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Summary
• Run time distributions
• Algorithms with exponential run time distributions

– Closed-form result
– Applications
– Examples of non-exponential run time distributions

• Algorithms with non-exponential run time distributions
• Case studies
• Parallel implementations
• Convergence and sensitivity
• Concluding remarks
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Run time distributions

• Run time distributions or time-to-target plots
display the probability that an algorithm will find 
a solution at least as good as a given target value
within a given running time:
– Useful tool to characterize the running times of 

stochastic local search (SLS) algorithms.

• Experimental results show that random variable 
time-to-target-value fits an exponential (or shifted 
exponential) distribution for a number of SLS-
based metaheuristics (SA, TS, ILS, GRASP, etc.).
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Run time distributions
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Cumulative probability distribution plot of the running times = 

• Define problem instance 
and target value.

• N runs: stop when 
solution as good as 
target value is found. 

• Sort times in ascending 
order.

• Plot i-th time ti against 
probability pi=i/N.
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Run time distributions
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• Define problem instance 
and target value.

• N runs: stop when 
solution as good as 
target value is found. 

• Sort times in ascending 
order.

• Plot i-th time ti against 
probability pi=i/N.



SLS’2009, September 2009 6/59 On the use of run time distributions to evaluate and 
compare stochastic local search algorithms

Run time distributions
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• Define problem instance 
and target value.

• N runs: stop when 
solution as good as 
target value is found. 

• Sort times in ascending 
order.

• Plot i-th time ti against 
probability pi=i/N.
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Run time distributions
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Run time distributions

Empirical and theoretical plots Q-Q plot with variability information
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Run time distributions

• This work: new tool to compare a pair of 
different heuristics based on stochastic local 
search algorithms.
– Applications to sequential and parallel algorithms
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Exponential run time distributions

• We assume the existence of two SLS algorithms 
A1 and A2 for approximately solving some 
combinatorial optimization problem.
– Running times of A1 and A2 fit exponential (or 

shifted exponential) distributions.
– X1 (resp. X2): continuous random variable denoting 

the time needed by algorithm A1 (resp. A2) to find a 
solution as good as a given target value:
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Exponential run time distributions
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Exponential run time distributions

• Both algorithms A1 and A2 stop when they find a 
solution at least as good as the target value:
– Algorithm A1 performs better than A2 if the former 

stops before the latter.

• Evaluate the probability that the random variable 
X1 takes a value smaller than or equal to X2:
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A1: GRASP with bi-PR A2: pure GRASP

500 runs: λ1 = 0.218988, T1 = 0.01, λ2 = 17.829236, and T2 = 0.01

2-path network design problem
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2-path network design problem

P(X1 ≤ X2) = 0.943516

TTTplot of A1 is clearly 
to the left of that of A2.

Algorithm A1 is faster 
than A2 for this instance
and target.
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Exponential run time distributions

• Aiex, Resende & Ribeiro (J. of Heuristics, 2002): 
time taken by a GRASP heuristic to find a 
solution at least as good as a given target value 
fits an exponential distribution
– If the setup times are not negligible: running times 

fit a two-parameter shifted exponential distribution. 
– Experimental result involving 2,400 runs of five 

problems: maximum stable set, quadratic 
assignment, graph planarization, maximum weighted 
satisfiability, and maximum covering.
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Exponential run time distributions

• If path-relinking is applied as an intensification 
step at the end of each GRASP iteration: 
– Iterations are no longer independent.
– Memoryless characteristic of GRASP is destroyed. 

• Therefore, time-to-target-value random variable 
may not fit an exponential distribution.

• Examples: GRASP with PR for...
– 2-path network design problem
– three-index assignment problem
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2-path network design problem
Run-time distribution Quantile-quantile (q-q) plot 

Points steadily deviate by more than one standard deviation from the 
estimate for the upper quantiles in the q-q plots: run time distributions 
are not exponential.
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Three-index assignment problem
Run-time distribution Quantile-quantile (q-q) plot 

Points steadily deviate by more than one standard deviation from the 
estimate for the upper quantiles in the q-q plots: run time distributions 
are not exponential.
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Exponential run time distributions

• If the running times do not fit an exponential 
distribution, then the previous closed-form does 
not hold.
– Approach has to be extended to general run time 

distributions.
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Non-exponential running times
• Once again, we assume the existence of two 

independent SLS algorithms A1 and A2 for the 
same problem. 

• Time-to-target-values X1 and X2 are continuous 
random variables, with empirical cumulative 
probability distributions FX1(τ) and FX2(τ) and 
probability density functions fX1(τ) and fX2(τ):
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Non-exponential running times
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Non-exponential running times
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Application #1: server replication
• DM-GRASP vs. pure GRASP algorithms for 

server replication
– DM-GRASP: hybrid version of GRASP incorporating 

a data-mining process in the construction phase
– Basic principle: mining for patterns found in good-

quality solutions, to guide the construction of new 
solutions (similar to vocabulary building)

– Algorithm A1: DM-D5 version of DM-GRASP 
– Algorithm A2: pure GRASP (exponential run time 

distribution)
– Sample size: N = 200
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Application #1: server replication

Run-time distribution Quantile-quantile (q-q) plot 

Run time distribution of DM-D5 GRASP is clearly non-exponential.
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Application #1: server replication

Algorithm DM-D5 outperforms GRASP: P(DM-D5 ≤ GRASP) = 0.614775.



SLS’2009, September 2009 26/59 On the use of run time distributions to evaluate and 
compare stochastic local search algorithms

• Multistart greedy vs. tabu search algorithms for 
wavelength assignment
– Algorithm A1: multistart greedy (exponential run 

time distribution)
– Algorithm A2: tabu search
– Sample size: N = 200

Application #2: wavelength assignment
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Application #2: wavelength assignment

Run-time distribution Quantile-quantile (q-q) plot 

Run time distribution of tabu search is non-exponential (instance Brazil).
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Tabu search clearly outperforms multistart: P(MS ≤ TS) = 0.106766.

Brazil

Application #2: wavelength assignment
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Run-time distribution Quantile-quantile (q-q) plot 

Run time distribution of tabu search is non-exponential (instance Finland).

Application #2: wavelength assignment



SLS’2009, September 2009 30/59 On the use of run time distributions to evaluate and 
compare stochastic local search algorithms

Now, multistart slightly outperforms tabu search: P(MS ≤ TS) = 0.545619.

Finland

Application #2: wavelength assignment
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• Given a connected graph, edge weights, and a set of 
origin-destination nodes, find a minimum weighted 
edge subset containing a path formed by at most 
two edges between every o-d pair.

• GRASP algorithms for 2-path network design
– Algorithm A1: pure GRASP (exponential running times)
– Algorithm A2: GRASP with forward path-relinking
– Algorithm A3: GRASP with bidirectional path-relinking
– Algorithm A4: GRASP with backward path-relinking
– Instance with 90 nodes and 900 origin-destination pairs
– Sample size: N = 500

Application #3: 2-path network design
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Application #3: 2-path network design

Run-time distribution Quantile-quantile (q-q) plot 

GRASP with forward path-relinking
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Application #3: 2-path network design

Run-time distribution Quantile-quantile (q-q) plot 

GRASP with bidirectional path-relinking
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Application #3: 2-path network design

Run-time distribution Quantile-quantile (q-q) plot 

GRASP with backward path-relinking
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Application #3: 2-path network design
Versions with path-
relinking perform much 
better than pure GRASP. 

P(GRASP+forPR ≤
GRASP) = 0.98447

P(GRASP+biPR ≤
GRASP+forPR) = 0.63400

P(GRASP+backPR ≤
GRASP+biPR) = 0.53602

Versions with backward 
and bidirectional PR 
perform very similarly.
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Application #3: 2-path network design
• Application: another instance of the 2-path network 

design problem
– Algorithm A1: pure GRASP (exponential running times)
– Algorithm A2: GRASP with forward path-relinking
– Algorithm A3: GRASP with bidirectional path-relinking
– Algorithm A4: GRASP with backward path-relinking
– Algorithm A5: GRASP with mixed path-relinking
– Instance: 80 nodes and 800 origin-destination pairs
– Sample size: N = 500
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Mixed path-relinking

• Given initial and guiding solutions: start from 
the initial solution, obtain the new current 
solution, exchange the roles of the current and 
guiding solutions, and repeat the procedure.



SLS’2009, September 2009 38/59 On the use of run time distributions to evaluate and 
compare stochastic local search algorithms

Mixed path-relinking

• Given initial and guiding solutions: start from 
the initial solution, obtain the new current 
solution, exchange the roles of the current and 
guiding solutions, and repeat the procedure.
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Mixed path-relinking

• Given initial and guiding solutions: start from 
the initial solution, obtain the new current 
solution, exchange the roles of the current and 
guiding solutions, and repeat the procedure.
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Mixed path-relinking

• Given initial and guiding solutions: start from 
the initial solution, obtain the new current 
solution, exchange the roles of the current and 
guiding solutions, and repeat the procedure.
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Mixed path-relinking

• Given initial and guiding solutions: start from 
the initial solution, obtain the new current 
solution, exchange the roles of the current and 
guiding solutions, and repeat the procedure.
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Application #3: 2-path network design
Versions with path-
relinking perform much 
better than pure GRASP. 

P(GRASP+forPR ≤
GRASP) = 0.96873

P(GRASP+biPR ≤
GRASP+forPR) = 0.61529

P(GRASP+backPR ≤
GRASP+biPR) = 0.53558

P(GRASP+mixPR ≤
GRASP+biPR) = 0.55435
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Application #3: 2-path network design
Versions with path-
relinking perform much 
better than pure GRASP. 

P(GRASP+forPR ≤
GRASP) = 0.96873

P(GRASP+biPR ≤
GRASP+forPR) = 0.61529

P(GRASP+backPR ≤
GRASP+biPR) = 0.53558

P(GRASP+mixPR ≤
GRASP+biPR) = 0.55435 Mixed path-relinking seems to outperform 

other versions of path-relinking.
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Parallel implementations
• Evaluation of trade-offs between: 

– cooperative and independent implementations
– running time and number of processors

• Application: 2-path network design problem
– Algorithm A3: GRASP with bidirectional path-relinking
– Cooperative and independent parallel implementations
– Instance with 80 nodes and 800 origin-destination pairs
– Sample size: N = 500

• Run time distributions of independent and 
cooperative implementations of GRASP with 
bidirectional PR on 2, 4, 8, 16, 32 processsors.



SLS’2009, September 2009 45/59 On the use of run time distributions to evaluate and 
compare stochastic local search algorithms

Parallel implementations

• Run time distributions of independent and 
cooperative implementations of GRASP with 
bidirectional PR on 2, 4, 8, 16, 32 processsors. 

• Ak
1 (resp. Ak

2) denotes the cooperative (resp. 
independent) parallel implementation of GRASP 
with bidirectional path-relinking running on k = 2, 
4, 8, 16, 32 processors.
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Cooperative parallel implementations
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Independent parallel implementations



SLS’2009, September 2009 48/59 On the use of run time distributions to evaluate and 
compare stochastic local search algorithms

Parallel implementations
• Probabilities that the cooperative 

parallel implementation performs 
better than the independent on 
k=2, 4, 8, 16, 32 processors

• Independent implementation 
performs better than the 
cooperative on two processors.

• Cooperative implementation 
performs better when the 
number of processors increases, 
because more processors are 
devoted to perform iterations.

k P(X1
k ≤ X2

k)

2 0.309660

4 0.597253

8 0.766698

16 0.860910

32 0.944846
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Parallel implementations

• Probabilities that each of the two parallel 
implementations performs better on 2j+1 than on 2j

processors, for j = 1, 2, 3, 4.

# procs. a # procs. b
P(X1

a ≤ X1
b)

cooperative
P(X2

a ≤ X2
b)

independent
4 2 0.766204 0.629691

8 4 0.748302 0.662932

16 8 0.713272 0.571173

32 16 0.742037 0.224815
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Parallel implementations

• Cooperative implementation scales appropriately as 
the number of processors grows.

• Performance of the independent implementation 
seems to deteriorate in the same scenario.
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Convergence: sample size (1)

• Convergence: influence of the sample size
2-path network design problem
90-node instance
Algorithm 1: GRASP with backward PR
Algorithm 2: GRASP with bidirectional PR
P(X1 ≤ X2: N = 100) = 0.54925 
P(X1 ≤ X2: N = 200) = 0.54796
P(X1 ≤ X2: N = 5000) = 0.53636 
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Convergence: sample size (1)

P(X1 ≤ X2: sample size)
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Convergence: sample size (2)

• Convergence: influence of the sample size
Server replication problem
25-node instance
Algorithm 1: DM-D5 version of DM-GRASP
Algorithm 2: pure GRASP
P(X1 ≤ X2: N = 100) = 0.64620 
P(X1 ≤ X2: N = 200) = 0.61834
P(X1 ≤ X2: N = 5000) = 0.58432 
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Convergence: sample size (2)

P(X1 ≤ X2: sample size)
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Convergence: target value

• Convergence: influence of the target value
2-path network design problem
80-node instance
Algorithm 1: GRASP with bidirectional PR
Algorithm 2: pure GRASP
P(X1 ≤ X2: target value)
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Convergence: target value

Easy targets: 
GRASP and GRASP+biPR 
behave similarly

Hard targets: 
GRASP+biPR progressively
outperforms GRASP

P(X1 ≤ X2: target value)
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• Convergence: influence 
of the target value

• Consider the average 
time to target values. 

• PR introduces an 
overhead in GRASP for 
easy targets.

• Contrarily, PR strongly 
improves GRASP when 
targets get harder: 
average times increase 
more slowly.



SLS’2009, September 2009 58/59 On the use of run time distributions to evaluate and 
compare stochastic local search algorithms

Concluding remarks
• Run time distributions are very useful tools to 

characterize SLS algorithms.
• Closed form index to compare exponential run 

time distributions.
• Numerical procedure to compute the probability 

that one algorithm finds a target value in less time 
than another, for general run time distributions.

• New probability index provides an additional 
measure for comparing the performance of 
metaheuristics based on SLS algorithms.
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Concluding remarks
• Can also be used in the evaluation of parallel SLS 

algorithms, providing an indicator to evaluate 
trade-offs between elapsed times and the number 
of processors (scalability).

• Run time distributions and new probability index 
are very helpful and give additional insight for 
algorithm engineering. 

• Extension to benchmark sets formed by multiple 
instances and targets.

• Software available from the authors upon request.
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