
Parallel Cut Generation for Service
Cost Allocation in Transmission

Systems

Celso C. Ribeiro
Renata M. Aiex
M. Poggi de Aragão

Department of Computer Science
Catholic University of Rio de Janeiro

Summary

❚ LPs with exponential number of constraints
❚ Transmission Expansion Planning Problem
❚ Transmission Service Cost Allocation Problem
❚ Cut Generation
❚ Heuristic Separation
❚ Parallel Approach
❚ Computational Results

Linear Problems with Exponential
Number of Constraints

❚ Many applications in practice
❚ Implicit representation: constraints do not

have to be completely stored in memory
❚ Cut generation: solve a restricted LP, find a

violated constraint (separation problem),
append it to the restricted LP

❚ Polynomial procedure if separation problem
can be solved in polynomial time

❚ Exact vs. separation procedure

The Transmission Expansion The Transmission Expansion The Transmission Expansion The Transmission Expansion
Planning Problem (TEPP) Planning Problem (TEPP) Planning Problem (TEPP) Planning Problem (TEPP) (1)

undirected graph G transmission network

power plants
demand centers

substations

Edges are
transmission lines

The Transmission Expansion The Transmission Expansion The Transmission Expansion The Transmission Expansion
Planning Problem (TEPP) Planning Problem (TEPP) Planning Problem (TEPP) Planning Problem (TEPP) (2)

Edges are transmission lines with:
❙ installed capacity
❙ maximum number of additional expansions
❙ incremental capacity
❙ cost per expansion

Minimize the expansion costs, supplying the
demand centers from the power plants

The Transmission Expansion The Transmission Expansion The Transmission Expansion The Transmission Expansion
Planning Problem (TEPP) Planning Problem (TEPP) Planning Problem (TEPP) Planning Problem (TEPP) (3)

Ν

1),(:),(:

0

),(

∈

≤

≤−

+=− ∑∑ ∑

∑

=∈ ∈

∈

ij

ijij

ijijijij

K

k

k
i

Eijj Ejij
iijji

ij
Eji

ij

x
ux

cxcf

bbff

xd

Eji ∈∀),(

Eji ∈∀),(

Eji ∈∀),(

Vi ∈∀

Minimize

The Transmission Service Cost
Allocation Problem (TSCAP) (1)

❚ The transmission network is operated by a
pool of K agents:

send power from power
plants they operate

to demand centers they
have as clients

The Transmission Service Cost
Allocation Problem (TSCAP) (2)

Problem consists in assigning costs θ to the
agents in the pool so that:

(1) the sum of costs θ assigned to agents is equal to the
total service cost (network expansion);

(2) costs assigned to any subset of agents
cannot exceed the cost they would incur if
they decided to operate their own isolated
system.

The Transmission Service Cost
Allocation Problem (TSCAP) (3)

0
0

*

1

≥∆
≥

≤

=∆+

∆

∑
∑

∈

=

k

s
Sk

k

K

k
k

Z

Z

θ

θ

θ

Minimize

k = 1, …, K

≠⊂∀ SKS },,...,1{

(1)

(2)

Master problem: Solution of a restricted linear problem
Separation problem: Identification of a violated constraint

∅

The Transmission Service Cost
Allocation Problem (TSCAP) (4)

❚ Exponential number of type (2) constraints:

where K is the number of agents and
S is any subset of agents.

❚ Each Zs is calculated solving a smaller
Transmission Expansion Planning Problem (NP-
hard) associated with subset S of agents

12 −⇒≤∑
∈

K
S

Sk
k Zθ constraints

Cut Generation (1)

❚ Linear problems with an exponential number of
constraints

❚ Implicit representation of the constraints
❚ Separation problem:

❙ Subset of the constraints -> restricted LP
❙ At each step, identify one (or the most) violated constraint
❙ Separation problem is NP-hard (exact separation: branch-

and-bound)

Solve the separation problem by a heuristic
procedure.

Cut Generation (2)

❚ Exact solution: branch-and-bound
❚ Approximation (heuristic separation)

}1,0{

Ν

1),(:),(:

0

1),(

∈

∈

≤

≤−

+=−

−

∑∑ ∑

∑∑

=∈ ∈

=∈

λ

λ

λθ

k

ij

ijij

ijijijij

k

K

k

k
i

Eijj Ejij
iijji

k

K

k
kij

Eji
ij

x
ux

cxcf

bbff

xd

Eji ∈∀),(

Eji ∈∀),(

Eji ∈∀),(

Vi ∈∀

Min

Kk ,...,1=

Cut Generation (3)

Procedure Solution-TSCAP
Find a feasible cost allocation θθθθ to the restricted LP

Look for a violated constraint

If a violated constraint was found, then append it to
the restricted linear problem

else the current cost allocation is optimal to the
master problem

S
Sk

k Z>∑
∈

θ

Cut Generation (4)

Separation problem with fixed agents:

}1,0{

Ν

),(:),(:

0

),(

∈

∈

≤

≤−

=−∑ ∑

∑

∈ ∈

∈

λ k

ij

ijij

ijijijij

Eijj Ejij
iijji

ij
Eji

ij

x
ux

cxcf

bff

xd

Eji ∈∀),(

Eji ∈∀),(

Eji ∈∀),(

Vi ∈∀

Min

Kk ,...,1=

λ k

K

k

k

ib∑
=1

+

_ λθ k

K

k
k∑

=1
constant

constanti

Heuristic Separation (1)

Two main components:

❚ Local search in the space of subset of agents S

❚ Compute the expansion cost Zs associated with
subset S of agents.

Heuristic Separation (2)

Local search in the space of subset of agents S
❚ Initial solution: (i) no agents, (ii) all agents,

(iii) randomly generated set of agents, or
(iv) set of agents associated with the last cut found.

❚ Neighborhood: all subsets of agents that differ from
the current subset by exactly one agent.

❚ Stopping criteria: (i) a cut is found, or (ii) MaxTrials
solution neighborhoods are investigated.

Heuristic Separation (3)

Heuristic construction of a feasible network
❙ For each subset of agents investigated in the local search

step, heuristic construction of a feasible network solving
TEPP(S) approximation of the expansion cost Zs
associated with the subsystem formed by the agents in S

❙ Greedy construction: build a feasible network through the
solution of a sequence of maximum flow problems (increase
capacities of edges in minimum cut)

❙ Improvement procedure: decrease the number of
expansions performed in each edge by rerouting its current
flow

Heuristic Separation (4)

Heuristic construction of a feasible network

❚ Transform the network into a maximum flow problem
❚ Use a maximum flow algorithm (push-relabel) to

check network feasibility (Fmax = Ffeasible = demand)

S T

s1

s2

s3

t1

t2

t3

artificial
super sink

artificial
super source

Heuristic Separation (5)

Heuristic construction of a feasible network
❚ If Fmax < Ffeasible, then some arcs will be replicated.

❚ Find the arcs in the minimum cut closest to T.
❚ By successively replicating arcs, increase cut

capacity from Fmax to Ffeasible.

t3

S

s1

s2

s3

T
t1

t2

Heuristic Separation (6)

Multi-item knapsack problem
❚ Replicated arcs should incur in minimum local

cost.

❚ Strategies for the choice of edges:
❙ increasing order of cost;

❙ decreasing order of capacity;

❙ increasing order of cost/capacity.

Heuristic Separation (7)

Procedure Increase-Cut-Capacity
do

Find the minimum cut closest to T
Sort the arcs in the cut
Replicate each arc (i,j) until

(i) number of replications = max number of replications, or
(ii) flow increase in the cut greater or equal than Ffeasible - Fmax

Solve max flow problem in the expanded network
until Ffeasible = Fmax

≥

Heuristic Separation (8)

Heuristic construction with excess control

t3

S

s1

s2

s3

T
t1

t2

S

s1

s2
s3

T_Cut

e’

e’’
e

Heuristic Separation (9)

Heuristic construction with excess control
do
Replicate each arc (i,j) until

(i) number of replications = max number of replications, or
(ii) flow increase in the cut greater or equal than Ffeasible- Fmax, or
(iii) (arc capacity x number of replications) > excess in node i

until Ffeasible = Fmax

≥

...

...

Heuristic Separation (10)

Improvement procedure

❚ For each arc replication
❙ Decrease number of replications by one
❙ Solve maximum flow problem for the new network
❙ If Fmax < Ffeasible, then reinstall arc

Heuristic Separation (11)

Local Search in the replicated arcs
❚ Move: for each arc replication

Decrease replications by one
Reconstruct the network using same heuristics presented
Run the improvement procedure

❚ Steepest descent local search:
Choose the most decreasing move
Stop at the first locally optimal visited solution

Parallel Approach (1)

- starts heuristic threads
- initialize restricted LP

barrier

Exact separation thread: p -1 heuristic separation threads:

- appends constraints to
restricted LP
- computes new costs θ

- solves exact separation

barrier

do while
constraints found

solve heuristic separation

Parallel Approach (2)

starts heuristic threads

initializes restricted LP

appends constraints
to restricted LP

solves exact separation solve heuristic separation

computes new costs θ

threads waiting

Parallel Approach (2)

solves exact separation solve heuristic separation

threads waiting

starts heuristic threads

initializes restricted LP

appends constraints
to restricted LP
computes new costs θ

Parallel Approach (3)

❚ Shared memory paradigm

❚ Multiple cuts per iteration:
❙ CPLEX is very fast in generating new values for

the costs θ (fast solution of the restricted LP)
❙ Use multiple cuts, but do not wait too much for

them

Parallel Approach (4)

❚ Global x local hashing tables
❙ Used to store solutions visited during local search

in the space of subset of agents S
❙ Global hashing table:

❘ Lock/unlock structures become a bottleneck when the
number of processors is increased

❘ Information is shared among processors

❙ Improvement: use global hashing table for groups
of processors

Parallel Approach (5)

❚ More precise x faster move evaluation at each
iteration of the local search
❙ faster evaluation: compute the cost of

constructing a network for a subset of agents S ’
in the neighborhood of S, without applying local
search to the arcs.

❙ faster evaluation works much better then precise
evaluation.

Computational Results (1)

❚ Sun Starfire ENT10000:
❙ 32 Ultra Sparc 250 MHz processors
❙ 8 Gbytes of RAM memory
❙ 1 Mbyte of cache memory per processor

❚ Software:
❙ c compiler
❙ Posix threads
❙ CPLEX 5.0

Computational Results (2)

❚ Agents in initial solutions: (i) same as in the
previous cut, (ii) none, (iii) all, (other) random

❚ First iteration: 100 cuts
❚ Next, 70% of cuts found in previous iteration
❚ Each processor performing heuristic

separation is ready-to-stop after investigating
MaxTrials = 160 neighborhoods

❚ Stop heuristic separation: 70% of processors
ready-to-stop and at least one cut found

Computational Results (3)

❚ Test problems derived from the Brazilian
network
❙ 16 and 19 agents
❙ 79 nodes and 283 edges (134 can be replicated)

Computational Results (4)

16 agents 19 agents
Processors 1 5 9 1 5 9
Iterations 240 27 48 237 39 82
Total number of cuts 319 403 340 409 426 411
Cuts from exact separations 102 28 35 204 56 74
Cuts from heuristic separations 217 375 305 205 370 337
Exact separations required 23 3 3 32 3 5
Elapsed time (hh:mm) 8:40 4:38 1:41 20:25 5:26 5:16

Conclusions and Extensions

❚ Heuristic separation leads to faster
computations even in sequential mode

❚ Effectiveness of parallel cut generation
❚ More systematic tests (other test instances;

several runs or single user mode; criteria,
parameters, and strategies used in the
parallel implementation)

❚ Improvements in the local search heuristic
❚ Improvements in the network design heuristic

Parallel Cut Generation

END

Heuristic Separation (5)

Maximum Flow Problem (MFP)

0

0

'
),(:

),(:),(:

max

≥

≤

=

=−

=

∑

∑∑

∈

∈∈

F

F

cf

f

ff
F

ijij

Eisi
si

Ejij
ij

Eijj
ji

tsiVi ,, ≠∈∀

Max F

Eji ∈∀),(

MFP

Parallel Approach (6)

❚ Local search using patterns
❙ Generate new values for the costs θ
❙ Find the active cuts in the restricted LP
❙ A pattern is a group of agents that appears

together in many active cuts
❙ Choose randomly (biased by the number of

occurrences) a pattern to fix in the local search in
the space of subset of agents of one of the
processors.

