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Outline

• Introduction
Problem definition
An application from telecommunications 
access network design

• Local search with perturbations
Local search with perturbations
Path relinking
Variable neighborhood search

• Computational results
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Prize-collecting Steiner tree 
(PCST) problem

• Given: graph G = (V, E )
Real-valued cost ce is associated with 
edge e
Real-valued penalty dv is associated 
with vertex v

• A tree is a connected acyclic 
subgraph of G and its weight is the 
sum of its edge costs plus the sum 
of the penalties of the vertices of G
not spanned by the tree.

• PCST problem: Find tree of 
smallest weight.
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Cost of tree
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Design of local access 
telecommunications network

• Build a fiber-optic network for 
providing broadband connections 
to business and residential 
customers.

• Design a local access network 
taking into account tradeoff 
between:

cost of network
revenue potential of network
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Design of local access 
telecommunications network

• Graph corresponds to local street 
map

Edges: street segments
Edge cost: cost of laying the fiber on 
the corresponding street segment

Vertices: street intersections and 
potential customer premises

Vertex penalty: estimate of potential 
loss of revenue if the customer were 
not to be serviced (intersection nodes 
have no penalty) 
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Local access network 
design
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Collect all prizes 
(Steiner problem in graphs)
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Collect some prizes
(Prize-collecting Steiner Problem 

in Graphs)
premise
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Literature
• Introduced by Bienstock, Goemans, 

Simchi-Levi, & Williamson (1993)
• Goemans & Williamson (1993, 1996) 

describe 5/2 and 2 approximation 
algorithms

• Johnson, Minkoff, & Phillips (1999) 
describe an implementation of the 2-opt 
algorithm of Goemans & Williamson 
(GW)

• Canuto, Resende, & Ribeiro (1999) 
propose a multi-start heuristic that uses 
a randomized version of GW

• Lucena & Resende (2000) propose a 
polyhedral cutting plane algorithm for 
computing lower bounds 
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Local search with 
perturbations

• Summary
Generation of initial solution
Local search
Multi-start strategy
Path-relinking associated with multi-
start strategy
Variable neighborhood search
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Generation of initial solution

• Select X,  the set of collected nodes
• Connect nodes in X with minimum 

weight spanning tree T (X )
• Recursively remove from T (X ) all 

degree-1 nodes with prize smaller than 
its incident edge cost = Tr (X )

• Basic strategy:
for (i = 1 to MAXITR){

select Xi

compute T (Xi ) and Tr (Xi )
}

Goemans & Williamson
2-opt algorithm

Kruskal’s algorithm
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Generation of initial solution
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Generation of initial solution
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Local search

• Representation of solution:  set X
of vertices in tree T (X )

• Neighborhood:  
N (X ) = {X’ : X and X’ differ by 
single node}
Moves: insertion & deletion of nodes

• Initial solution: nodes of tree 
obtained by GW

• Iterative improvement: make move 
as long as improvement is possible
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Local search

improve = TRUE
while ( improve){

improve = FALSE
circfor i  = 1, …, |V | while .not. improve

{ if (i ∈ X ){ X’ = X \ {i }}

else {X’ = X ∪ {i }}

compute treeT (X’ ) and cost(X’ ) 
if (cost(X’ ) < cost(X )){

X = X’
improve = TRUE

}
}

}

if G (X’ ) is
disconnected

⇓
cost(X’ )  = ∞
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Multi-start strategy

• Force GW to construct different 
initial solutions for local search

Use original prizes in first iteration
Use modified prizes after that

• Modify prizes (two strategies)
Introduce noise into prizes

for i = 1, …, |V | {
generate β ∈ [1 – a, 1 + a ], for a > 0
d’ (i ) = d (i ) × β

}

Node elimination
Set to zero the prizes of α% of the 
nodes in nodes(GW) ∩ nodes(local 
search)
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Local search with 
perturbations

best = HUGE
d’  = d
for ( i = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
X’ = LOCALSEARCH(V, E, c, d, X )
if ( cost(X’ ) < best ){

X* = X’
}
compute perturbations and update d’ 

}
return X*

Approach is similar to a GRASP (greedy 
randomized adaptive search procedure), in 
which the greedy randomized construction 
phase is replaced by the construction with 
perturbations.
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Path relinking

• Integrates intensification & diversification
• Explores the path connecting good 

solutions
• In local search with perturbations, let

X’ be the local optimum found by 
LOCALSEARCH
Y be a solution chosen randomly from a   
POOL of elite solutions 
∆ = {i ∈ V : (i ∈ X’ and i ∉ Y ) or

(i ∉ X’ and i ∈ Y )}
• Construct path between X’ (start) and Y

(guide):
Apply best movement in ∆
Verify quality of solution after move
Update ∆
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Path relinking

• Criteria for inclusion of solution X
into POOL of elite solutions

If cost(X ) is less than smallest cost of 
POOL solutions
Else, if cost(X ) is less than largest 
cost of POOL solutions and X is 
sufficiently different from all POOL 
solutions

X1 and X2 are sufficiently different if 
they differ by at least β nodes, where β
is a fraction of |V |
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Local search with perturbations  
and path relinking

POOL = φ
d’  = d
for ( i = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
if ( X is new){

X’ = LOCALSEARCH(V, E, c, d, X )
attempt to insert X’ into POOL
select X’’  ∈ RAND(POOL)
XPR = PATHRELINK(X’ , X’’ )
attempt to insert XPR into POOL
}

}
compute perturbations and update d’ 

}
return best solution in POOL



slide 22 Prize collecting Steiner tree problem

Variable neighborhood 
search

Mladenovic’ & Hansen (1997)

• Consider K neighborhoods:
N 1, N 2, …, N K

N k (X ) = { X‘ : X and X‘  differ by k
nodes}

• Basic scheme (MAXTRY times): 
Start with initial solution X and k = 1
while ( k ≤ K ){
choose X‘  ∈ N k (X ) at random
X’ = LOCALSEARCH(X’ )  using 

neighborhood N 1

k = k + 1
if cost(X‘ ) < cost(X) { X = X‘ ; k = 1}

}
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Local search with 
perturbations,

path relinking, and VNS
POOL = φ
d’  = d
for ( i = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
if ( X is new){

X’ = LOCALSEARCH(V, E, c, d, X )
attempt to insert X’ into POOL
X’’  ∈ RAND(POOL)
XPR = PATHRELINK(X’ , X’’ )
attemp to insert XPR into POOL
}

}
compute perturbations and update d’ 

}
X* = best solution in POOL
X* = VNS(V, E, c, d, X* )
return X* 
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Computational results

• 114 test problems
From 100 nodes & 284 edges 
To 1000 nodes & 25,000 edges
Three classes:

Johnson, Minkoff, & Phillips (1999) P & 
K problems
Steiner C problems (derived from SPG 
Steiner C test problems in OR-Library)
Steiner D problems (derived from SPG 
Steiner D test problems in OR-Library)
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Computational results
• Runs performed on a 400 MHz 

Pentium II with 32 Mbytes under 
Linux

• C programming language (gcc)
Goemans & Williamson: code of
Johnson, Minkoff, and Phillips (1999)
Iterative improvement, path relinking, 
and VNS

• Parameters
500 multi-start iterations
Perturbation: α = 20 and a = 1.0
VNS: MAXTRY = 10, K = 35
Path relinking: 
β = 0.04 |V | and pool size = 10
Alternate between perturbation 
schemes
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Computational results

• Heuristic found:
89 of 104 known optimal values 
(86%)
solution within 1% of lower bound 
for 104 of 114 problems

282126834JMP

254106532D

363252638C

tot+VNS+PR+LSGWnumtype

89104

Number of optima found with each additional heuristic
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Computational results

1.1404038+VNS

9.1403835+PR

11.1373417+LS

36.429227GW

max (%)<10%< 5%< 1%heuristic

Problem type Steiner C

Number of instances with given relative error
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Computational results

4.5404034+VNS

10.5393834+PR

30.8363322+LS

38.531217GW

max (%)<10%< 5%< 1%heuristic

Problem type Steiner D

Number of instances with given relative error
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Computational results

3.4343432+VNS

3.4343432+PR

3.7343424+LS

6.6343115GW

max (%)<10%< 5%< 1%heuristic

Problem type JMP

Number of instances with given relative error
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Parallel implementation
• Environment:

Cluster with 32 processors: P-II 400
Switch IBM 8274 at 10 Mbps
LAM 6.3-b3 implementation of MPI
Linux and hcc compiler

• Each processor runs a copy of the 
same program:

200 iterations of LS with perturbations
Even-ranked processors: VNS from 
best solution
Odd-ranked processors: randomly 
select the initial solution for VNS

• Seven additional optimal solutions: 
89+7=96 out of 104 optima known
(series JMP: +2,   C: +2,   D: +3)
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Concluding remarks
• Cutting planes algorithm produced 

tight lower bounds and feasible 
upper bounds for most instances.

Running times were high for most 
difficult instances (days, even weeks)

• With substantially less 
computational effort, the heuristic 
produced optimal and nearly 
optimal solutions.

Running times for most difficult 
instances averaged about 10,000 
seconds
Over 90% of solutions were within 
1% of lower bound

• Each component contributes to 
improve the effectiveness of the 
heuristic
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Computational results
lower bounds

• Cutting planes algorithm
Found optimal LP solutions in 97 of the 114 test 
problems (85%)
Found tight lower bounds (equal to best known 
upper bounds) in 104 instances (91%)
Of the 97 optimal LP solutions, 94 were integral.  
Each  of the 3 fractional solutions was off of the 
best known upper bound by less than ½
On the 12 instances for which tight lower bounds 
were not produced, the bounds produced had at 
most a 1.3% deviation from the best known upper 
bounds
In 13 of the 114 instances, single vertex optima 
were found
In 7 instances the algorithm took over 100,000 
seconds to converge to a lower bound.  The longest 
run took over 10 CPU days.


