A hybrid Lagrangean heuristic with GRASP applied to set multicovering

Luciana Pessôa¹

Celso C. Ribeiro¹

Maurício G.C. Resende²

¹ Department of Computer Science, Universidade Federal Fluminense, Brazil.

² AT&T Research Labs, USA.

Workshop TRANSLOG Reñaca, Chile December 8-11, 2009

Summary

- Motivation: Redundant POP placement problem
- Set k-covering
- GRASP
- Lagrangean heuristics
 - Greedy Lagrangean heuristic
 - GRASP Lagrangean heuristic
- Experiments
- Concluding remarks

• Given customers of a wireless network...

- ... and potential PoP locations, where an equipment can be placed.
 - A PoP (point of presence) may host, for example, an antenna (hubs, modens) which connects customers to the network.

• An equipment in a PoP covers some customers.

- Determine in which PoPs locations to place the equipments:
 - Fault-tolerance (reliability) constraints:
 each customer must be covered by, at least, k antennas.
 - Minimize total PoP installation costs.

Set k-covering (multicovering)

• Mathematical formulation:

 $x_{j} = \begin{cases} 1, \text{ if equipment is placed in PoP location j} \\ 0, \text{ otherwise} \end{cases}$

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 9/67

- GRASP: multistart metaheuristic
 - Greedy randomized construction phase
 - Local search
- Path-relinking: memory-based intensification

while .not.StoppingCriterion (max number of iterations) do: Build solution x with greedy randomized algorithm. Use local search to improve current solution \mathbf{x} . Select locally optimal solution \mathbf{x} from elite set. Apply path-relinking to obtain the best solution x'' in a trajectory between x and x'. Apply local search to improve solution x''. Update elite set with x". If x" improves best solution x^* , then replace x^* by x". end while

- Construction phase
 - Repeat until complete solution is built:
 - Compute greedy evaluation r_i for each candidate element j
 - Rank all elements according to their greedy evaluations
 - Place well ranked elements defined by a treshold 0 ≤ α ≤ 1 in a restricted candidate list (RCL)
 - Select an element e from the RCL at random
 - Add selected element e to the solution

Construction phase

 $X_j = 0$, for j=1,...,n; L = {1,...,n};

- Repeat until complete solution is built:

- Compute greedy evaluation r_i for each candidate element j
- Rank all elements according to their greedy evaluations

Identify \mathbf{r}_{\min} and \mathbf{r}_{\max} ;

 $\mathbf{r}_i = c_i / \text{cardinality}_i$

Select e;

 $X_{e} = 1;$

 $L=L\setminus\{e\};$

• Place well ranked elements defined by a treshold parameter $0 \le \alpha \le 1$ in a restricted candidate list (RCL)

$$\mathsf{RCL}=\{j \notin \mathsf{L} \mid \mathbf{r}_{j} \leq \mathbf{r}_{\min} + \alpha \ (\mathbf{r}_{\max} - \mathbf{r}_{\min});\$$

- Select an element e from the RCL at random
- Add selected element e to the solution —

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC

- Local search:
 - There is no guarantee that constructed solutions are locally optimal, even with respect to simple neighborhood definitions.
 - Local search explores the neighborhood of a solution, looking for a cost-improving solution
 - (k,p)-exchange: exchange k elements in the solution
 by p elements not in the solution.

- Local search:
 - Neighborhood (k,p)-exchange: exchange k elements in the solution by p elements not in the solution.
 - Starting from a solution x
 - $-\mathsf{Do}$
 - $x \leftarrow (1,0)$ -exchange(x)

to remove superfluous elements in the solution

• $x \leftarrow (1,1)$ -exchange(x)

to replace a more expensive element in the solution by a less expensive one not in the solution

while x is improved

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 15/67

- Path-relinking:
 - Introduced in the context of tabu search by Glover (1996)
 - Intensification strategy using set of elite solutions
 - Consists in exploring trajectories that connect high quality solutions.

- Path-relinking:
 - Path is generated by selecting moves that introduce attributes of the guiding solution in the initial solution.
 - At each step, all moves that incorporate attributes of the guiding solution are evaluated and the best move is performed:

- Path-relinking phase:
 - Maintain an elite set of diverse high-quality solutions found during previous GRASP iterations.
 - After each GRASP iteration (construction & local search):
 - x_a is the locally optimal GRASP solution
 - Select an elite solution, x_p , at random
 - Perform path-relinking between x_{q} and x_{p}

Variants of GRASP with path-relinking
 – GRASP with forward path-relinking (GPRf):

• Starting solution is the worst between x_a and x_p.

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC

Variants of GRASP with path-relinking
 – GRASP with backward path-relinking (GPRb):

Performs systematically better than forward PR.

20/67

• Starting solution is the best between x_a and x_p.

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC

Variants of GRASP with path-relinking
 – GRASP with mixed path-relinking (GPRm):

G

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 21/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 22/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

I

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 23/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 24/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 25/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 26/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 27/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 28/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

• Starting and guiding solutions are interchanged at each step

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 29/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 30/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 31/67

- Variants of GRASP with path-relinking
 - GRASP with mixed path-relinking (GPRm):

• Starting and guiding solutions are interchanged at each step.

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 32/67

- 135 test problems:
 - Derived from 45 OR-Library instances for the set covering problem.

classes	dimension	density	quantity	
cond	200×1000	20%	10	
sep4 sep5	200×1000 200×2000	2%	10	
scp6	200×1000	5%	5	
scpa	300×3000	2%	5	
scpb	300×3000	5%	5	
scpc	400×4000	2%	5	
scpd	400×4000	5%	5	

- Three coverage factors: • k_{\min} : k = 2 for all instances;

- Four versions: Gpure, GPRb, GPRf, and GPRm
- Parameter α self-adjusted with Reactive GRASP (Prais and Ribeiro, 2000)

scpb

scpc scpd

 Stopping criterion: running time needed to perform k_{med} k_{kmax} classes k_{min} 1,000 iterations 2715scp4 5Time in 90 scp51045of pure GRASP seconds scp6 2038 521141 265scpa

17

39

26

 8 runs for each instance and algorithm on Intel Xeon Quadcore 2.33GHz

December 2009

235

329

489

288

580

544

- GRASP results compared with CPLEX solutions.
- CPLEX running times limited to 24 hours on SGI Altix 3700 Supercluster of 1.5GHz Itanium processors.
- CPLEX found optimal solutions for:
 - kmin: 41 out of 45 instances
 - kmed: 15 out of 45 instances
 - kmax: 6 out of 45 instances
- Largest integrality gap was 0.8%.

	CPLEX	Gpure	GPRb	GPRf	GPRm
MDif	0.00~%	4.84 %	3.45 %	3.51~%	3.51~%
#Best	135	0	0	0	0
Score	0	324	304	319	320

- MDif: average relative deviation with respect to best CPLEX solution values over all instances
- #Best: number of instances for which each method found solutions as good as best CPLEX solutions
- Score: number of times (sum over all instances) other methods found better solutions (the lower the value of Score, the better the method)

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 36/67

	CPLEX	Gpure	GPRb	GPRf	GPRm
MDif	0.00~%	4.84 %	3.45 %	3.51~%	3.51~%
#Best	135	0	0	0	0
Score	0	324	304	319	320

- GRASP was not able to find good solutions matching the best solutions obtained by CPLEX.
- GPRb found better solutions, on average, than the other versions of GRASP.

- Time-to-target-value plots (Aiex, Resende and Ribeiro, 2002) or run time distributions:
 - Probability of finding a solution at least as good as a target value within some running time
 - Select instance and target value.
 - For each variant of GRASP:
 - Perform 200 runs from different seeds.
 - Stop when a solution at least as good as target is found.
 - For each run, measure the time-to-target-value
 - Plot the run time distribution of finding a solution at least as good as target within some computation time.

GPRb

• Typical time-to-target-value (ttt) plots:

- In conclusion:
 - Pure GRASP found solutions with cost, on average,
 4.84% off of CPLEX values.
 - Path-relinking improved pure GRASP.
 - GRASP with backward path-relinking obtained, on average and over all test instances, the best results:
 - Average cost of solutions found by GPRb is 3,45% off of the cost of CPLEX solutions.

Lagrangean heuristic

- Constraint ... \geq k is dualized with multipliers λ .
- Dual problem solved by subgradient optimization:
 - Multipliers adjustment following Held, Wolfe and Crowder, 1974 (see also Beasley, 1993)
 - At every subgradient optimization iteration:
 - Let $x(\lambda)$ be the optimal solution to Lagrangean problem.
 - Make use of a basic heuristic to produce a primal solution.
 - Upper bound given by the primal solution is used to update the step-size of the process that adjusts the multipliers.
 - Similar to Caprara, Fischetti and Toth, 1999

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 41/67

Lagrangean heuristic

- <u>Basic heuristic</u> builds primal solution x from initial solution x^0 using modified costs γ
 - Initial solution x^0 :
 - $X^0 = x(\lambda)$
 - $x_j^0 = 0$, for j = 1, ..., n
 - Modified costs γ :
 - Lagrangean costs c' $c_{j}' = c_{j} \sum_{i=1}^{m} \lambda_{i} \cdot a_{ij}$
 - Complementary costs c

$$\overline{c_j} = (1 - x_j(\lambda)).c_j$$

Lagrangean heuristic

- Greedy basic heuristic:
 - Greedy construction
 - Starting from x⁰, iteratively build a solution x by setting to

 the variable x_j with the smallest ratio between its
 modified cost γ_j and the number of still uncovered rows
 that it covers.
 - Local search
 - Same local search used by GRASP
 - Apply (1,0)-exchange and (1,1)-exchange to the greedy solution, using the original costs.

Hybrid Lagrangean heuristic with GRASP

- GRASP basic heuristic:
 - Slightly modified version of GRASP procedure
 - Repeat for max number of iterations:
 - Greedy randomized construction:
 - Make use of modified costs γ instead of original costs.
 - Build a feasible solution \mathbf{x} from \mathbf{x}^0 (not necessarilly from scratch).
 - Apply local search.
 - Apply path-relinking.

• Hybrid Lagrangean heuristic with GRASP: LAGRASP

Hybrid Lagrangean heuristic with GRASP

- Greedy Lagrangean heuristic:
 - At each iteration of the subgradient method:
 - Perform greedy basic heuristic.
- Hybrid Lagrangean with GRASP heuristic (LAGRASP):
 After every H iterations of the subgradient method:

 Perform GRASP basic heuristic with probability ß
 or greedy basic heuristic with probability (1-ß).

- Lagrangean heuristics
 - Stopping criterion:
 - Step-size parameter η ≤ 10⁻⁴ (initially set at 2 and halved after every 50 consecutive iterations without improvement in the lower bound)
 - Lower bound matches upper bound, i.e. UB LB < 1
 - Each version: 8 runs

December 2009

- Experiments on Intel Xeon Quadcore 2.33GHz
- Best results compared to CPLEX solutions.

- Greedy Lagrangean heuristic
 - Four versions according to modified cost scheme and initial solution used by basic heuristic:
 - GLH1-LL: Lagrangean modified costs to build a feasible solution from the Lagrangean problem solution
 - GLH2-CL: Complementary modified costs to build a feasible solution from Lagrangean problem solution
 - GLH3-LS: Lagrangean modified costs to build a feasible solution from scratch
 - GLH4-CS: Complementary modified costs to build a feasible solution from scratch

	CPLEX	GLH1-LL	GLH2-CL	GLH3-LS	GLH4-CS
MDif	0.00~%	0.30~%	0.32~%	0.30~%	0.30~%
#Best	135	24	21	24	24
Score	0	194	330	209	264
Time (s)	_	24274.71	22677.02	37547.50	41804.25

- Building primal feasible solutions from Lagrangean problem solutions appears to be faster: similar times for GLH1-LL and GLH2-CL.
- All versions found, at least, 21 solutions as good as CPLEX over the 135 problem instances.
- Best overall results obtained, on average, by GLH1-LL.

• Lower and upper bounds with running time:

• Upper bound with running time (same instance):

- Hybrid Lagrangean with GRASP heuristic:
 - Combines best GRASP with path-relinking strategy with greedy Lagrangean heuristic
 - Basic (greedy and GRASP) heuristics
 - Make use of Lagrangean modified costs to build feasible primal solution from Lagrangean problem solution
 - GRASP basic heuristic
 - Backward path-relinking
 - Elite set with, at most, 100 solutions

- Hybrid Lagrangean with GRASP heuristic
 - Parameter settings:
 - 21 instances (first of each class, each k-value)
 - LAGRASP(ß, H, max number of GRASP iterations)

• Hybrid Lagrangean with GRASP heuristic

- Parameter setting
 - Three versions (i.e., parameter settings) of
 LAGRASP selected for the next experiment:
 - LAGRASP(0,1,-): makes use exclusively of the greedy basic heuristic.
 - LAGRASP(0.25,1,5): better average solution values than LAGRASP(0,1,-), at the cost of an increase in running time.
 - LAGRASP(0.50,10,5): smaller running times than LAGRASP(0,1,-), at the cost of finding worse solutions.

• Computational results over all 135 test instances

	CPLEX	LAGRASP	LAGRASP	LAGRASP
		(0, 1, -)	(0.25, 1, 5)	(0.50, 10, 5)
MDif	0.00~%	0.30~%	0.27~%	0.33~%
#Best	135	24	27	23
Score	0	191	133	272
Time (s)	_	24274.71	63603.06	11401.26

 All LAGRASP versions found optimal or near-optimal solutions for all 135 instances (total time over all instances smaller than 18 hours)

December 2009 LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 55/67

• Computational results over all 135 test instances

	CPLEX	LAGRASP	LAGRASP	LAGRASP
		(0, 1, -)	(0.25, 1, 5)	(0.50, 10, 5)
MDif	0.00~%	0.30~%	0.27~%	0.33 %
#Best	135	24	27	23
Score	0	191	133	272
Time (s)	_	24274.71	63603.06	11401.26

 LAGRASP(0.25,1,5) reached the best results in quality metrics (MDif, #Best and Score) using the same time magnitude than the other versions of LAGRASP.
 December 2009 LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 56/67

• Lower and upper bounds with running time:

• Upper bound with running time (same instance):

- Comparative results of LAGRASP and GPRb
 - Both heuristics used the same time limit as stopping criterion (same time limits used in the GRASP experiment):

	CPLEX	LAGRASP(0.25, 1, 5)	GPRb
MDif	0.00 %	0.43 %	3.46~%
#Best	135	22	0
Score	0	113	270

 LAGRASP (0.25, 1, 5) outperformed GPRb for all metrics: smaller average deviation and solutions as good as CPLEX solutions for 22 out of 135 instances.

• Upper bound with running time:

Concluding remarks (1/3)

- Redundant PoP placement problem formulated as a set k-covering problem in communications network design.
- AT&T real life instances of redundant PoP placement for dial-up internet service and fixed wireless broadband may have up to 65,000 possible locations.
- Patent titled "Designing networks with redundant" points of presence using approximation methods and systems" with the US Patent Office filed in April 2009 December 2009

Concluding remarks (2/3)

- A variety of challenging problems arising in computational biology when formulated as partitiondistinguishing optimization problems can be cast into a common general framework:
 - Minimal Informative Subset probem: given a set of objects, find a minimal set of "attributes" of the objects that are "informative" with respect to the optimally distinguished partitions (Istrail, 2003).
 - Formulation as a set-covering based feature-selection.
 - Minimum Robust Tag SNPs problem: coverage factor k ensures comparison of haplotypes when some SNPs are missing. December 2009 LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 62/67

Concluding remarks (3/3)

- Set of 135 new set k-covering test instances.
- Hybridization of GRASP with a Lagrangean heuristic improves the quality of solutions found when only a greedy basic heuristic is applied.
- LAGRASP framework being applied and tested to other problems.
- Typically, hybrid Lagrangean with GRASP heuristic is able to improve primal solutions even when dual information and greedy Lagrangean heuristic have stabilized.
 December 2009
 LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC

• Upper bounds with iterations:

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC

• Lower and upper bounds with iterations (zoom):

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 65/67

• Lower and upper bounds with iterations:

December 2009

LAGRASP : Hybrid Lagrangean heuristic with GRASP applied to k-SC 66/67