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Wireless ad hoc networks

Definition

An ad hoc network consists of a collection of transceivers, in which
a packet may have to traverse multiple consecutive wireless links to
reach its final destination.

I Usefull when no communication infrastructure is available.

I Radio transceivers communicate without any fixed
infrastructure.

I Examples of applications:
I Battlefield communication
I Disaster relief communication
I Ubiquitous internet access
I Sensor networks
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Wireless ad hoc networks

I Ad hoc networks can be represented by a set V of transceivers
(nodes) together with their locations or the distances between
them.

I For each ordered pair (u, v) of transceivers, with u, v ∈ V , we
are given a non-negative arc weight e(u, v) = dεuv

I duv is the Euclidean distance between the transmitter u and
the receiver v .

I ε is the loss exponent, typically equal to two.

Ad hoc network
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Wireless ad hoc networks

I A transmission power pu is associated with each node u ∈ V .

Ad hoc network
Transmission power
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pu
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Wireless ad hoc networks

I A signal transmitted by the transceiver u can be received at
node v if and only if the transmission power assigned to node
u is at least equal to e(u, v), i.e. if pu ≥ e(u, v).

Ad hoc network

pu > e(u,v)

v

u
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Wireless ad hoc networks

I Wireless networks face a variety of constraints that do not
appear in wired networks.

I Power constraints:
I Nodes are battery powered: it is expensive and sometimes even

infeasible to recharge the device.
I Radios tend to be the major source of power dissipation.
I Instead of transmitting with maximum power, algorithms

adjust the transmission power of each node.

I Connectivity constraints:
I Fault-tolerance requirements, due to their critical application

domains and to the large number of failures.
I If there is only one path between a pair of nodes, failure of a

node or link between them will result in a disconnected graph.
I Topologies with multiple, disjoint paths between any pair of

nodes are often required.
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Problem statement

I Given the node set V and non-negative arc weights e(u, v) for
any u, v ∈ V :

Definition

The biconnected minimum power consumption problem consists of
finding an optimal assignment of transmission powers p : V → R+
to every node u ∈ V , such that the total power consumption∑

u∈V pu is minimized and the resulting transmission graph
G = (V ,E ) is biconnected, where
E = {(u, v) : u ∈ V , v ∈ V , pu ≥ e(u, v)}.

I Problem is proved to be NP-hard.
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System model

I Set V of transceivers, with |V | = n, each of them equipped
with an omnidirectional antenna which is responsible for
sending and receiving signals.

I Ad hoc network established by assigning a transmission power
pu to each transceiver u ∈ V .

I Each node can (possibly dynamically) adjust its transmitting
power, based on the distance to the receiving nodes and on
the background noise.
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System model

I Power requirement at node u for supporting transmissions
through a link from u to v :

e(u, v) ≥ dεuv .qv ,

where:
I duv : Euclidean distance between the transmitter u and the

receiver v ,
I ε: loss exponent
I qv : receiver’s power threshold for signal detection, usually

normalized to one
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System model: symmetric input variant

I Power requirements for supporting transmissions between
nodes u and v are often symmetric:

e(u, v) = e(v , u)

I Symmetric version widely accepted as reasonable:
I Holds for free-space environments with non-obstructed lines of

sight.
I Disregards reflections, scattering, and diffraction caused e.g.

by buildings and terrains.
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System model: asymmetric input variant

I There may exist pairs of transceivers u, v ∈ V such that

e(u, v) 6= e(v , u)

I Some situations:
I Batteries with different power levels.
I Heterogeneous nodes.
I Different levels of ambient noise in the regions of each node.
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System model: unidirectional topology

I Communication from u to v enabled whenever pu ≥ e(u, v).

I Transmission graph G = (V ,E ) associated with a power
assignment p : V → R+:

E = {(u, v) : u ∈ V , v ∈ V , pu ≥ e(u, v)}

I All arcs established by the power settings are considered to
enforce biconnectedness.
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System model: bidirectional topology

I Communication from u to v enabled whenever pu ≥ e(u, v)
and pv ≥ e(v , u).

I Restricted arc set considered to enforce the biconnectivity
constraints.

I Transmission graph G (p) = (V ,B(p)) associated with a
power assignment p : V → R+:

B(p) = {(u, v) : u ∈ V , v ∈ V , pu ≥ e(u, v), pv ≥ e(v , u)} ⊆ E

I Edge [u, v ] is used as a communication link to enforce
biconnectedness if v is within the transmission range of u and
u is within the transmission range of v .
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System model: example with symmetric input

I Minimum biconnected unidirectional topology solution

I G (p) = (V ,E (p))

I Total power consumption: 44
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System model: example with symmetric input

I Minimum biconnected bidirectional topology solution

I G (p) = (V ,B(p))

I Total power consumption: 45
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System model: example with asymmetric input

I Minimum biconnected unidirectional topology solution

I G (p) = (V ,E (p))

I Total power consumption: 33
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System model: example with asymmetric input

I Minimum biconnected bidirectional topology solution

I G (p) = (V ,B(p))

I Total power consumption: 39
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Problem variants

I Four versions of the biconnected minimum power
consumption problem:

I Symmetric input with unidirectional topology
I Symmetric input with bidirectional topology
I Asymmetric input with unidirectional topology
I Asymmetric input with bidirectional topology
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Related work: symmetric input

Unidirectional topology
I Connected transmission graph

I Chen and Huang, 1989:
I NP-hardness
I 2-approximation algorithm

I Kirousis et al., 2000:
I NP-hardness in three-dimensional Euclidean space
I 2-approximation algorithm

I Biconnected transmission graph
I Calinescu and Wan, 2006:

I NP-hardness
I 4-approximation algorithm
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Related work: symmetric input

Bidirectional topology
I Connected transmission graph

I Calinescu etal., 2002:
I NP-completeness

I Althaus et al., 2006:
I (5/3 + ε)-approximation algorithm
I Branch-and-cut algorithm

I Biconnected transmission graph
I Lloyd et al., 2005:

I (2(2− 2/n)(2 + 1/n))-approximation algorithm
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Related work: asymmetric input

Unidirectional topology
I Connected transmission graph

I Krumke et al., 2003, Calinescu et al., 2003, Caragiannis et al.,
2006:

I O(log n)-approximation algorithm

Bidirectional topology
I Connected transmission graph

I Caragiannis et al., 2006:
I O(1.35 log n)-approximation algorithm

I Calinescu et al., 2003:
I O(log n)-approximation algorithm
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Integer programming formulation: variables

I Multicommodity network flow model (Magnanti and
Raghavan, 2005)

I C is a set of d|V |/2e commodities.
I For each commodity c ∈ C :

I Origin o(c)
I Destination d(c)

I For any node i ∈ V and any commodity c ∈ C :
I Dc(i) = −2, if i = o(c),
I Dc(i) = +2, if i = d(c),
I Dc(i) = 0 otherwise.

I For node i ∈ V and commodity c ∈ C , the binary variable f c
ij

represents the flow of commodity c through arc (i , j):
I f c

ij = 1, if arc (i , j) is used by commodity c for communication
from node i to j ,

I f c
ij = 0, otherwise.
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Integer programming formulation: variables

I Pi = [p1
i , . . . , p

φ(i)
i ] is a list of increasing “efficient” power

levels that can be assigned to node i ∈ V , where:
I p1

i is the minimum power such that transmissions from i reach
at least one node in V \ {i}.

I p`+1
i > p`i > 0 for ` = 1, . . . , φ(i)− 1.

I p0
i = 0 for ease of representation.

I T `
i 6= ∅ is the set of new nodes reachable from i if its power

level increases from p`−1
i to p`i , for ` = 1, . . . , φ(i).
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Integer programming formulation: variables

2

3 3

8
5

a

b

c

d

e

f

I Pa = [2, 3, 5, 8]

I T 1
a = {b}, T 2

a = {c , d}, T 3
a = {e}, T 4

a = {f }
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Integer programming formulation: variables

I Nodes i ∈ V and power levels Pi = [p1
i , . . . , p

φ(i)
i ]

I Binary variables x`i , ` = 1, . . . , φ(i), determine the power level
assigned to each node i ∈ V :

I x`i = 1, if there is a node j ∈ T `
i such that link (i , j) is used for

communication from i to j ,
I x`i = 0, otherwise.

I p
¯̀(i)
i is the minimum power level such that transmissions from

i reach at least two nodes in V \ {i}.
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Integer programming formulation: model

min
∑
i∈V

φ(i)∑
`=1

(p`i − p`−1
i ) · x`i

subject to: ∑
j∈V

f c
ji −

∑
l∈V

f c
il = Dc(i), ∀c ∈ C ,∀i ∈ V

∑
j∈V

f c
ij ≤ 1, ∀c ∈ C ,∀i ∈ V : i 6= o(c), i 6= d(c)

x`i ≥ f c
ij , ∀i ∈ V ,∀c ∈ C ,∀j ∈ T `

i , ` = 1, . . . , φ(i)

x`+1
i ≤ x`i , ∀i ∈ V , ` = 1, . . . , φ(i)− 1

x`i = 1, ∀i ∈ V , ` = 1, . . . , ¯̀(i)

f c
ij ∈ {0, 1}, ∀i , j ∈ V ,∀c ∈ C

x`i ∈ {0, 1}, ∀i ∈ V , ` = 1, . . . , φ(i)
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Integer programming formulation: model

I Flow conservation equations:

∑
j∈V

f c
ji −

∑
l∈V

f c
il = Dc(i), ∀c ∈ C ,∀i ∈ V

I Node-disjointness:

∑
j∈V

f c
ij ≤ 1, ∀c ∈ C ,∀i ∈ V : i 6= o(c), i 6= d(c)

I x`i = 1 if there is a node j ∈ T `
i such that arc (i , j) is used for

communication from i to j by commodity c :

x`i ≥ f c
ij , ∀i ∈ V ,∀c ∈ C ,∀j ∈ T `

i , ` = 1, . . . , φ(i)

34 / 70



Integer programming formulation: model

I x`+1
i = 0 if the previous level was not used:

x`+1
i ≤ x`i , ∀i ∈ V , ` = 1, . . . , φ(i)− 1

I Minimum power level ¯̀(i) reaches at least the two closest nodes:

x`i = 1, ∀i ∈ V , ` = 1, . . . , ¯̀(i)

I Integrality requirements:

f c
ij ∈ {0, 1}, ∀i , j ∈ V ,∀c ∈ C

x`i ∈ {0, 1}, ∀i ∈ V , ` = 1, . . . , φ(i)
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GRASP fundamentals

I A greedy randomized adaptive search procedure (GRASP) is a
multistart process.

I Each of its iterations consists of two phases:

1. Construction: a feasible solution is built
2. Local search (or improvement): a local optimum in the

neighborhood of the current solution is sought.

I Best overall solution is returned.

I GRASP heuristic for the asymmetric input with bidirectional
topology variant of the biconnected minimum power
consumption problem.
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GRASP fundamentals

Algorithm 1 Pseudo-code of a GRASP heuristic for minimization problems

Require: Max Iterations,Seed
Ensure: Best known solution x∗

1: f ∗ ←∞;
2: for iteration = 1, . . . ,Max Iterations do

3: x ← Greedy Randomized Construction(Seed);
4: x ← Local Search(x);
5: if cost(x) < f ∗ then
6: x∗ ← x ;
7: f ∗ ← cost(x);

8: return x∗;
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GRASP construction phase

I Randomized construction phase has two stages:

1. Build a power assignment p such that G (p) = (V ,B(p)) is a
bidirectional connected graph

2. Change the power assignment p such that G (p) = (V ,B(p))
is a bidirectional biconnected graph

I Greedy function that guides construction is based on the
wireless multicast advantage property: if pu is the current
power assigned to node u and there is a node v such that
e(u, v) > pu, then the additional power required to set up
communication from u to v is e(u, v)− pu.

Greedy function for any u, v ∈ V

g(u, v) = max{0, e(u, v)− pu}+ max{0, e(v , u)− pv}

I If g(u, v) = 0, then bidirectional communication between
nodes u and v is already set up.
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GRASP construction phase: first stage

Algorithm 2 First stage of the randomized construction phase

Require: Node set V , initial node r ∈ V , parameter α ∈ [0, 1]
Ensure: Power assignment p and a bidirectional connected graph G (p) =

(V ,B(p))
1: pu ← 0 for all u ∈ V ;
2: V ′ ← {r};
3: while V \ V ′ 6= ∅ do
4: for all u ∈ V \ V ′ do
5: g(u)← minv∈V ′{g(u, v)};
6: Parent(u)← v ∈ V ′ : g(u) = g(u, v);
7: g ← minu∈V\V ′{g(u)};
8: g ← maxu∈V\V ′{g(u)};
9: Randomly select node u ∈ V \V ′ such that g(u) ≤ g +α(g −g);

10: pu ← max{pu, e(u,Parent(u))};
11: pParent(u) ← max{pParent(u), e(Parent(u), u)};
12: V ′ ← V ′ ∪ {u};
13: return p;
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GRASP construction phase: second stage

I Biconnected component of a graph: maximal subset of nodes
such that there are two disjoint paths between any two of
them.

I Articulation point: node belonging to two or more
biconnected components.

I Tarjan’s algorithm is used to compute the biconnected
components and articulation points of the current solution.

I Pairs of biconnected components are linked one by one.

I Second stage stops when a biconnected graph is built.
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GRASP construction phase: second stage

Algorithm 3 Second stage of the randomized construction phase

Require: Node set V , power assignment p, and parameter α ∈ [0, 1]
Ensure: Power assignment p and a bidirectional biconnected graph

G (p) = (V ,B(p))
1: while G is not biconnected do
2: for all u ∈ V that is not an articulation point do
3: g ′(u) = minv∈V {g(u, v) : u 6= v , v is not an articulation

point and does not belong to the same component as u};
4: Parent(u)← v ∈ V : g ′(u) = g(u, v);
5: g ′ = minu∈V {g ′(u) : u is not an articulation point};
6: g ′ = maxu∈V {g ′(u) : u is not an articulation point};
7: Randomly select node u ∈ V that is not an articulation point such

that g ′(u) ≤ g ′ + α(g ′ − g ′);
8: pu ← max{pu, e(u,Parent(u))};
9: pParent(u) ← max{pv , e(Parent(u), u)};

10: return p;
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GRASP local search phase: operations

I Pi = [p1
i , . . . , p

φ(i)
i ] is a list of “efficient” increasing power

levels that can be assigned to node i ∈ V .
I Basic operations applied to each node i ∈ V operating at the

power level p`i :

I Decrease its current power assignment from p`i to p`
′

i , where `′

is the highest level which supports a bidirectional edge: total
power is decreased by p`i − p`

′

i .
I Increase its current power assignment from p`i to p`+1

i : total
power is increased by at least p`+1

i − p`i .
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GRASP local search phase: moves

I Local search explores the neighborhood of the current
solution, attempting to reduce the total power consumption.

I A move starts by decreasing the power assignment of as many
nodes as needed to break biconnectivity, followed by the
increase of the power assignments of as many nodes as
necessary to restablish biconnectivity.

I Decrease operations are performed in non-increasing order of
power decrease (i.e., start by largest power decrease)

I Increase operations are performed in non-decreasing order of
power increase (i.e., start by smallest power increase)

I First improving move is accepted and the search moves to the
new solution.

I Procedure stops when no further improving moves exist.
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GRASP local search phase: acceleration strategies

I Number of power increase operations investigated may be
reduced to speedup the local search.

I Whenever biconnectivity is destroyed by a power decrease, the
biconnected components are computed and two acceleration
schemes are implemented:

1. Reduced scheme: restricts power increases to pair of nodes
belonging to the same biconnected components of the pair of
nodes affected by the previous decrease.

2. Extended scheme: considers power increases involving any pair
of nodes from different biconnected components.
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GRASP local search phase: acceleration strategies

I Three local search strategies are implemented, based on
different acceleration schemes:

1. reduced local search uses the reduced scheme;
2. extended local search uses the extended scheme; and
3. mixed local search first makes use of the reduced scheme until

no further improving moves can be found, then continues using
the extended scheme.
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GRASP: path-relinking

I Path-relinking is an intensification strategy to explore
trajectories connecting elite solutions obtained by heuristic
methods such as GRASP.

I Path-relinking is usually carried out between two solutions:
one is called the initial solution, while the other is the
guiding solution.

I One or more paths in the solution space graph connecting
these solutions are explored in the search for better solutions.
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GRASP: path-relinking

Algorithm 4 Path-relinking

Require: Pair of solutions p(1) and p(2).
Ensure: Solution p∗.

1: Compute set of moves ∆(p(1), p(2));
2: f ∗ ← min{f (p(1)), f (p(2))};
3: p∗ ← argmin(f (p(1)), f (p(2)));
4: p ← p(1);
5: while ∆(p(1), p(2)) 6= ∅ do

6: η∗ ← argmin{(f (p
⊕
η) : η ∈ ∆(p, p(2)))};

7: p ← p
⊕
η∗;

8: if f (p) < f ∗ then

9: f ∗ ← f (p);
10: p∗ ← p;

11: return p∗;
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GRASP: path-relinking

I GRASP with path-relinking makes use of an elite set to store a
pool of diverse high-quality solutions found during the search.

I Path-relinking is applied as an intensification strategy at the
end of each local search phase to a single pair of solutions:

I The local optimum p(1) obtained after the local search phase.
I A high-quality solution p(2) randomly selected from the pool.

I Path-relinking is applied using the best among p(1) and p(2)

as the initial solution and the other as the guiding solution.

I Moves in ∆(p(1), p(2)) change the power level of any node

u ∈ V from p
(1)
u to p

(2)
u .

I Moves are randomly selected from a candidate list with the
most promising ones in the path being investigated.
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GRASP-M with path-relinking

Algorithm 5 Pseudo-code of GRASP-M with path-relinking

Require: Max Iterations,Seed
Ensure: Best known solution p∗

1: f ∗ ←∞;
2: Elite Set ← ∅;
3: for iteration = 1, . . . ,Max Iterations do

4: p ← Greedy Randomized Construction(Seed);
5: repeat
6: p ← Local Search Reduced(p);
7: if no improvement then
8: p ← Local Search Extended(p);
9: until no improvement

10: if Elite Set 6= ∅ then
11: p ← Path Relinking(p,Elite Set);
12: Update EliteSet(p,Elite Set);
13: if cost(p) < f ∗ then
14: p∗ ← p;
15: f ∗ ← cost(p);

16: return p∗;
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Experimental settings

I Computational experiments carried out on two classes of
randomly generated asymmetric test problems with 10 to 800
nodes:

I Euclidean instances:
I Nodes uniformly distributed in the unit square grid.
I Weights e(u, v) = F · d2

u,v , with F ∈ [0.8, 1.2] being a random
perturbation generated from a uniform distribution.

I Random instances:
I Weights e(u, v) randomly generated in (0, 1].

I 15 test instances for each problem size and class.

I Intel Core 2 Quad machine with a 2.40 GHz clock and 8
Gbytes of RAM memory running under GNU/Linux 2.6.24.

I CPLEX 11.0 used as the integer programming solver.

I GRASP heuristic implemented in C++ using GNU g++
version 4.1 as the compiler, with optimization parameter -O2.
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Optimal solutions

I Average gaps between the linear and integer optimal values

Asymmetric
Instance unidirectional bidirectional
|V | solved time (s) gap (%) solved time (s) gap (%)
10 15 0.89 11.06 15 0.47 7.51
15 15 16.20 13.75 15 7.55 10.34
20 15 177.59 13.40 15 66.61 8.10
25 15 1563.94 11.96 15 298.53 7.71

E
u

cl
id

ea
n

30 5 2837.09 7.47 12 1351.98 4.56
50 – – – – – –
10 15 0.07 1.19 15 0.48 5.98
15 15 0.16 0.00 15 6.99 10.83
20 15 0.87 0.01 15 117.36 10.87
25 15 2.36 0.01 15 872.44 13.48

R
a

n
d

o
m

30 15 5.69 0.02 1 5559.86 13.55
50 15 126.89 0.02 0 – –

Symmetric
Instance unidirectional bidirectional
|V | solved time (s) gap (%) solved time (s) gap (%)
10 15 0.78 10.90 15 0.48 7.25
15 15 16.03 14.23 15 7.24 10.14
20 15 179.02 12.80 15 47.26 8.27
25 15 1600.28 12.15 15 509.83 7.70

E
u

cl
id

ea
n

30 6 4875.97 11.51 12 1373.72 4.20
50 – – – – – –
10 15 0.11 1.56 15 0.15 0.82
15 15 0.74 0.40 15 0.23 0.22
20 15 6.78 0.29 15 2.69 0.28
25 15 20.43 0.32 15 10.95 0.12

R
a

n
d

o
m

30 15 102.12 0.22 15 73.71 0.24
50 12 2827.35 0.07 11 562.42 0.06
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Optimal solutions

I Minimum power consumption problem is hard to solve.

I Computation times increase very fast with |V |.
I CPLEX could not solve to optimality in three hours of

computation even moderately-sized networks with 30 nodes.

I Large integrality gaps.
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GRASP variants

I GRASP variants, with respect to the local search phase
strategy:

I GRASP-R implements the reduced strategy.
I GRASP-X implements the extended strategy.
I GRASP-M implements the mixed strategy.
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GRASP variants

I Average objective values over five runs (one instance) as the
running time limit increases from five to 3125 seconds:

Time (s)

Algoritmo 5 25 125 625 3125

GRASP-R 1.28856 1.28774 1.28573 1.28512 1.28367
GRASP-X 1.29235 1.29040 1.28794 1.28624 1.28468
GRASP-M 1.28850 1.28744 1.28536 1.28459 1.28367

Table: |V | = 100

Time (s)

Algoritmo 5 25 125 625 3125

GRASP-R 1.73658 1.73364 1.72974 1.72841 1.72784
GRASP-X 1.73152 1.72941 1.72898 1.72813 1.72770
GRASP-M 1.73070 1.72892 1.72870 1.72816 1.72754

Table: |V | = 200
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GRASP variants

I Run time distributions or time-to-target (ttt) plots
I Two hundred independent runs: stop when target is found.
I 15 minutes of computation time for each independent run.

57 / 70



GRASP variants

I Run time distributions or time-to-target (ttt) plots
I Two hundred independent runs: stop when target is found.
I 15 minutes of computation time for each independent run.

58 / 70



GRASP with path-relinking (GRASP-Mpr)

I Algorithms:
I GRASP-M implements the mixed local search strategy
I GRASP-Mpr implements the mixed local search strategy

followed by path-relinking
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GRASP with path-relinking (GRASP-Mpr)

I Average objective values over five runs (one instance) as the
running time limit increases from five to 3125 seconds:

Time (s)

Algoritmo 5 25 125 625 3125

GRASP-M 1.28850 1.28744 1.28536 1.28459 1.28367
GRASP-Mpr 1.28946 1.28712 1.28528 1.28372 1.28303

Table: |V | = 100

Time (s)

Algoritmo 5 25 125 625 3125

GRASP-M 1.73070 1.72892 1.72870 1.72816 1.72754
GRASP-Mpr 1.73169 1.73048 1.72935 1.72800 1.72742

Table: |V | = 200
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GRASP with path-relinking (GRASP-Mpr)

I Continuous improvement in solution quality along the
computation time for one Euclidean instance with |V | = 200:
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GRASP with path-relinking (GRASP-Mpr)

I Run time distributions or time-to-target (ttt) plots
I Two hundred independent runs: stop when target is found.
I One hour of computation time for each independent run.
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I Run time distributions or time-to-target (ttt) plots
I Two hundred independent runs: stop when target is found.
I One hour of computation time for each independent run.
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GRASP with path-relinking (GRASP-Mpr)

I GRASP-Mpr heuristic found the optimal solutions for all
problems with up to 25 nodes.

I Computation times to find the known optimal solutions with
|V | = 25:

I Euclidean instances solved in less than one second.
I Random instances are harder and took approximately five

seconds on average.

Exact GRASP-Mpr
Instances Total power Time (s) Total power Time (s)
Random 5.49494 3207.42 5.49494 5.72
Euclidean 5.44325 4332.45 5.44325 0.25
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GRASP with path-relinking (GRASP-Mpr): comparisons

I GRASP-Mpr vs. MST-Augmentation of Calinescu and Wan, 2006:

I GRASP-Mpr: 10 minutes of running time for each instance.
I MST-Augmentation is faster: a few seconds for |V | = 800.
I GRASP-Mpr finds much better solutions.

Instances Total power Degree (avg.)
|V | GRASP-Mpr MSTAug red. (%) GRASP-Mpr MSTAug red. (%)
25 5.49494 13.05400 57.91 2.48 8.32 70.19
50 8.41205 24.25722 65.32 2.43 13.24 81.65

100 11.69800 44.67938 73.82 2.63 21.49 87.76
200 17.21848 84.95794 79.73 2.67 37.57 92.89

R
a

n
d

o
m

400 24.93783 158.78020 84.29 2.65 64.07 95.86
800 37.30339 292.67002 87.25 2.70 107.00 97.48

25 5.44325 12.84646 21.32 2.55 4.20 39.29
50 10.17110 24.20324 24.51 2.54 4.38 42.01

100 19.34007 44.97218 27.27 2.53 4.61 45.12
200 37.29308 85.08285 29.75 2.52 4.70 46.38

E
u

cl
id

ea
n

400 73.72322 158.26410 28.36 2.55 4.61 44.69
800 103.23984 293.63736 28.53 2.56 4.64 44.83
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GRASP with path-relinking (GRASP-Mpr): comparisons

I GRASP-Mpr vs. greedy construction phase:

I GRASP-Mpr: 10 minutes of running time for each instance.
I Greedy is much faster: less than two seconds for |V | = 800.
I GRASP-Mpr significantly improves all greedy solutions.
I Average node degrees show that GRASP-Mpr solutions are

very close to the theoretical lower bounds.

Instances Total power Degree (avg.)
|V | GRASP-Mpr Greedy red. (%) GRASP-Mpr Greedy red. (%)
25 5.49494 6.24476 12.01 2.48 3.04 18.42
50 8.41205 9.55131 11.93 2.43 3.05 20.33

100 11.69800 13.21970 11.51 2.63 3.11 15.43
200 17.21848 19.20336 10.34 2.67 3.22 17.08

R
a

n
d

o
m

400 24.93783 27.60327 9.66 2.65 3.16 16.14
800 37.30339 40.92659 8.85 2.70 3.20 15.63

25 5.44325 5.90808 7.87 2.55 3.06 16.67
50 10.17110 10.95295 7.14 2.54 2.94 13.61

100 19.34007 21.02384 8.01 2.53 3.00 15.67
200 37.29308 40.35054 7.58 2.52 2.99 15.72

E
u

cl
id

ea
n

400 73.72322 78.88391 6.54 2.55 2.96 13.85
800 103.23984 109.68819 5.88 2.56 2.95 13.22
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MST-Augmentation vs. greedy

I Greedy finds much better solutions than MST-Augmentation.

I Since MST-Augmentation was originaly designed for
Euclidean instances, it is faster than greedy for them.

Instances Total power Time (seconds)
|V | MST-Aug Greedy MST-Aug Greedy
25 13.05400 6.24476 0.00000 0.00040
50 24.25722 9.55131 0.00120 0.00100

100 44.67938 13.21970 0.00840 0.00280
200 84.95794 19.20336 0.10361 0.01600

R
a

n
d

o
m

400 158.78020 27.60327 1.26008 0.10201
800 292.67002 40.92659 15.50057 0.79165

25 6.91850 5.90808 0.00000 0.00040
50 13.47369 10.95295 0.00040 0.00280

100 26.59133 21.02384 0.00150 0.00400
200 53.08669 40.35054 0.00320 0.02320

E
u

cl
id

ea
n

400 102.90816 78.88391 0.01240 0.19321
800 144.44319 109.68819 0.04960 1.67651
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Concluding remarks

I Integer programming formulation for the bidirectional
topology variant of the biconnected minimum power
consumption problem.

I Formulation can be easily extended to problems with other
connectivity requirements.

I Formulation applied to four variants of the problem:
I Symmetric or asymmetric input graphs
I Unidirectional or bidirectional solutions

I State-of-the-art integer programming solver could not solve
large instances to optimality.
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Concluding remarks

I GRASP-Mpr heuristic proposed to find good approximate
solutions for real-size problems.

I Heuristic applied to large instances of the asymmetric input
with bidirectional topology variant.

I Experimental results for large networks with up to 800 nodes
showed that:

I Greedy heuristic is very quick and effective for on-line
applications.

I GRASP-Mpr heuristic is relatively fast.
I GRASP-Mpr heuristic found good solutions which significantly

improved those obtained by a literature heuristic.
I Solutions obtained by GRASP-Mpr heuristic are very close to

the optimal solutions (average node degrees very close to the
theoretical lower bounds).

I Furthermore, solutions obtained by GRASP-Mpr heuristic have
fewer arcs/edges and smaller power assignments, which are
useful to mitigate interference.
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