heuristic</th>
<th>Improvement heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method</td>
<td>T_1 (s)</td>
<td>Obj$_1$</td>
</tr>
<tr>
<td>I1</td>
<td>greedy</td>
<td>0.03</td>
<td>1582.00</td>
</tr>
<tr>
<td>I2</td>
<td>greedy</td>
<td>0.03</td>
<td>1627.40</td>
</tr>
<tr>
<td>I3</td>
<td>greedy</td>
<td>0.02</td>
<td>1539.40</td>
</tr>
<tr>
<td>I4</td>
<td>greedy</td>
<td>0.03</td>
<td>1663.20</td>
</tr>
<tr>
<td>I5</td>
<td>greedy</td>
<td>0.02</td>
<td>1623.80</td>
</tr>
<tr>
<td>I1</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I2</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I3</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I4</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I5</td>
<td>random</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 3: Instances with 500 games, 875 referees and 65 facilities
Conclusions and future work

• Formulation of a new optimization problem in sports
• Effective heuristics (construction, repair, improvement)
• Extensions:
 – Additional constraints
 – Other objectives
 – Multi-objective approach
 – Application to real-life instances