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Metaheuristics

Definition

Metaheuristics are general high-level procedures that coordinate
simple heuristics and rules to find good (often optimal)
approximate solutions to computationally difficult combinatorial
optimization problems.

◮ Randomization plays an important role in algorithm design:
◮ Some metaheuristics (such as GRASP and VNS) rely on

randomization to sample the search space.
◮ Can be used to break ties, so as that different trajectories can

be followed from the same initial solution in multistart
methods or to sample fractions of large neighborhoods.

◮ Greedy randomized algorithms make use of randomization to
build different solutions at different runs.
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Need for effective stopping criteria

◮ Metaheuristics often suffer from the absence of effective
stopping criteria, stopping after . . .

◮ a given maximum number of iterations, or
◮ a given maximum number of consecutive iterations without

improvement in the best known solution value, or
◮ stabilization of the set of elite solutions found along the search.

◮ Algorithms . . .
◮ may perform an exaggerated number of iterations, or
◮ may stop just before the iteration that would find an optimum.

◮ Dual bounds may be used in quality-based stopping rules, but
they are often hard to compute or far from the optimal values.

◮ Bayesian rules were not followed by enough numerical results
to validate their effectiveness or to illustrate their efficiency.

◮ This paper: effective probabilistic stopping rules for
randomized metaheuristics.
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GRASP template

◮ Minimization problem: min f (x) : x ∈ X
◮ GRASP is a multi-start metaheuristic.
◮ Each iteration has two phases: construction and local search.

procedure GRASP(MaxIterations, Seed)
1. Set f ∗ ←∞;
2. for k = 1, . . . , MaxIterations do

3. x ← GreedyRandomizedAlgorithm(Seed);
4. x ← LocalSearch(x);
5. if f (x) < f ∗ then

6. x∗ ← x ;
7. f ∗ ← f (x);
8. end;
9. fk ← f (x);
10. end;
11. return x∗;
end.

7 / 45



2-path network design problem

Formulation

Given a connected undirected graph G = (V ,E ) with non-negative
weights associated with its edges, together with K pairs of
origin-destination nodes, the 2-path network design problem
consists of finding a minimum weighted subset of edges containing
a path formed by at most two edges between every
origin-destination pair.

◮ GRASP heuristic: Ribeiro & Rosseti (2002), LNCS 2400;
Ribeiro & Rosseti (2007), Parallel Computing 33.
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2-path network design problem

◮ set ℓ = 0 and u to the sum over all K demand pairs of the
longest 2-path between each origin-destination pair.

Instance |V | |E | K ℓ u

2pndp50 50 1,225 500 0 6244
2pndp70 70 2,415 700 0 10353
2pndp90 90 4,005 900 246 14621
2pndp200 200 19,900 2000 0 37314
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p-median problem

Formulation

Given a set F of m potential facilities, a set U of n customers, a
distance function d : U × F → R, and a constant p ≤ m, the
p-median problem consists of determining which p facilities to
open so as to minimize the sum of the distances from each
costumer to its closest open facility.

◮ GRASP heuristic: Resende & Werneck (2004), Journal of
Heuristics 10.
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p-median problem

◮ set ℓ to the sum over all customers of the distance from each
customer to its closest facility. Similarly, set u to the sum over
all customers of the distance from each customer to its most
distant facility.

Instance m n p ℓ u

pmed14 300 1800 60 2968 5898
pmed15 300 1800 100 1729 9791
pmed25 500 5000 167 1828 16477
pmed30 600 7200 200 1989 19826
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Quadratic assignment problem

Formulation

Given n facilities and n locations represented by sets
F = {f1, . . . , fn} and L = {ℓ1, . . . , ℓn}, assign each facility to a
location. Let An×n = (aij) : aij ∈ R

+ represents the flow between
fi and fj . Let B

n×n = (bij) : bij ∈ R
+ represents the distance

between ℓi and ℓj . Assignment p : {1, . . . , n} → {1, . . . , n} has
cost c(p) =

∑n
i=1

∑n
j=1 ai ,jbp(i),p(j). Find a permutation vector

p ∈ Πn that minimizes the assignment cost c(p), where Πn stands
for the set of all permutations of {1, . . . , n}.

◮ GRASP heuristic: Oliveira, Pardalos & Resende (2004), LNCS
3059.
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Quadratic assignment problem

◮ compute ℓ and u by ordering the elements of A and B and
multiplying them appropriately.

Instance n ℓ u

tai30a 30 1706855 8596620
tai35a 35 2216627 11803330
tai40a 40 2843274 15469120
tai50a 50 4390920 24275700
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The set k-covering problem

Formulation

Given a set I = {1, . . . ,m} of objects, let {P1, . . . ,Pn} be a
collection of subsets of I , with a non-negative cost cj associated

with each subset Pj , for j = 1, . . . , n. A subset Ĵ ⊆ J = {1, . . . , n}
is a cover of I if ∪

j∈Ĵ
Pj = I . The cost of a cover Ĵ is

∑

j∈Ĵ
cj .

The set covering problem consists of finding a minimum cost cover
J∗. The set multi-covering problem is a generalization of the set
covering problem, in which each object i ∈ I must be covered by at
least ℓi ∈ Z+ elements of {P1, . . . ,Pn}. A special case of the set
multi-covering problem arises when ℓi = k , for all i ∈ I . We refer
to this problem as the set k-covering problem.

◮ L.S. Pessoa, M.G.C. Resende, and C.C. Ribeiro, A hybrid
Lagrangean heuristic with GRASP and path relinking for set
k-covering, Computers and Operations Research, 2012
(online).
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The set k-covering problem

◮ set ℓ to the optimal value of the linear relaxation. To compute
u, create a list associated to each row of the constraint
matrix, formed by the k largest costs of the variables that
cover this row. Next, build the set of variables formed by the
union of the m individual lists and set u to the sum of the
costs of these variables.

Instance Dimension kmin ℓ u

scp42 200x1000 2 1205 37132
scp47 200x1000 2 1115 36570
scp55 200x2000 2 550 38972
scpa2 300x3000 2 560 58550
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Normal approximation

Assumption

We assume that the solution values obtained by a GRASP
procedure fit a Normal distribution and experimentally validate this
hypothesis for all test problems and test instances.

◮ f1, . . . , fN : sample formed by all solution values obtained
along N GRASP iterations:

◮ Null hypothesis H0: sample f1, . . . , fN fits a Normal distribution
◮ Alternative hypothesis H1: sample f1, . . . , fN does not fit a

Normal distribution
◮ Chi-square test commonly used to determine if a given set of

observations fits a specified distribution.
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Chi-square test

◮ First step: estimate a histogram of the sample data.

◮ Second step: compare the observed frequencies with those
obtained from the specified density function.

◮ Histogram formed by k cells: oi and ei are the observed and
expected frequencies for the i-th cell, with i = 1, . . . , k .

◮ Compute D =
∑k

i=1
(oi−ei )

2

ei

◮ D follows a chi-square distribution with k − 1 degrees of
freedom under the null hypothesis.

◮ Since the mean and the standard deviation are unknown, they
should be estimated from the sample:

◮ two degrees of freedom are lost to compensate.

◮ Null hypothesis cannot be rejected at a level of significance α
if D < χ2

[1−α;k−3].
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Numerical experiments

◮ Validation for all test problems and test instances previously
described:

◮ results summarized for some instances for clearness of
presentation.

◮ Level of significance set at α = 0.1.

◮ Histograms with k = 14 cells, corresponding to the intervals
(−∞,−3.0), [−3.0,−2.5), [−2.5,−2.0), [−2.0,−1.5),
[−1.5,−1.0), [−1,−0.5), [−0.5, 0.0), [0.0, 0.5), [0.5, 1.0),
[1.0, 1.5), [1.5, 2.0), [2.0, 2.5), [2.5, 3.0), and [3.0,∞).

◮ Normal fittings after N = 50, 100, 500, 1000, 5000, and
10000 GRASP iterations for each instance.
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Validation: 2-path network design problem

◮ Chi-square test after N = 50 iterations:

Instance Iterations D χ2
[1−α;k−3]

2pndp50 50 0.398049 17.275000
2pndp70 50 0.119183 17.275000
2pndp90 50 0.174208 17.275000
2pndp200 50 0.414327 17.275000

◮ Statistics for Normal fittings:

Instance Iterations Mean Std. dev. Skewness Kurtosis
50 372.920000 7.583772 0.060352 3.065799
100 373.550000 7.235157 -0.082404 2.897830

2pndp50 500 373.802000 7.318661 -0.002923 2.942312
1000 373.854000 7.192127 0.044952 3.007478
5000 374.031400 7.442044 0.019068 3.065486
10000 374.063500 7.487167 -0.010021 3.068129
50 540.080000 9.180065 0.411839 2.775086
100 538.990000 8.584282 0.314778 2.821599

2pndp70 500 538.334000 8.789451 0.184305 3.146800
1000 537.967000 8.637703 0.099512 3.007691
5000 538.576600 8.638989 0.076935 3.016206
10000 538.675600 8.713436 0.062057 2.969389

20 / 45



Validation: 2-path network design problem

◮ Fitted Normal distributions:
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Validation: p-median problem

◮ Chi-square test after N = 50 iterations:

Instance Iterations D χ2
[1−α;k−3]

pmed14 50 0.374863 17.275000
pmed15 50 0.167526 17.275000
pmed25 50 0.249443 17.275000
pmed30 50 0.160131 17.275000

◮ Statistics for Normal fittings:

Instance Iterations Mean Std. dev. Skewness Kurtosis
50 2170.500000 58.880642 -0.041262 1.949923
100 2168.450000 65.313609 0.270892 2.693553

pmed15 500 2173.060000 65.881958 0.202400 2.828056
p = 100 1000 2173.484000 65.590272 0.129234 2.784433

5000 2174.860000 64.639604 0.086450 2.940204
10000 2175.651600 65.101495 0.096328 2.954639
50 2277.780000 54.782220 0.330959 3.028905
100 2279.610000 58.034799 0.360133 3.466265

pmed25 500 2271.546000 56.029848 0.219415 3.311486
p = 167 1000 2274.182000 56.915366 0.081878 3.068963

5000 2276.305200 56.985195 -0.041096 3.108109
10000 2277.151600 57.583524 -0.041570 3.073374
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Validation: p-median problem

◮ Fitted Normal distributions:
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Validation: quadratic assignment problem

◮ Chi-square test after N = 50 iterations:

Instance Iterations D χ2
[1−α;k−3]

tai30a 50 0.127260 17.275000
tai35a 50 0.213226 17.275000
tai40a 50 0.080164 17.275000
tai50a 50 0.075752 17.275000

◮ Statistics for Normal fittings:

Instance Iterations Mean Std. dev. Skewness Kurtosis
50 1907129.960000 15106.752548 -0.068782 2.562099
100 1906149.760000 16779.060456 0.112965 3.028193

tai30a 500 1907924.412000 17663.997163 -0.005122 3.071314
1000 1908292.204000 17241.785219 -0.058100 2.982074
5000 1907542.144400 17484.852454 0.077001 2.978316
10000 1907411.800800 17354.183037 0.044985 2.982363
50 2544227.480000 24293.234765 0.260849 2.906127
100 2541730.980000 21782.204670 0.374843 3.131055

tai35a 500 2541151.156000 20167.926106 0.098408 2.990821
1000 2541735.064000 20809.432271 0.079094 3.073285
5000 2541625.512800 20952.352020 0.057649 3.069945
10000 2541104.138000 21191.460956 0.055055 3.089498
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Validation: quadratic assignment problem

◮ Fitted Normal distributions:
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Validation: The set k-covering problem

◮ Chi-square test after N = 50 iterations:

Instance Iterations D χ2
[1−α;k−3]

scp42 50 0.119939 17.275000
scp47 50 0.147765 17.275000
scp55 50 0.164476 17.275000
scpa2 50 0.092947 17.275000

◮ Statistics for Normal fittings:

Instance Iterations Mean Std. dev. Skewness Kurtosis
50 1692.200000 122.108968 0.346549 2.485267
100 1707.790000 138.210513 0.747575 3.727116

scp42 500 1682.012000 129.047681 0.453641 3.395710
1000 1677.603000 127.209156 0.424774 3.437712
5000 1678.960800 129.853048 0.481598 3.395114
10000 1678.848600 130.216475 0.478711 3.328128
50 1105.160000 149.749439 0.139493 2.671918
100 1115.010000 154.429304 0.585166 4.036000

scp55 500 1146.800000 157.817350 0.299096 3.059246
1000 1146.450000 155.945348 0.332401 3.045766
5000 1151.254200 164.425966 0.384420 3.099880
10000 1154.463700 164.456147 0.397244 3.144651
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Validation: The set k-covering problem

◮ Fitted Normal distributions:
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Validation: conclusions

◮ Skewness measures the symmetry of the original data (equal
to 0 for a perfect Normal fitting).

◮ Kurtosis measures the shape of the fitted distribution (equal
to 3 for a perfect Normal fitting).

◮ Mean values quickly converge to a steady-state value when
the number of iterations increases.

◮ Mean after 50 iterations is already very close to that of the
Normal fitting after 10000 iterations.

◮ Skewness and kurtosis values are consistently close to 0 and 3.

◮ Null hypothesis cannot be rejected with 90% of confidence:
◮ Solution values may be approximated by a Normal distribution

that can be progressively fitted and improved.

◮ Approximation can be used to establish and validate a
probabilistic stopping rule for GRASP heuristics.
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Basics

◮ Normal approximation of solution values can be used to give
an online estimation of the number of solutions that are at
least as good as the best known solution.

◮ Estimation will be used to implement stopping rules based on
the time needed to find a solution at least as good as the
incumbent.

◮ X is a random variable associated with the objective value of
the local minimum obtained at each GRASP iteration.

◮ f1, . . . , fk : solution values obtained along k iterations.

◮ mk and Sk : mean and standard deviation of f1, . . . , fk .

◮ We assume that X fits a Normal distribution N(mk , Sk) with
average mk and standard deviation Sk , whose probability
density function and cumulative probability distribution are,
respectively, f kX (.) and F k

X (.).
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Stopping rule 1/4

◮ ubk : best solution value along the k first iterations.

◮ Probability of finding a solution value smaller than or equal to
ubk in the next iteration can be estimated by

F k
X (ub

k) =

∫ ubk

−∞

f kX (τ)dτ, with

f kX (τ) = 1/(Sk
√
2π) · e

−(τ−mk )2

2Sk
2
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Stopping rule 2/4

◮ If lower (L) and upper (U) bounds exist for the cost of any
feasible solution, then a better approximation for the
probability density function f kX (τ) is given by the Truncated
Normal distribution whose probability density function is:

f̂ kX (τ) =











0, if τ < L
f k
X
(τ)

1−(∆−+∆+)
, if L ≤ τ ≤ U

0, if τ > U

∆− =

∫ L

−∞

f kX (τ)dτ

∆+ =

∫ +∞

U

f kX (τ)dτ
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Stopping rule 3/4

◮ Truncated Normal distribution:
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Stopping rule 4/4

◮ Value of

F̂ k
X (ub

k) =

∫ ubk

L

f̂ kX (τ)dτ

is periodically recomputed after a given number of iterations
is performed or whenever the value of the best known solution
improves.
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Computational experiment

◮ Experiment is performed for each test problem and instance.

◮ For each value of the threshold β = 10−1, 10−2, 10−3, 10−4,
10−5, we run the heuristic until F̂ k

X (ub
k) becomes less than or

equal to β:
◮ k is the iteration counter where this condition is met.
◮ ub is the best known solution value at this time.

◮ Recall that F̂ k
X (ub

k) is an estimation of the probability of
finding in the next iteration a solution whose objective value is
smaller than or equal to ubk .

◮ Estimate by N̂≤ = ⌊N · F̂ k
X (ub)⌋ the number of solutions

whose value will be at least as good as ub if N additional
iterations are performed:

◮ N = 1, 000, 000 is empirically set in the experiments.

◮ Perform N additional iterations and count the number N≤ of
solutions whose value is smaller than or equal to F̂ k

X (ub).
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Validation: 2-path network design problem

◮ Stopping criterion vs. estimated and counted number of
solutions at least as good as the incumbent after
N = 1, 000, 000 additional iterations.

Instance Threshold Probability Estimation Count

β F̂ k
X (ub) N̂≤ N≤

0.1 0.079046 79046 1843
0.01 0.009970 9970 1843

50 0.001 0.000757 757 738
0.0001 0.000001 1 0
0.00001 0.000001 1 0

0.1 0.078669 78669 148028
0.01 0.008923 8923 9537

70 0.001 0.000643 643 465
0.0001 0.000036 36 26
0.00001 0.000005 5 4

0.1 0.085933 85933 2066
0.01 0.009257 9257 2066

90 0.001 0.000326 326 190
0.0001 0.000015 15 7
0.00001 0.000001 1 0

0.1 0.028989 28989 32151
0.01 0.001821 1821 1539

200 0.001 0.000566 566 503
0.0001 0.000100 100 95
0.00001 0.000001 1 1
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Validation: p-median problem

◮ Stopping criterion vs. estimated and counted number of
solutions at least as good as the incumbent after
N = 1, 000, 000 additional iterations.

Instance Threshold Probability Estimation Count

β F̂ k
X (ub) N̂≤ N≤

0.1 0.060647100 60647 79535
0.01 0.008542180 8542 7507

pmed14 0.001 0.000786594 787 215
0.0001 6.93313e-05 69 5
0.00001 5.55867e-06 6 0

0.1 0.069694000 69694 117054
0.01 0.009213730 9214 16968

pmed15 0.001 0.000626060 626 311
0.0001 6.36170e-05 63 26
0.00001 9.99977e-06 10 3

0.1 0.089011300 89011 12428
0.01 0.009309490 9309 4176

pmed25 0.001 0.000997936 998 1232
0.0001 2.82536e-05 28 38
0.00001 4.84266e-06 5 4

0.1 0.089941100 89941 120598
0.01 0.004634650 4635 1426

pmed30 0.001 0.000991829 992 1133
0.0001 2.86224e-06 3 1
0.00001 2.86224e-06 3 1
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Validation: quadratic assignment problem

◮ Stopping criterion vs. estimated and counted number of
solutions at least as good as the incumbent after
N = 1, 000, 000 additional iterations.

Instance Threshold Probability Estimation Count

β F̂ k
X (ub) N̂≤ N≤

0.1 0.0451511 45151 94107
0.01 0.0037732 3773 3759

tai30a 0.001 0.0009956 996 1031
0.0001 —– —– —–
0.00001 —– —– —–

0.1 0.0980506 98051 39090
0.01 0.0097537 9754 5389

tai35a 0.001 0.0009996 1000 1152
0.0001 —– —– —–
0.00001 —– —– —–

0.1 0.0645173 64517 15748
0.01 0.0090935 9094 15748

tai40a 0.001 0.0001213 121 111
0.0001 —– —– —–
0.00001 —– —– —–

0.1 0.0787829 78783 281757
0.01 0.0096325 9633 10214

tai50a 0.001 0.0004766 477 373
0.0001 —– —– —–
0.00001 —– —– —–
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Validation: The set k-covering problem

◮ Stopping criterion vs. estimated and counted number of
solutions at least as good as the incumbent after
N = 1, 000, 000 additional iterations.

Instance Threshold Probability Estimation Count

β F̂ k
X (ub) N̂≤ N≤

0.1 0.09041400 90414 111059
0.01 0.00967873 9679 5944

scp42 0.001 0.00045695 457 0
0.0001 —– —– —–
0.00001 —– —– —–

0.1 0.08882630 88826 125995
0.01 0.00817110 8171 1897

scp47 0.001 0.00035939 359 0
0.0001 —– —– —–
0.00001 —– —– —–

0.1 0.05851490 58515 36119
0.01 0.00495659 4957 604

scp55 0.001 0.00099997 1000 7
0.0001 —– —– —–
0.00001 —– —– —–

0.1 0.07897290 78973 160036
0.01 0.00995155 9952 8496

scpa2 0.001 0.00019888 199 0
0.0001 —– —– —–
0.00001 —– —– —–

39 / 45



Validation: conclusions

◮ Results show that N̂≤ = ⌊N · F̂ k
X (ub)⌋ is a good estimator for

the number N≤ of solutions that might be found after N
additional iterations whose value is smaller than or equal to
the best solution value at the time the algorithm would stop
for each threshold value β used in the stopping criterion.

◮ Probability F̂ k
X (ub

k) may be used to estimate the number of
iterations that must be performed by the algorithm to find a
new solution at least as good as the current best.

◮ Since the user is able to account for the average time taken by
each GRASP iteration, the threshold defining the stopping
criterion can either be fixed or determined online so as to
bound the computation time when the probability of finding
improving solutions becomes very small.
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Revised GRASP template with stopping rule

◮ New template implements the termination rule that stops the
iterations whenever the probability of improving the best
known solution value gets smaller than or equal to β.

procedure GRASP(β, Seed)
1. Set f ∗ ←∞ and k ← 0;
2. repeat

3. x ← GreedyRandomizedAlgorithm(Seed);
4. x ← LocalSearch(x);
5. if f (x) < f

∗ then x
∗

← x ; f ∗ ← f (x); end;
6. k ← k + 1;
7. fk ← f (x);

8. ub
k
← f

∗;

9. Update the average m
k and the standard deviation S

k of f1, . . . , fk ;

10. Compute the estimate F̂
k
X (ub

k) = F̂
k
X (f

∗) =
∫ f ∗

−∞
f̂
k
X (τ)dτ ;

11. until F̂ k
X (f

∗) < β;
12. return x

∗;
end.
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Alternative stopping rules

◮ Threshold β used to implement the stopping criterion may
either be fixed a priori as a parameter or iteratively computed:

◮ in this case, its value will be computed considering the
probability of finding an improving solution (or, alternatively,
the estimated number of iterations to find an improving
solution) and the average computation time per iteration.

◮ Since the average time consumed by each GRASP iteration is
known, another promising avenue of research consists in
investigating stopping rules based on estimating the amount
of time needed to improve the best solution found (e.g. by
each percent point).
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Concluding remarks

◮ Probabilistic stopping rules have been proposed for
randomized metaheuristics.

◮ Solution values obtained by a metaheuristic such as GRASP
have been shown experimentally to fit a Normal distribution.

◮ Normal approximation used to estimate the probability of
finding a solution at least as good as the currently best.

◮ Stopping criterion is based on the probability of finding a
solution at least as good as the incumbent:

◮ GRASP iterations will be interrupted whenever the probability
of finding a solution at least as good as the incumbent
becomes smaller than or equal to a certain threshold.

◮ Robustness of this strategy was illustrated and validated by a
thorough computational study reporting results obtained with
GRASP implementations for three combinatorial optimization
problems.
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Extensions and ongoing work

◮ Investigation of alternative termination rules:
◮ Threshold β may be iteratively computed, considering the

probability of finding an improving solution (or, alternatively,
the estimated number of iterations to find an improving
solution) and the average computation time per iteration.

◮ Since the average time consumed by each GRASP iteration is
known, investigate stopping rules based on estimating the
amount of time needed to improve the best known solution.

◮ Applications to other problems will be reported elsewhere.

◮ Extension to other randomized metaheuristics:
◮ Variable Neighborhood Search (VNS)
◮ Genetic Algorithms

◮ Extension to memory-based metaheuristics:
◮ Solution values fit Erlang distributions.
◮ Application to GRASP with path-relinking heuristics.
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