
slide 1 Prize collecting Steiner tree problem

Local search with
perturbations for the prize

collecting Steiner tree
problem in graphs

Celso C. Ribeiro

Catholic University of Rio de Janeiro, Brazil

(on leave at Algorithms & Optimization Research Dept.,
AT&T Labs Research, Florham Park, NJ)

celso@research.att.com
http://www.inf.puc-rio.br/~celso

Joint work with S. Canuto & M.G.C. Resende

April 2001

slide 2 Prize collecting Steiner tree problem

Outline

• Introduction
Problem definition
An application from telecommunications
access network design

• Local search with perturbations
Local search with perturbations
Path relinking
Variable neighborhood search

• Computational results

slide 3 Prize collecting Steiner tree problem

Prize-collecting Steiner tree
(PCST) problem

• Given: graph G = (V, E)
Real-valued cost ce is associated with
edge e
Real-valued penalty dv is associated
with vertex v

• A tree is a connected acyclic
subgraph of G and its weight is the
sum of its edge costs plus the sum
of the penalties of the vertices of G
not spanned by the tree.

• PCST problem: Find tree of
smallest weight.

slide 4 Prize collecting Steiner tree problem

Cost of tree

3

9
2

6
7

4
8

9

6
2

7
3 7 8

4

8
6

6

4

3

9

6
7

8

9

3

4

4

3

graph G

tree T

Cost (T) = (3+3+4+4) +
(2+3+4) = 23

2

3

4

slide 5 Optimization in telecommunications

Design of local access
telecommunications network

• Build a fiber-optic network for
providing broadband connections
to business and residential
customers.

• Design a local access network
taking into account tradeoff
between:

cost of network
revenue potential of network

slide 6 Prize collecting Steiner tree problem

Design of local access
telecommunications network

• Graph corresponds to local street
map

Edges: street segments
Edge cost: cost of laying the fiber on
the corresponding street segment

Vertices: street intersections and
potential customer premises

Vertex penalty: estimate of potential
loss of revenue if the customer were
not to be serviced (intersection nodes
have no penalty)

slide 7 Optimization in telecommunications

Local access network
design

premise
(revenue)

street
zero penalty

root
node

slide 8 Prize collecting Steiner tree problem

Collect all prizes
(Steiner problem in graphs)

premise
(revenue)

street
zero penalty

root
node

slide 9 Prize collecting Steiner tree problem

Collect some prizes
(Prize-collecting Steiner Problem

in Graphs)
premise
(revenue)

street
zero prize

root
node

slide 10 Prize collecting Steiner tree problem

Literature
• Introduced by Bienstock, Goemans,

Simchi-Levi, & Williamson (1993)
• Goemans & Williamson (1993, 1996)

describe 5/2 and 2 approximation
algorithms

• Johnson, Minkoff, & Phillips (1999)
describe an implementation of the 2-opt
algorithm of Goemans & Williamson
(GW)

• Canuto, Resende, & Ribeiro (1999)
propose a multi-start heuristic that uses
a randomized version of GW

• Lucena & Resende (2000) propose a
polyhedral cutting plane algorithm for
computing lower bounds

slide 11 Prize collecting Steiner tree problem

Local search with
perturbations

• Summary
Generation of initial solution
Local search
Multi-start strategy
Path-relinking associated with multi-
start strategy
Variable neighborhood search

slide 12 Prize collecting Steiner tree problem

Generation of initial solution

• Select X, the set of collected nodes
• Connect nodes in X with minimum

weight spanning tree T (X)
• Recursively remove from T (X) all

degree-1 nodes with prize smaller than
its incident edge cost = Tr (X)

• Basic strategy:
for (i = 1 to MAXITR){

select Xi

compute T (Xi) and Tr (Xi)
}

Goemans & Williamson
2-opt algorithm

Kruskal’s algorithm

slide 13 Prize collecting Steiner tree problem

Generation of initial solution

1

1

2 4

5 0

3 6

3

5 3

2

4

3
3 7

5
4

0

1

2 4

5

3 6
3 4

3 7

5

1

1

2 4

5 0

3 6

3

5 3

2

4

3
3 7

5
4

0

Solution obtained by
GW: X = {2,3,4,5,6}

G

G’’ = subgraph induced on G by
nodes in X

MST solution on G’’

Cost = 18

Cost = 13

slide 14 Prize collecting Steiner tree problem

Generation of initial solution

1

1

2 4

5 0

3 6

3

5 3

2

4

3
3 7

5
4

0

1

1

2 4

5 0

3 6

3

5 3

2

4

3
3 7

5
4

0

Solution obtained by
pruning degree-1 node

Cost = 12

Final solution obtained by
pruning another degree-1 node

Cost = 11

slide 15 Prize collecting Steiner tree problem

Local search

• Representation of solution: set X
of vertices in tree T (X)

• Neighborhood:
N (X) = {X’ : X and X’ differ by
single node}
Moves: insertion & deletion of nodes

• Initial solution: nodes of tree
obtained by GW

• Iterative improvement: make move
as long as improvement is possible

slide 16 Prize collecting Steiner tree problem

Local search

improve = TRUE
while (improve){

improve = FALSE
circfor i = 1, …, |V | while .not. improve

{ if (i ∈ X){ X’ = X \ {i }}

else {X’ = X ∪ {i }}

compute treeT (X’) and cost(X’)
if (cost(X’) < cost(X)){

X = X’
improve = TRUE

}
}

}

if G (X’) is
disconnected

⇓
cost(X’) = ∞

slide 17 Prize collecting Steiner tree problem

Multi-start strategy

• Force GW to construct different
initial solutions for local search

Use original prizes in first iteration
Use modified prizes after that

• Modify prizes (two strategies)
Introduce noise into prizes

for i = 1, …, |V | {
generate β ∈ [1 – a, 1 + a], for a > 0
d’ (i) = d (i) × β

}

Node elimination
Set to zero the prizes of α% of the
nodes in nodes(GW) ∩ nodes(local
search)

slide 18 Prize collecting Steiner tree problem

Local search with
perturbations

best = HUGE
d’ = d
for (i = 1, ..., MAXITR){

X = GW (V, E, c, d’)
X’ = LOCALSEARCH(V, E, c, d, X)
if (cost(X’) < best){

X* = X’
}
compute perturbations and update d’

}
return X*

Approach is similar to a GRASP (greedy
randomized adaptive search procedure), in
which the greedy randomized construction
phase is replaced by the construction with
perturbations.

slide 19 Prize collecting Steiner tree problem

Path relinking

• Integrates intensification & diversification
• Explores the path connecting good

solutions
• In local search with perturbations, let

X’ be the local optimum found by
LOCALSEARCH
Y be a solution chosen randomly from a
POOL of elite solutions
∆ = {i ∈ V : (i ∈ X’ and i ∉ Y) or

(i ∉ X’ and i ∈ Y)}
• Construct path between X’ (start) and Y

(guide):
Apply best movement in ∆
Verify quality of solution after move
Update ∆

slide 20 Prize collecting Steiner tree problem

Path relinking

• Criteria for inclusion of solution X
into POOL of elite solutions

If cost(X) is less than smallest cost of
POOL solutions
Else, if cost(X) is less than largest
cost of POOL solutions and X is
sufficiently different from all POOL
solutions

X1 and X2 are sufficiently different if
they differ by at least β nodes, where β
is a fraction of |V |

slide 21 Prize collecting Steiner tree problem

Local search with perturbations
and path relinking

POOL = φ
d’ = d
for (i = 1, ..., MAXITR){

X = GW (V, E, c, d’)
if (X is new){

X’ = LOCALSEARCH(V, E, c, d, X)
attempt to insert X’ into POOL
select X’’ ∈ RAND(POOL)
XPR = PATHRELINK(X’ , X’’)
attempt to insert XPR into POOL
}

}
compute perturbations and update d’

}
return best solution in POOL

slide 22 Prize collecting Steiner tree problem

Variable neighborhood
search

Mladenovic’ & Hansen (1997)

• Consider K neighborhoods:
N 1, N 2, …, N K

N k (X) = { X‘ : X and X‘ differ by k
nodes}

• Basic scheme (MAXTRY times):
Start with initial solution X and k = 1
while (k ≤ K){
choose X‘ ∈ N k (X) at random
X’ = LOCALSEARCH(X’) using

neighborhood N 1

k = k + 1
if cost(X‘) < cost(X) { X = X‘ ; k = 1}

}

slide 23 Prize collecting Steiner tree problem

Local search with
perturbations,

path relinking, and VNS
POOL = φ
d’ = d
for (i = 1, ..., MAXITR){

X = GW (V, E, c, d’)
if (X is new){

X’ = LOCALSEARCH(V, E, c, d, X)
attempt to insert X’ into POOL
X’’ ∈ RAND(POOL)
XPR = PATHRELINK(X’ , X’’)
attemp to insert XPR into POOL
}

}
compute perturbations and update d’

}
X* = best solution in POOL
X* = VNS(V, E, c, d, X*)
return X*

slide 24 Prize collecting Steiner tree problem

Computational results

• 114 test problems
From 100 nodes & 284 edges
To 1000 nodes & 25,000 edges
Three classes:

Johnson, Minkoff, & Phillips (1999) P &
K problems
Steiner C problems (derived from SPG
Steiner C test problems in OR-Library)
Steiner D problems (derived from SPG
Steiner D test problems in OR-Library)

slide 25 Prize collecting Steiner tree problem

Computational results
• Runs performed on a 400 MHz

Pentium II with 32 Mbytes under
Linux

• C programming language (gcc)
Goemans & Williamson: code of
Johnson, Minkoff, and Phillips (1999)
Iterative improvement, path relinking,
and VNS

• Parameters
500 multi-start iterations
Perturbation: α = 20 and a = 1.0
VNS: MAXTRY = 10, K = 35
Path relinking:
β = 0.04 |V | and pool size = 10
Alternate between perturbation
schemes

slide 26 Prize collecting Steiner tree problem

Computational results

• Heuristic found:
89 of 104 known optimal values
(86%)
solution within 1% of lower bound
for 104 of 114 problems

282126834JMP

254106532D

363252638C

tot+VNS+PR+LSGWnumtype

89104

Number of optima found with each additional heuristic

slide 27 Prize collecting Steiner tree problem

Computational results

1.1404038+VNS

9.1403835+PR

11.1373417+LS

36.429227GW

max (%)<10%< 5%< 1%heuristic

Problem type Steiner C

Number of instances with given relative error

slide 28 Prize collecting Steiner tree problem

Computational results

4.5404034+VNS

10.5393834+PR

30.8363322+LS

38.531217GW

max (%)<10%< 5%< 1%heuristic

Problem type Steiner D

Number of instances with given relative error

slide 29 Prize collecting Steiner tree problem

Computational results

3.4343432+VNS

3.4343432+PR

3.7343424+LS

6.6343115GW

max (%)<10%< 5%< 1%heuristic

Problem type JMP

Number of instances with given relative error

slide 30 Prize collecting Steiner tree problem

Parallel implementation
• Environment:

Cluster with 32 processors: P-II 400
Switch IBM 8274 at 10 Mbps
LAM 6.3-b3 implementation of MPI
Linux and hcc compiler

• Each processor runs a copy of the
same program:

200 iterations of LS with perturbations
Even-ranked processors: VNS from
best solution
Odd-ranked processors: randomly
select the initial solution for VNS

• Seven additional optimal solutions:
89+7=96 out of 104 optima known
(series JMP: +2, C: +2, D: +3)

slide 31 Prize collecting Steiner tree problem

Concluding remarks
• Cutting planes algorithm produced

tight lower bounds and feasible
upper bounds for most instances.

Running times were high for most
difficult instances (days, even weeks)

• With substantially less
computational effort, the heuristic
produced optimal and nearly
optimal solutions.

Running times for most difficult
instances averaged about 10,000
seconds
Over 90% of solutions were within
1% of lower bound

• Each component contributes to
improve the effectiveness of the
heuristic

slide 32 Prize collecting Steiner tree problem

Computational results
lower bounds

• Cutting planes algorithm
Found optimal LP solutions in 97 of the 114 test
problems (85%)
Found tight lower bounds (equal to best known
upper bounds) in 104 instances (91%)
Of the 97 optimal LP solutions, 94 were integral.
Each of the 3 fractional solutions was off of the
best known upper bound by less than ½
On the 12 instances for which tight lower bounds
were not produced, the bounds produced had at
most a 1.3% deviation from the best known upper
bounds
In 13 of the 114 instances, single vertex optima
were found
In 7 instances the algorithm took over 100,000
seconds to converge to a lower bound. The longest
run took over 10 CPU days.

