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Run time distributions

e Run time distributions or time-to-target plots
display the probability that an algorithm will find
a solution at least as good as a given target value
within a given running time:

— Useful tool to characterize the running times of
stochastic local search (SLS) algorithms.

e Experimental results show that random variable
time-to-target-value fits an exponential (or shifted

exponential) distribution for a number of SLS-
based metaheuristics (SA, TS, ILS, GRASP, etc.).
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Run time distributions

e This work: new tool to compare a pair of
different heuristics based on stochastic local
search algorithms.

— Applications to sequential and parallel algorithms
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Exponential run time distributions

e We assume the existence of two SLS algorithms
A, and A, for approximately solving some
combinatorial optimization problem.

— Running times of A, and A, fit exponential (or
shifted exponential) distributions.

— X, (resp. X,): continuous random variable denoting
the time needed by algorithm A, (resp. A,) to find a
solution as good as a given target value:
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Exponential run time distributions
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Exponential run time distributions

e Both algorithms A, and A, stop when they find a
solution at least as good as the target value:

— Algorithm A, performs better than A, if the former
stops before the latter.

e Evaluate the probability that the random variable
X, takes a value smaller than or equal to X,:

P(X, <X,) = [ P(X, < X,| X, =r).f, (r)dr

P(X, < X,)=1-¢g4. 4
e
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2-path network design problem

A,: GRASP with bi-PR A,: pure GRASP
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2-path network design problem
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TTTplot of A, is clearly
to the left of that of A..

Algorithm A, is faster
than A, for this instance
and target.
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Exponential run time distributions

e Aiex, Resende & Ribeiro (J. of Heuristics, 2002):
time taken by a GRASP heuristic to find a
solution at least as good as a given target value
fits an exponential distribution

— [f the setup times are not negligible: running times
fit a two-parameter shifted exponential distribution.

— Experimental result involving 2,400 runs of five
problems: maximum stable set, quadratic

assignment, graph planarization, maximum weighted
satisfiability, and maximum covering.
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Exponential run time distributions

e [f path-relinking is applied as an intensification
step at the end of each GRASP iteration:

— [terations are no longer independent.
— Memoryless characteristic of GRASP is destroyed.

e Therefore, time-to-target-value random variable
may not fit an exponential distribution.

e Examples: GRASP with PR for...

— 2-path network design problem

— three-index assignment problem
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cunulative probability

2-path network design problem
Run-time distribution Quantile-quantile (g-q) plot
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cunulative probability

Three-index assignment problem
Run-time distribution Quantile-quantile (g-q) plot
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Exponential run time distributions

e [f the running times do not fit an exponential
distribution, then the previous closed-form does
not hold.

— Approach has to be extended to general run time
distributions.
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Non-exponential running times

* Once again, we assume the existence of two
independent SLS algorithms A, and A, for the
same problem.

e Time-to-target-values X, and X, are continuous
random variables, with empirical cumulative
probability distributions Fy,(t) and F,,(t) and
probability density functions f,,(t) and f,(7):

P(X, <X )= [ P(X,<7).f, (r)dr= arbitrarily
—00 4z small ¢ >0
:IO P(X,<7).f, (r)dz :iZ:O: .J‘P(Xl <7).f, (r)dz
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Non-exponential running times

(1+1) e
P(X, < X,)< Z Fy (i +)e) j f, (r)dz =R(e)

(|+1)5

L(g) = Z Fy (ie) j f, (r)dz=R(g) < P(X, < X,)

If A(e) =R(¢g)— L(g) is sufficiently small, then
L(¢)+ R(¢)

> .
[n practice, probability density functions fx1 (7) and

P(X,<X,)~=

fy, (z) areunknown.
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Non-exponential running times

Let N be the number of observations of X, and X,.

In the computation of L(&) and R(¢), replace T, (7)

by estimate foz (7) obtained from the sample histogram.

As before, compute
L(¢)+ R(&) |
2

P(X, < X,)~

by humerical integration.
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Application #1: server replication

e DM-GRASP vs. pure GRASP algorithms for
server replication

— DM-GRASP: hybrid version of GRASP incorporating
a data-mining process in the construction phase

— Basic principle: mining for patterns found in good-
quality solutions, to guide the construction of new
solutions (similar to vocabulary building)

— Algorithm A,: DM-D5 version of DM-GRASP

— Algorithm A,: pure GRASP (exponential run time
distribution)

— Sample size: N =200
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Application #1: server replication

Run-time distribution Quantile-quantile (g-q) plot
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Application #1: server replication
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Algorithm DM-D5 outperforms GRASP: P(DM-D5 < GRASP) =0.614775.

SLS'2009, September 2009 25/59 On the use of run time distributions to evaluate and
compare stochastic local search algorithms



Application #2: wavelength assignment

e Multistart greedy vs. tabu search algorithms for
wavelength assignment

— Algorithm A,: multistart greedy (exponential run
time distribution)

— Algorithm A, tabu search
— Sample size: N =200
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Application #2: wavelength assignment

Run-time distribution Quantile-quantile (g-q) plot
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Run time distribution of tabu search is non-exponential (instance Brazil).
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Application #2: wavelength assignment

Brazil
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tine to target solution walue {seconds}

Tabu search clearly outperforms multistart; P(IMS < TS) = 0.106766.
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Application #2: wavelength assignment

Run-time distribution Quantile-quantile (g-q) plot
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Run time distribution of tabu search is non-exponential (instance Finland).
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Application #2: wavelength assignment

Finland

a.1 1 18 188

time to target solution value (seconds)

Now, multistart slightly outperforms tabu search: P(IMS < TS) = 0.545619.
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Application #3: 2-path network design

e (Given a connected graph, edge weights, and a set of
origin-destination nodes, find a minimum weighted
edge subset containing a path formed by at most
two edges between every o-d pair.

e GRASP algorithms for 2-path network design

— Algorit
— Algorit
— Algorit
— Algorit

m A,: GRASP wit
hm A;: GRASP wit

hm A, GRASP wit

hm A,: pure GRASP (exponential running times)

h forward path-relinking
h bidirectional path-relinking

h backward path-relinking

— Instance with 90 nodes and 900 origin-destination pairs
— Sample size: N =500
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cunulative probability

Application #3: 2-path network design

Run-time distribution Quantile-quantile (g-q) plot
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cunulative probability

Application #3: 2-path network design

Run-time distribution Quantile-quantile (g-q) plot
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cunulative probability

Run-time distribution
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Application #3: 2-path network design
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Application #3: 2-path network design

e Application: another instance of the 2-path network
design problem

— Algorithm A,: pure GRASP (exponential running times)

— Algorit
— Algorit
— Algorit

— Algorit

hm A,: GRASP wit
hm A;: GRASP wit
hm A,: GRASP wit

hm A.: GRASP wit

h forward path-relinking
h bidirectional path-relinking
h backward path-relinking

h mixed path-relinking

— Instance: 80 nodes and 800 origin-destination pairs
— Sample size: N = 500
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Mixed path-relinking

e Given initial and guiding solutions; start from
the initial solution, obtain the new current
solution, exchange the roles of the current and
guiding solutions, and repeat the procedure.

XS
(a) [ Y ®
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Mixed path-relinking

e Given initial and guiding solutions; start from
the initial solution, obtain the new current
solution, exchange the roles of the current and
guiding solutions, and repeat the procedure.

XS 1 X Xt

(a) ® >@ ®
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Mixed path-relinking

e (Given initial and guiding solutions: start from
the initial solution, obtain the new current
solution, exchange the roles of the current and
guiding solutions, and repeat the procedure.

XS 1 X Xt

(a) [ >@
x' X 2 x>
(b) (] >@ @< @
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Mixed path-relinking

e (Given initial and guiding solutions: start from
the initial solution, obtain the new current
solution, exchange the roles of the current and
guiding solutions, and repeat the procedure.

XS 1 X Xt
(a) ® >@
x' X 2 x>
(b) o >@ @< o
NE 3 x "
(c) ® >@ >@ @< o
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Mixed path-relinking

e (Given initial and guiding solutions: start from
the initial solution, obtain the new current
solution, exchange the roles of the current and
guiding solutions, and repeat the procedure.

XS 1 X Xt
(a) ® >@
x' X 2 x>
(b) o >@ @< o
NE 3 x "
(c) ® >@ >@ @< o
x* X 4 x°
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Application #3: 2-path network design
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Application #3: 2-path network design
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GRASP+biPR) = 0.55435 Mixed path-relinking seems to outperform
other versions of path-relinking.
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Parallel implementations

e Evaluation of trade-offs between:
— cooperative and independent implementations
— running time and number of processors

e Application: 2-path network design problem
— Algorithm A,: GRASP with bidirectional path-relinking
— Cooperative and independent parallel implementations
— [nstance with 80 nodes and 800 origin-destination pairs
— Sample size: N =500

e Run time distributions of independent and
cooperative implementations of GRASP with
bidirectional PR on 2, 4, 8, 16, 32 processsors.
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Parallel implementations

e Run time distributions of independent and
cooperative implementations of GRASP with
bidirectional PR on 2, 4, 8, 16, 32 processsors.

o A ' (resp. A?) denotes the cooperative (resp.
independent) parallel implementation of GRASP
with bidirectional path-relinking running on k =2,
4,8, 16, 32 processors.
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Cooperative parallel implementations
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Independent parallel implementations
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Parallel implementations

o Probab|!|t|es that thg cooperative ‘ P(X, K< XK

parallel implementation performs

better than the independent on

k=2, 4, 8, 16, 32 processors 2 0.309660
e |ndependent implementation

performs better than the 4 0.597253

cooperative on two processors.

. . 3 0.766698

e Cooperative implementation

performs better when 'Fhe 16 0.860910

number of processors increases,

because more processors are

devoted to perform iterations. 32 0.944846
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Parallel implementations

e Probabilities that each of the two parallel

implementations performs better on 2i*! than on 2

processors, forj=1, 2, 3, 4.

P(X;2< X,P) | P(X,2< X,P)
# procs. a | # procs. b _ _
cooperative | independent
4 2 0.766204 | 0.629691
8 4 0.748302 | 0.662932
16 8 0.713272 | 0.571173
32 16 0.742037 | 0.224815
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Parallel implementations

e Cooperative implementation scales appropriately as
the number of processors grows.

e Performance of the independent implementation
seems to deteriorate in the same scenario.
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Convergence: sample size (1)

e Convergence: influence of the sample size

2-path network design problem

90-node instance

Algorithm 1: GRASP with backward PR
Algorithm 2: GRASP with bidirectional PR
P(X,; < X,: N=100) = 0.54925

P(X, £X,: N=200) = 0.54796

P(X, £X,: N=5000) = 0.53636
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Convergence: sample size (1)

8.,600000 .
8.590008 98-node instance —#—
8.56008088 | |
8,.570008 | i
8.560000 | |

P(X, = X,: sample size)

B8.5580088 - 1

probability

8.548888 .

8.35308688 .

B8.5280088 .

B8.518088 .

8.580808 ! ! ' ' !
a 1848 2808 Joane 4888 oaaa

SLS'2009, September 2009 52/59 On the use of run time distributions to evaluate and
compare stochastic local search algorithms



Convergence: sample size (2)

e Converdgence: influence of the sample size

Server replication problem

25-node instance

Algorithm 1: DM-D5 version of DM-GRASP
Algorithm 2: pure GRASP

P(X, < X,: N=100) = 0.64620

P(X, £X,: N=200) =0.61834

P(X, £X,: N =5000) = 0.58432
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Convergence: sample size (2)
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Convergence: target value

e Convergence: influence of the target value

2-path network design problem

80-node instance

Algorithm 1: GRASP with bidirectional PR
Algorithm 2: pure GRASP

P(X, £ X,: target value)
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8.980888

8.808080 -

Convergence: target value
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probability

8,66800800

888888888

888888888

Convergence: influence

BBBBBBBB

BBBBBBBB

target solution value

of the target value

Consider the average
time to target values.

PR introduces an
overhead in GRASP for
easy targets.

Contrarily, PR strongly
improves GRASP when
targets get harder:
average times increase
more slowly.



Concluding remarks

e Run time distributions are very useful tools to
characterize SLS algorithms.

e Closed form index to compare exponential run
time distributions.

e Numerical procedure to compute the probability
that one algorithm finds a target value in less time
than another, for general run time distributions.

e New probability index provides an additional
measure for comparing the performance of
metaheuristics based on SLS algorithms.
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Concluding remarks

e Can also be used in the evaluation of parallel SLS
algorithms, providing an indicator to evaluate
trade-offs between elapsed times and the number
of processors (scalability).

e Run time distributions and new probability index
are very helpful and give additional insight for
algorithm engineering.

e Extension to benchmark sets formed by multiple
Instances and targets.

e Software available from the authors upon request.
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