Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms

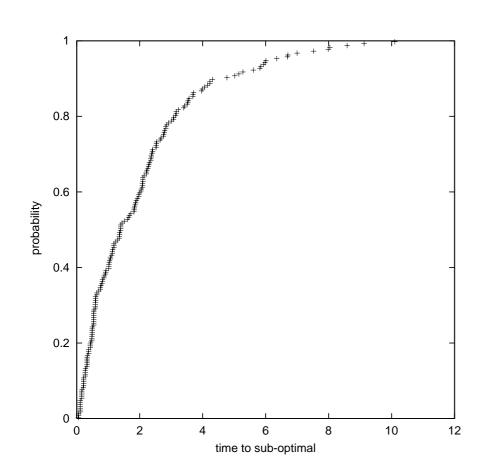
Celso C. <u>Ribeiro</u> (Brazil) Isabel Rosseti (Brazil) Reinaldo Vallejos (Chile)

> MIC VIII - Hamburg July 2009

Summary

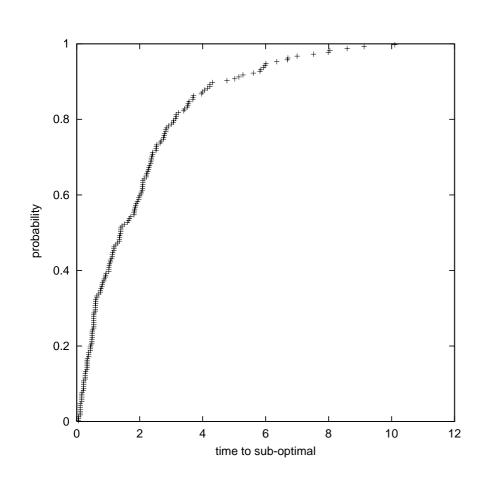
- Run time distributions
- Algorithms with exponential run time distributions
 - Closed-form result
 - Applications
 - Examples of non-exponential run time distributions
- Algorithms with non-exponential run time distributions
- Case studies
- Parallel implementations
- Concluding remarks

- Run time distributions or time-to-target plots display the probability that an algorithm will find a solution at least as good as a given target value within a given running time:
 - Useful tool to characterize the running times of stochastic local search (SLS) algorithms.
- Experimental results show that random variable time-to-target-value fits an exponential (or shifted exponential) distribution for a number of SLS-based metaheuristics (SA, TS, ILS, GRASP, etc.).



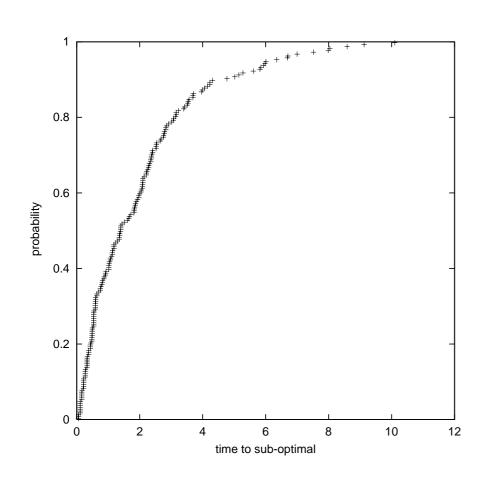
- Define problem instance and target value.
- N runs: stop when solution as good as target value is found.
- Sort times in ascending order.
- Plot i-th time t_i against probability $p_i=i/N$.

Cumulative probability distribution plot of the running times =



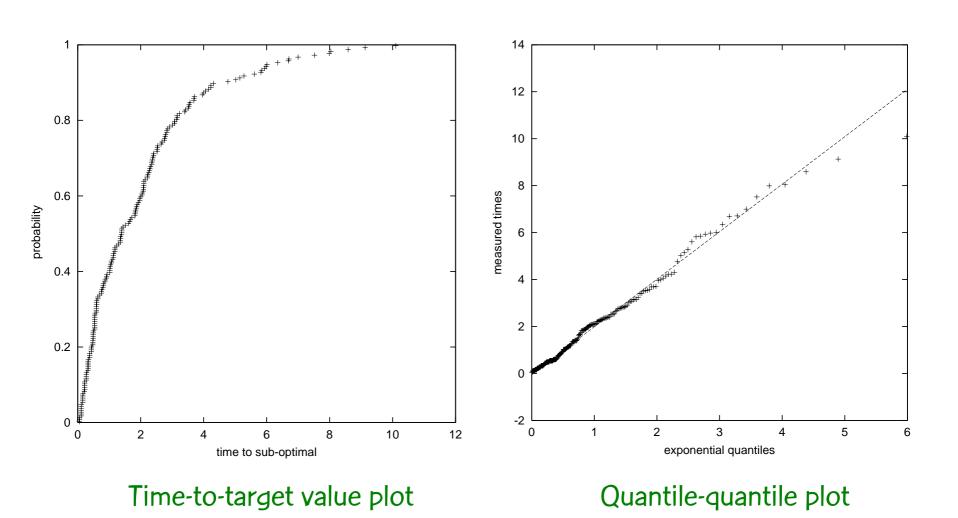
- Define problem instance and target value.
- N runs: stop when solution as good as target value is found.
- Sort times in ascending order.
- Plot i-th time t_i against probability $p_i=i/N$.

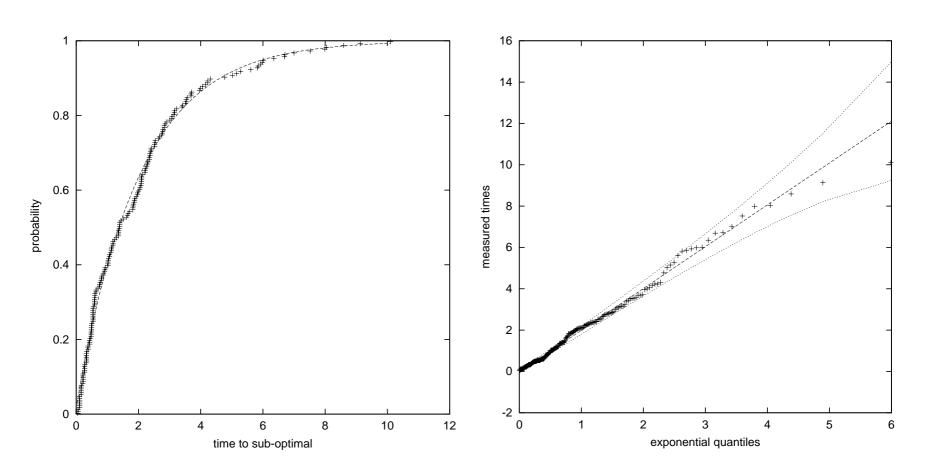
= Run time distribution =



= Time-to-target value plot

- Define problem instance and target value.
- N runs: stop when solution as good as target value is found.
- Sort times in ascending order.
- Plot i-th time t_i against probability $p_i=i/N$.



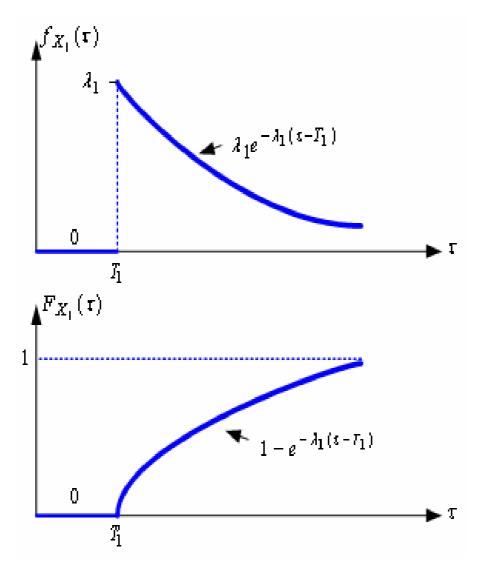


Empirical and theoretical plots

Q-Q plot with variability information

- This work: new tool to compare a pair of different heuristics based on stochastic local search algorithms.
 - Applications to sequential and parallel algorithms

- We assume the existence of two SLS algorithms A_1 and A_2 for approximately solving some combinatorial optimization problem.
 - Running times of A_1 and A_2 fit exponential (or shifted exponential) distributions.
 - $-X_1$ (resp. X_2): continuous random variable denoting the time needed by algorithm A_1 (resp. A_2) to find a solution as good as a given target value:

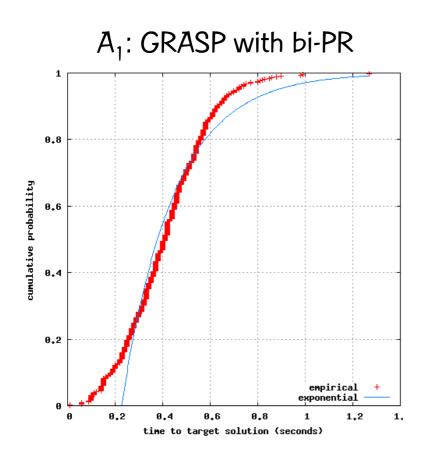


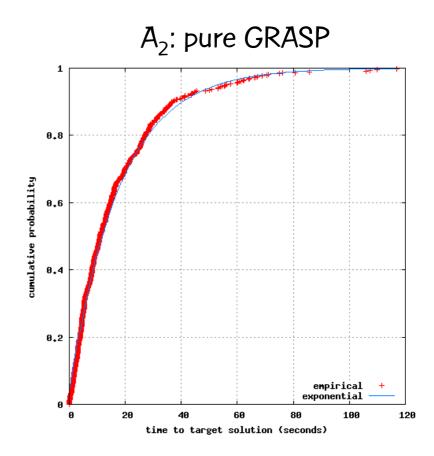
- Both algorithms A₁ and A₂ stop when they find a solution at least as good as the target value:
 - Algorithm A_1 performs better than A_2 if the former stops before the latter.
- Evaluate the probability that the random variable X_1 takes a value smaller than or equal to X_2 :

$$P(X_1 \le X_2) = \int_{-\infty}^{+\infty} P(X_1 \le X_2 \mid X_2 = \tau).f_{X_2}(\tau)d\tau$$

$$P(X_1 \le X_2) = 1 - e^{-\lambda_1(T_2 - T_1)} \cdot \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

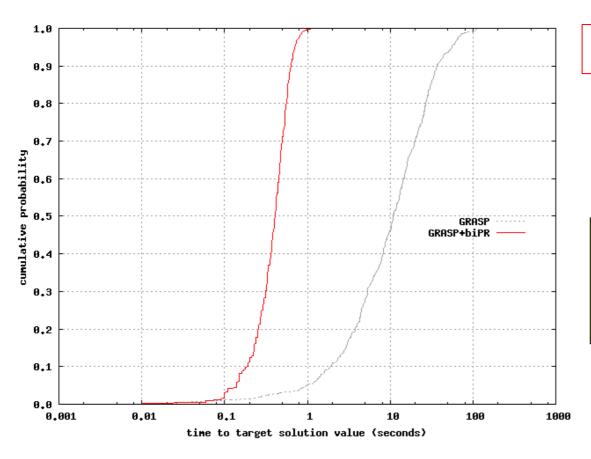
2-path network design problem





500 runs: $\lambda_1 = 0.218988$, $T_1 = 0.01$, $\lambda_2 = 17.829236$, and $T_2 = 0.01$

2-path network design problem



$$P(X_1 \le X_2) = 0.943516$$

TTTplot of A_1 is clearly to the left of that of A_2 .

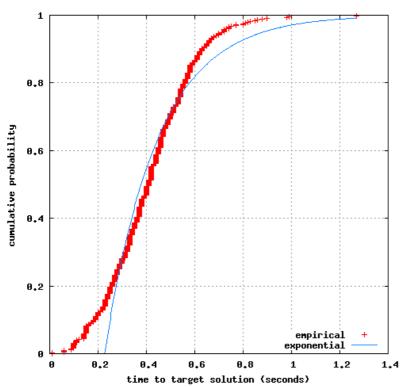
Algorithm A_1 is faster than A_2 for this instance and target.

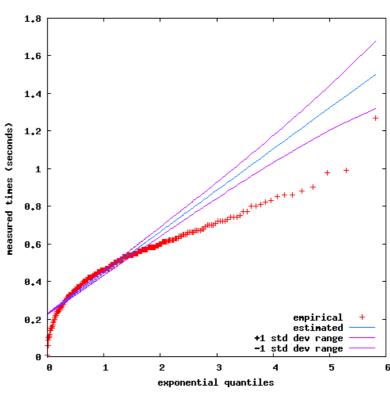
- Aiex, Resende & Ribeiro (JoH, 2002): time taken by a GRASP heuristic to find a solution at least as good as a given target value fits an exponential distribution
 - If the setup times are not negligible: running times fit a two-parameter shifted exponential distribution.
 - Experimental result involving 2,400 runs of five problems: maximum stable set, quadratic assignment, graph planarization, maximum weighted satisfiability, and maximum covering.

- If path-relinking is applied as an intensification step at the end of each GRASP iteration:
 - Iterations are no longer independent.
 - Memoryless characteristic of GRASP is destroyed.
- Therefore, time-to-target-value random variable may not fit an exponential distribution.
- Examples: GRASP with PR for...
 - 2-path network design problem
 - three-index assignment problem

2-path network design problem

Run-time distribution

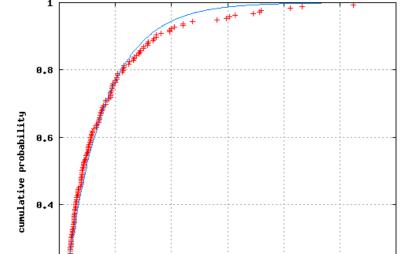




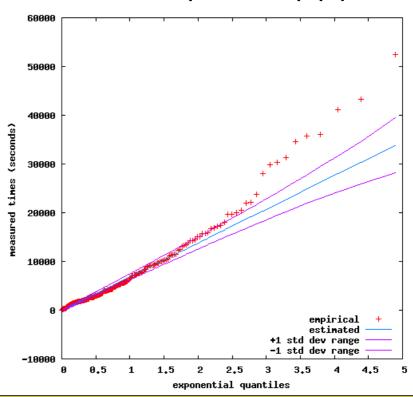
Points steadily deviate by more than one standard deviation from the estimate for the upper quantiles in the q-q plots: run time distributions are not exponential.

Three-index assignment problem

Run-time distribution



Quantile-quantile (q-q) plot



Points steadily deviate by more than one standard deviation from the estimate for the upper quantiles in the q-q plots: run time distributions are not exponential.

10000

20000

30000

time to target solution (seconds)

0.2

empirical

50000

exponential

- If the running times do not fit an exponential distribution, then the previous closed-form does not hold.
 - Approach has to be extended to general run time distributions.

Non-exponential running times

- Once again, we assume the existence of two independent SLS algorithms A_1 and A_2 for the same problem.
- Time-to-target-values X_1 and X_2 are continuous random variables, with empirical cumulative probability distributions $F_{X1}(\tau)$ and $F_{X2}(\tau)$ and probability density functions $f_{X1}(\tau)$ and $f_{X2}(\tau)$:

$$\begin{split} P(X_1 \leq & X_2) = \int_{-\infty}^{+\infty} P(X_1 \leq \tau). f_{X_2}(\tau) d\tau = & \text{arbitrarily small } \epsilon > 0 \\ & = \int_{0}^{+\infty} P(X_1 \leq \tau). f_{X_2}(\tau) d\tau = \sum_{i=0}^{\infty} \int_{i=\epsilon}^{(i+1)\epsilon} P(X_1 \leq \tau). f_{X_2}(\tau) d\tau \end{split}$$

Non-exponential running times

$$P(X_1 \le X_2) \le \sum_{i=0}^{\infty} F_{X_1}((i+1)\varepsilon) \int_{i=\varepsilon}^{(i+1)\varepsilon} f_{X_2}(\tau) d\tau = R(\varepsilon)$$

$$L(\varepsilon) = \sum_{i=0}^{\infty} F_{X_1}(i\varepsilon) \int_{i=\varepsilon}^{(t+1)\varepsilon} f_{X_2}(\tau) d\tau = R(\varepsilon) \le P(X_1 \le X_2)$$

If $\Delta(\mathcal{E}) = R(\mathcal{E}) - L(\mathcal{E})$ is sufficiently small, then

$$P(X_1 \le X_2) \approx \frac{L(\varepsilon) + R(\varepsilon)}{2}$$
.

In practice, probability density functions $f_{X_1}(au)$ and

$$f_{X_2}(\tau)$$
 are unknown.

Non-exponential running times

Let N be the number of observations of X_1 and X_2 .

In the computation of $L(\mathcal{E})$ and $R(\mathcal{E})$, replace $f_{X_2}(\tau)$

by estimate $\hat{f}_{X_2}(\tau)$ obtained from the sample histogram.

As before, compute

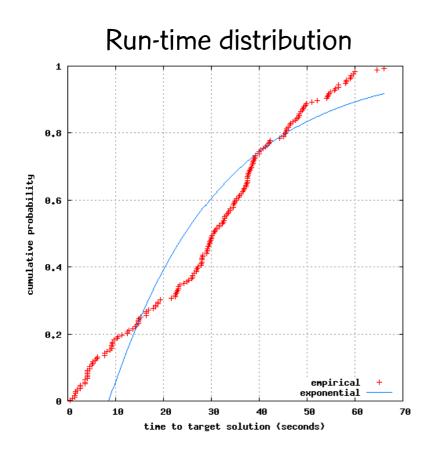
$$P(X_1 \le X_2) \approx \frac{L(\varepsilon) + R(\varepsilon)}{2}$$
.

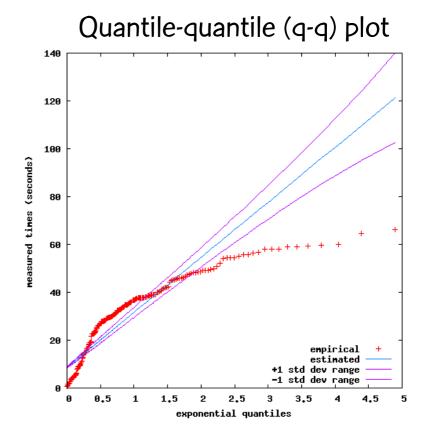
by numerical integration.

Application #1: server replication

- DM-GRASP vs. pure GRASP algorithms for server replication
 - DM-GRASP: hybrid version of GRASP incorporating a data-mining process in the construction phase
 - Basic principle: mining for patterns found in goodquality solutions, to guide the construction of new solutions (similar to vocabulary building)
 - Algorithm A₁: DM-D5 version of DM-GRASP
 - Algorithm A₂: pure GRASP (exponential run time distribution)
 - Sample size: N = 200

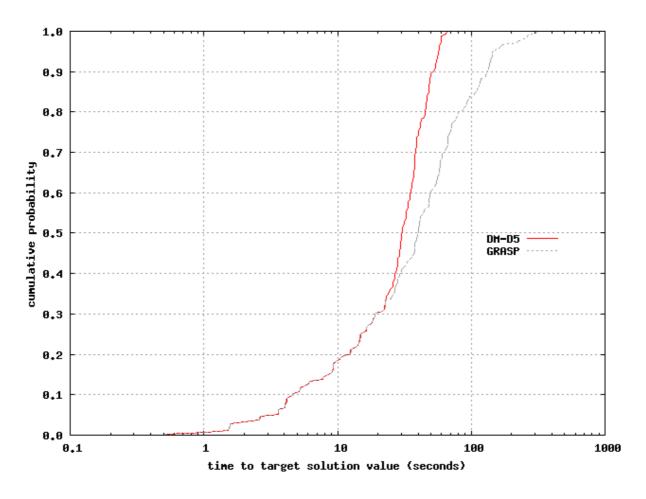
Application #1: server replication





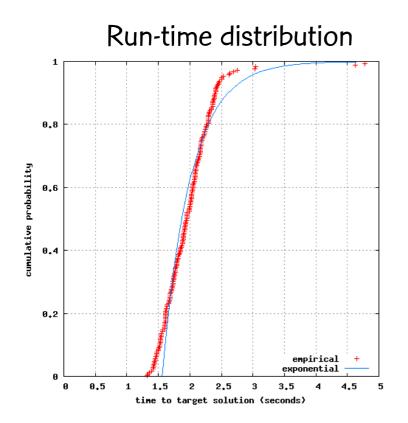
Run time distribution of DM-D5 GRASP is clearly non-exponential.

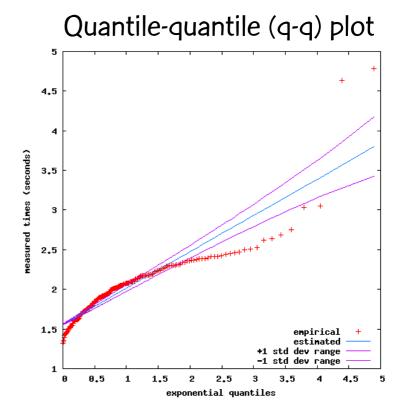
Application #1: server replication



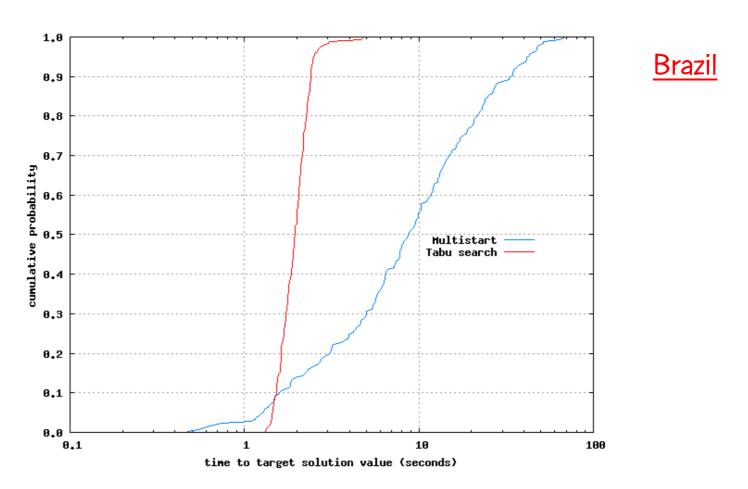
Algorithm DM-D5 outperforms GRASP: $P(DM-D5 \le GRASP) = 0.614775$.

- Multistart greedy vs. tabu search algorithms for wavelength assignment
 - Algorithm A₁: multistart greedy (exponential run time distribution)
 - Algorithm A₂: tabu search
 - Sample size: N = 200

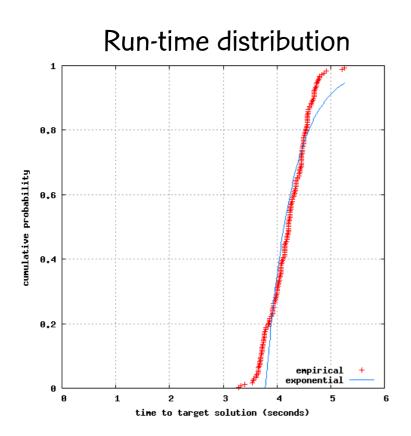


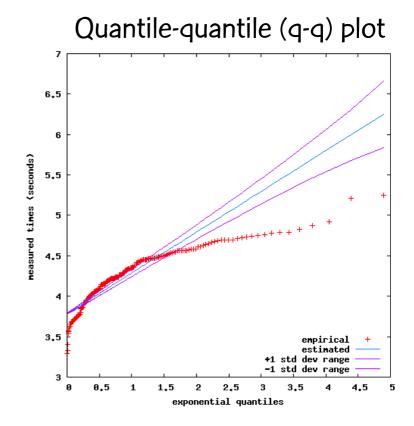


Run time distribution of tabu search is non-exponential (instance Brazil).

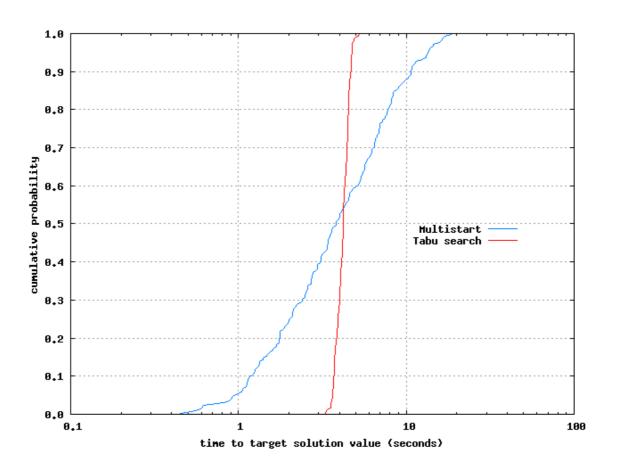


Tabu search clearly outperforms multistart: $P(MS \le TS) = 0.106766$.





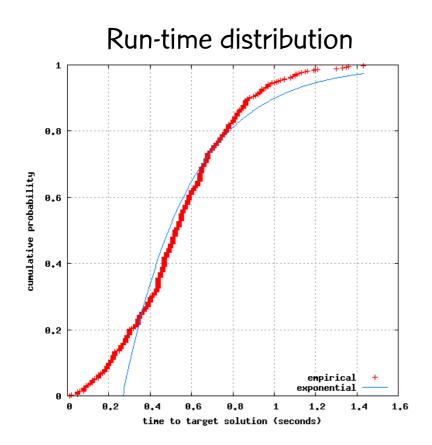
Run time distribution of tabu search is non-exponential (instance Finland).

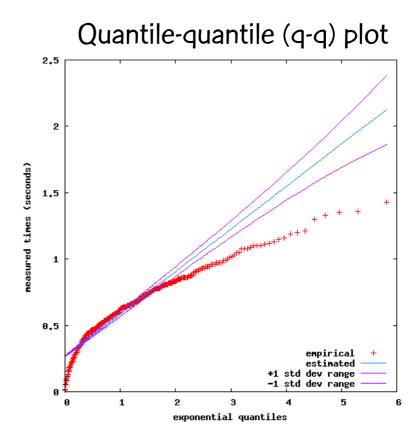


<u>Finland</u>

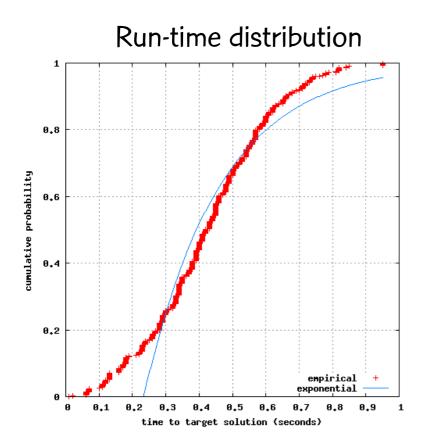
Now, multistart slightly outperforms tabu search: $P(MS \le TS) = 0.545619$.

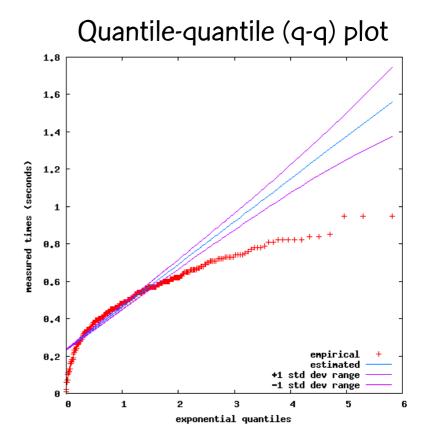
- Given a connected graph, edge weights, and a set of origin-destination nodes, find a minimum weighted edge subset containing a path formed by at most two edges between every o-d pair.
- GRASP algorithms for 2-path network design
 - Algorithm A₁: pure GRASP (exponential running times)
 - Algorithm A₂: GRASP with forward path-relinking
 - Algorithm A₃: GRASP with bidirectional path-relinking
 - Algorithm A₄: GRASP with backward path-relinking
 - Instance with 90 nodes and 900 origin-destination pairs
 - Sample size: N = 500



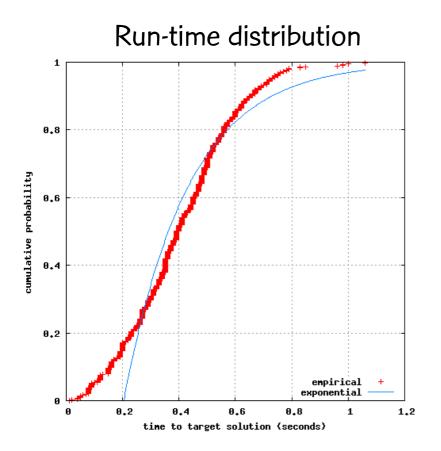


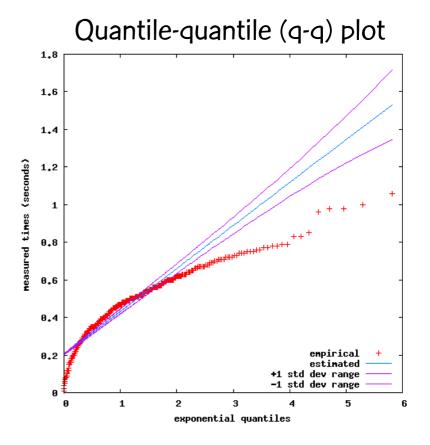
GRASP with forward path-relinking



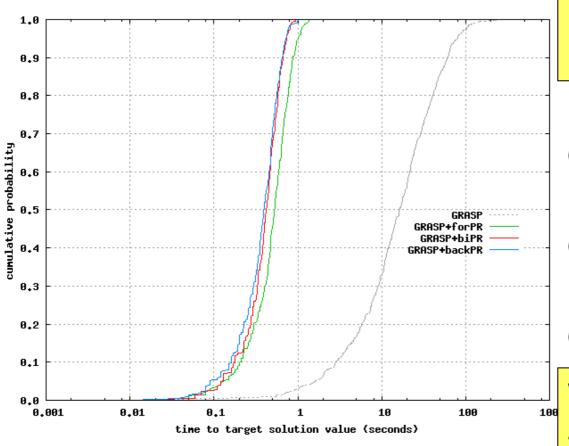


GRASP with bidirectional path-relinking





GRASP with backward path-relinking



Versions with pathrelinking perform much better than pure GRASP.

 $P(GRASP+fPR \le GRASP) = 0.984470$

 $P(GRASP+biPR \le GRASP+fPR) = 0.634002$

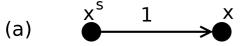
 $P(GRASP+bPR \le GRASP+biPR) = 0.536016$

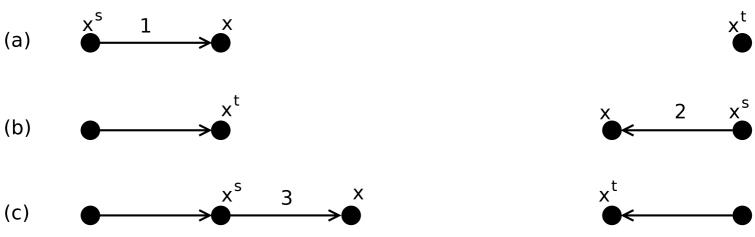
Versions with backward and bidirectional PR perform very similarly.

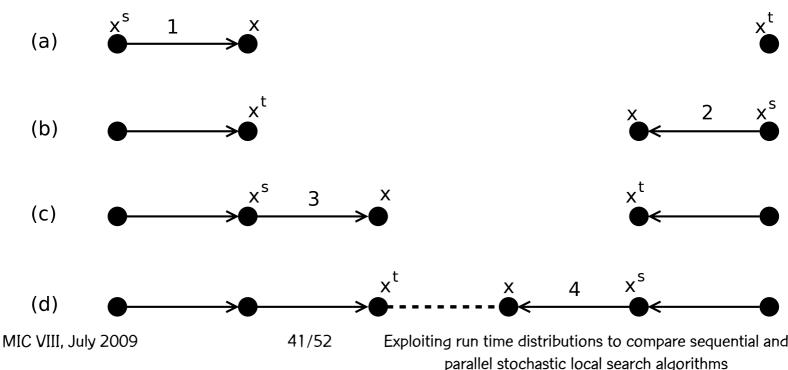
- Application: another instance of the 2-path network design problem
 - Algorithm A₁: pure GRASP (exponential running times)
 - Algorithm A₂: GRASP with forward path-relinking
 - Algorithm A₃: GRASP with bidirectional path-relinking
 - Algorithm A₄: GRASP with backward path-relinking
 - Algorithm A₅: GRASP with mixed path-relinking
 - Instance: 80 nodes and 800 origin-destination pairs
 - Sample size: N = 500

• Given initial and guiding solutions: start from the initial solution, obtain the new current solution, exchange the roles of the current and guiding solutions, and repeat the procedure.

(a) X^S







Application #3: 2-path network design

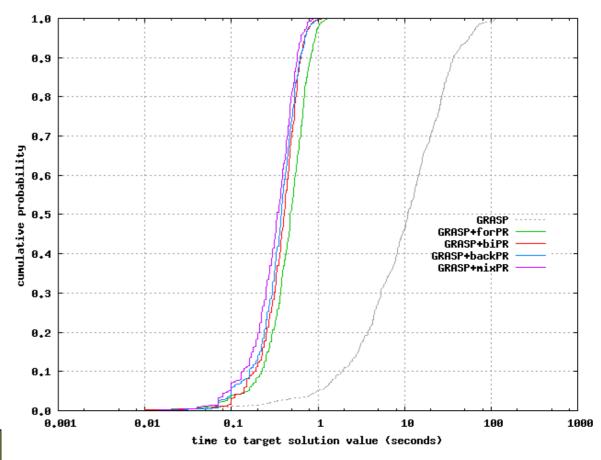
Versions with pathrelinking perform much better than pure GRASP.

$$P(GRASP+fPR \le GRASP) = 0.968732$$

$$P(GRASP+biPR \le GRASP+fPR) = 0.615286$$

$$P(GRASP+bPR \le GRASP+biPR) = 0.535582$$

$$P(GRASP+mixedPR \le GRASP+biPR) = 0.554354$$



Application #3: 2-path network design

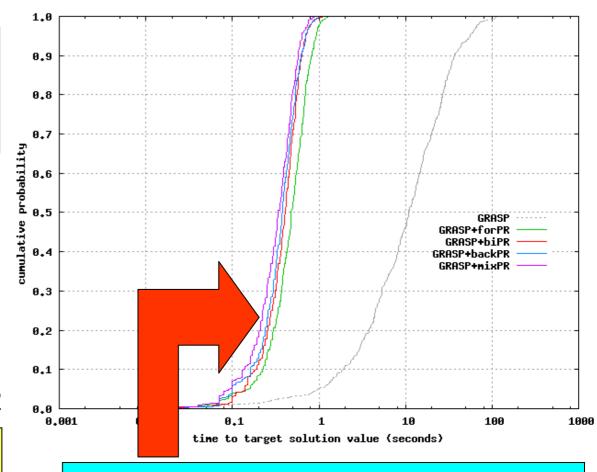
Versions with pathrelinking perform much better than pure GRASP.

 $P(GRASP+fPR \le GRASP) = 0.968732$

 $P(GRASP+biPR \le GRASP+fPR) = 0.615286$

 $P(GRASP+bPR \le GRASP+biPR) = 0.535582$

 $P(GRASP+mixedPR \le GRASP+biPR) = 0.554354$

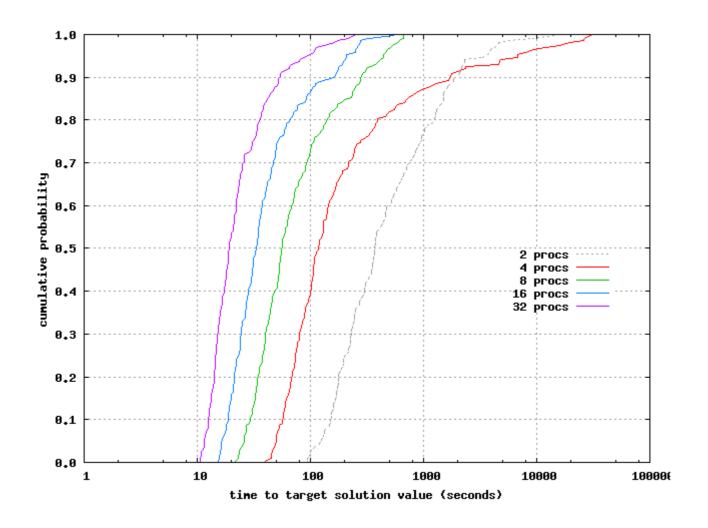


Mixed path-relinking seems to outperform other versions of path-relinking.

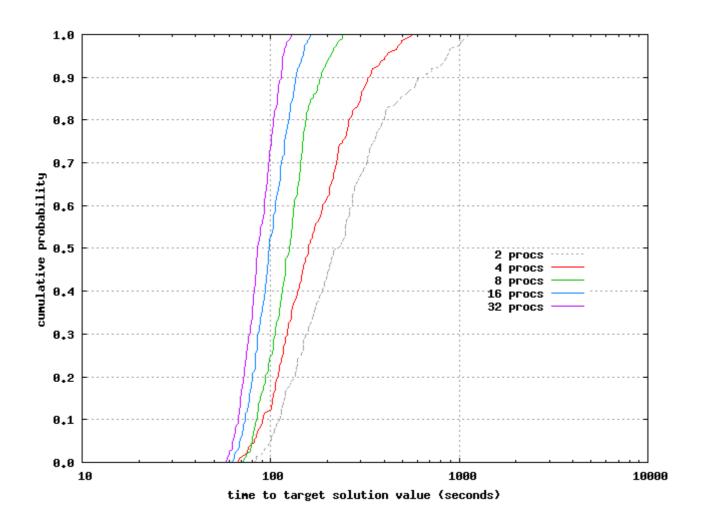
- Evaluation of trade-offs between:
 - cooperative and independent implementations
 - running time and number of processors
- Application: 2-path network design problem
 - Algorithm A₃: GRASP with bidirectional path-relinking
 - Cooperative and independet parallel implementations
 - Instance with 80 nodes and 800 origin-destination pairs
 - Sample size: N = 500
- Run time distributions of independent and cooperative implementations of GRASP with bidirectional PR on 2, 4, 8, 16, 32 processsors.

- Run time distributions of independent and cooperative implementations of GRASP with bidirectional PR on 2, 4, 8, 16, 32 processsors.
- Parallel implementations produce many outliers: observations corresponding to the 5% lower and the 5% higher parallel elapsed times are eliminated.
- A_k^{-1} (resp. A_k^{-2}) denotes the cooperative (resp. independent) parallel implementation of <u>GRASP</u> with bidirectional path-relinking running on k = 2, 4, 8, 16, 32 processors.

Cooperative parallel implementations



Independent parallel implementations



- Probabilities that the cooperative parallel implementation performs better than the independent on k=2, 4, 8, 16, 32 processors
- Independent implementation performs better than the cooperative on two processors.
- Cooperative implementation performs better when the number of processors increases, because more processors are devoted to perform iterations.

k	$P(X_1^k \le X_2^k)$	
2	0.309660	
4	0.597253	
8	0.766698	
16	0.860910	
32	32 0.944846	

• Probabilities that each of the two parallel implementations performs better on 2^{j+1} than on 2^{j} processors, for j = 1, 2, 3, 4.

# procs. a	# procs. b	$P(X_1^a \le X_1^b)$	$P(X_2^a \le X_2^b)$
		cooperative	independent
4	2	0.766204	0.629691
8	4	0.748302	0.662932
16	8	0.713272	0.571173
32	16	0.742037	0.224815

- Cooperative implementation scales appropriately as the number of processors grows.
- Performance of the independent implementation seems to deteriorate in the same scenario.

Concluding remarks

- Run time distributions are very useful tools to characterize the running times of stochastic algorithms for combinatorial optimization.
- Closed form index to compare exponential run time distributions.
- Numerical procedure to compute the probability that one algorithm finds a target solution value in a smaller computation time than another, in the case of general run time distributions.

Concluding remarks

- New probability index provides an additional measure for comparing the performance of implementations of metaheuristics based on stochastic local search algorithms.
- Can also be used in the evaluation of parallel implementations of SLS algorithms, providing an indicator to evaluate trade-offs between elapsed times and the number of processors.
- Extension to benchmark sets formed by multiple instances and targets.
- Software available from the authors upon request.