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a b s t r a c t 

The automatic detection of planes in depth images plays an important role in computer vision. Plane 

detection from unorganized point clouds usually requires complex data structures to pre-organize the 

points. On the other hand, existing detection approaches tailored to depth images use the structure of the 

image and the 2.5-D projection of the scene to simplify the task. However, they are sensitive to noise and 

to discontinuities caused by occlusion. We present a real-time deterministic technique for plane detection 

in depth images that uses an implicit quadtree to identify clusters of approximately coplanar points in the 

2.5-D space. The detection is performed by an efficient Hough-transform voting scheme that models the 

uncertainty associated with the best-fitting plane with respect to each cluster as a Gaussian distribution. 

Experiments shows that our approach is fast, scalable, and robust even in the presence of noise, partial 

occlusion, and discontinuities. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

The growing popularity of depth cameras like Structure Sensor

and Project Tango makes the 3-D scanning technology cheaper

and ubiquitous. Consequently, it motivates the development of

real-time solutions with applications in image-based reconstruc-

tion, autonomous vehicle navigation, and augmented reality. The

ability to detect planar structures from depth images in real-time

is an important step towards the development of these solutions. 

Existing techniques for detecting planar structures from un-

organized point clouds are not suitable for handling depth data

in real time because they often require special data structures

to organize points in 3-D space, or exploit computationally in-

tensive non-deterministic strategies. In contrast, surface growing

techniques that detect planar patches in depth images are tailored

to the 2.5-D structure of depth data. However, the quality of

detections relies on the amount of noise and on the absence of

occlusions and missing portions of depth information, which may

lead to multiple detections of the same plane. 

We present a real-time deterministic solution for plane de-

tection in depth images. Our approach extends the kernel-based

voting scheme for plane detection in unorganized 3-D point

clouds developed by Limberger and Oliveira [1] by exploiting the
∗ Corresponding author. 
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.5-D nature of depth data to organize input points into simple

nd efficient 2-D data structures. By taking advantage of the

egular lattice of the discrete image plane, our solution avoids

e-computations and performs plane detection in real-time on

 personal computer, with linear cost over the number of input

ixels. In addition, it is robust to noise typically found in this kind

f image and to multiple detections of the same plane, even in the

resence of occlusion and missing data. 

The main contribution of this paper is a real-time plane de-

ection scheme for depth images: the Depth Kernel-Based Hough

ransform (D-KHT), which has asymptotic time complexity O ( n )

n the number of pixels, and whose implementation runs 3 to

4 times faster than state-of-the-art techniques. 

Fig. 1 shows a result obtained by the D-KHT. Each color in

ig. 1 (c) represents a different plane detected in the depth image

n Fig. 1 (b). Black regions correspond to non-planar surfaces. 

. Related work 

The Standard Hough Transform (SHT) [2] is one of the most

opular techniques for detecting geometric entities in low-

imensional spaces. The SHT for straight-line detection discretizes

he space defined by the line parameters as an accumulator map.

iven a binary edge image, the accumulator’s bins related to the

ines passing through each edge pixel are incremented by one unit

er voting pixel. The local maxima created by this voting process

orrespond to the parameters of the most likely lines in the image.

Fernandes and Oliveira [3] proposed the Kernel-Based Hough

ransform (KHT), a real-time algorithm for straight line detection

https://doi.org/10.1016/j.patrec.2017.12.027
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Fig. 1. Result produced by the proposed approach. Detected planes are identified 

in (c) by colors, while black pixels correspond to non-planar object. For this exam- 

ple, the D-KHT runs in ∼ 21 ms on a 2.3 GHz PC and behaves well, even in the 

presence of non-planar surfaces. 
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hich first builds clusters of approximately collinear edge pixels

nd then uses these clusters to vote in the accumulator map, con-

idering the Gaussian uncertainty of the line that better explains

ach cluster as the voting kernel. Limberger and Oliveira [1] ex-

ended the KHT to the detection of planes in an unorganized point

loud in 3-D space (3-D KHT). They use an octree to organize the

oint cloud in such a way that each leaf node of the tree includes

 cluster of approximately coplanar points, or a set of outliers.

he latter leaves are neglected in the voting process. Experiments

how that the 3-D KHT outperforms previous HT-based techniques

or plane detection. 

The Probabilistic Hough Transform (PHT) [4] performs the HT

rocedure for plane detection on a random subset of m points

rom the input point cloud. Estimating the optimal value for m

s a challenging task because one has to deal with the trade-off

etween noise resilience and processing cost. The Adaptive Proba-

ilistic Hough Transform (APHT) [5] replaces the selection of m by

n adaptive stopping rule that terminates voting as soon as a given

umber of objects seem to be reliably detected. Unfortunately, the

PHT is sensitive to noise. In the Progressive Probabilistic Hough

ransform (PPHT) [6] , the voting procedure is also performed

or a randomly selected subset of input entries. However, the

umber of points that have already voted define a threshold for

he peaks of votes considered as valid detections. When a plane is

etected, the points that lie on it are deleted from the input set.

he adaptive thresholding and the point deletion strategies make

he PPHT less sensitive to noise than the APHT. The Randomized

ough Transform (RHT) [7] also removes points related to detected

lanes from the point set. The voting strategy of the RHT relies on

oting for the single cell corresponding to the plane spanned by

andom point triples. Refer to [8] for a detailed comparison of the

robabilistic variations of the HT for plane detection. 

Surface Growing (SG) [9,10] is a region-growing-based tech-

ique to detect planar patches in depth images by using a

moothness constraint. It selects seed pixels in the image and

xpands the area around those pixels if the underlying surface

an be correctly grouped into a flat surface. SG works well in the

resence of a small amount of noise, but has a high computational

ost and the quality of detection is tied to the selection of the

eed points. Furthermore, SG requires connectivity between pixels

epicting the same surface in order to avoid multiple detections of

he same plane. Such connectivity may not be observed in depth

mages since occlusion and depth shadowing may cause damaged

nd missing depth information. 

The Random Sample Consensus (RANSAC) [11] is an iterative

on-deterministic method to estimate parameters of a mathemat-

cal model. At each iteration, the technique randomly selects the

inimal amount of input entries required to adjust the model of

ome intended type of structure (e.g., three points define a plane).

hen, it counts how many entries from the input dataset can be

xplained by the fitted model (inliers). The iterative process stops

hen the probability of finding a model with more inliers than the

urrent best model is below a given threshold. Its main advantage
s noise resilience. Unfortunately, most of the computational cost

s devoted to manage models computed from unrelated input

ntries. Schnabel et al. [12] introduced an optimization to RANSAC

sing an octree to establish spatial proximity among samples,

mproving the detection of planes, spheres, cylinders, cones, and

ori from points in 3-D spaces. 

Erdogan et al. [13] proposed the use of Markov Chain Monte

arlo for the plane detection problem. This technique provided

ood results. However, it is not able to reach real-time frame rates

ue to its computational cost. 

Hemmat et al. [14] proposed a plane-detection technique based

n finding 3-D edges in depth images and searching lines between

hose edges. Hemmat et al.’s approach prevents the computation

f normal vectors, reducing the overall computational cost of

he solution. However, it only reaches real time performance by

ultithreaded implementation. 

For a detailed review on object detection and recognition in

epth images and point clouds, please refer to [15] . 

. Depth Kernel-Based Hough Transform 

Fig. 2 illustrates the flowchart of the proposed plane detec-

ion pipeline: (i) Starting from a depth image, our approach uses

ummed-Area Tables (SATs) [16] and a quadtree [17] to efficiently

ubdivide the set of pixels into clusters of approximately copla-

ar points, in 3-D; (ii) for each cluster, it uses first-order error

ropagation to estimate the uncertain plane that fits clustered

oints; then, each cluster votes in an accumulator map using the

rivariate-Gaussian kernel computed from the plane’s associated

ncertainties; and (iii) after the voting step, the location of lo-

al maxima in the accumulator map correspond to the most likely

lanes. 

.1. Clustering depth data 

The clustering step builds the implicit quadtree on the depth

mage using the whole image as the root node ( Fig. 3 ). For each

ode having at least s ms samples ( i.e., points in 3-D computed

rom valid depth pixels), we use Principal Component Analy-

is (PCA) to decide whether the current set of samples define a

luster of coplanar samples or must be subdivided according to

he quadrants of the current rectangular image region represented

y the node. If a node does not have enough samples then it is a

eaf node. In this case, its samples are considered outliers and do

ot participate to the voting process. Fig. 3 (b) depicts outliers as

lack nodes. For a node to be considered as having approximately

oplanar samples, we must calculate its mean sample μ( x,y,z ) and

ovariance matrix �( x,y,z ) as: 

(x,y,z) = 

( 

μx 

μy 

μz 

) 

and �(x,y,z) = 

( 

σxx σxy σxz 

σxy σyy σyz 

σxz σyz σzz 

) 

, (1) 

oreover, check whether 2 
√ 

λ1 < s t , where λ1 is the least eigen-

alue of �( x,y,z ) and s t is the maximum spread a distribution of

amples may have in its thinnest dimension. In (1) , 

ab = 

1 

m − 1 

( 

m ∑ 

k =1 

a k b k − μb 

m ∑ 

k =1 

a k − μa 

m ∑ 

k =1 

b k + m μa μb 

) 

(2) 

nd 

a = 

1 

m 

m ∑ 

k =1 

a k , μb = 

1 

m 

m ∑ 

k =1 

b k , (3) 

here m is the number of samples in a given node, and { a k } m 

k =1 
nd { b k } m 

k =1 
are the coordinates x, y , or z of samples in the unit of
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Fig. 2. D-KHT workflow: (i) Given a depth image as input, its pixels are clustered into approximately coplanar regions; (ii) For each region identified in step (i), we vote 

on the spherical accumulator map considering the Gaussian distribution that describes the uncertainty of the best-fitting plane for the region; (iii) Finally, we use a hill 

climbing approach to find peaks of votes in the accumulator map, whose coordinates correspond to the most likely planes in the image. 

Fig. 3. The Cube dataset consists in a depth image of a cube on a planar surface (a). 

Black pixels in (a) depict invalid depth information and do not correspond to 3-D 

point samples. Image (b) shows the leaf nodes of the implicit quadtree built over 

the depth image. Nodes having the same color indicate clusters of point samples 

that voted to the same detected plane. Black nodes in (b) correspond to outliers. 

They did not participate to the voting process. 
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measurement used by the device: 

( 

x k 
y k 
z k 

) 

= 

⎛ 

⎝ 

i k −c x 
αx 

z k 
j k −c y 
αy 

z k 
z k 

⎞ 

⎠ . (4)

In (4) , we assume a pinhole camera having skew equal to zero.

( i k , j k ) 
T are the pixel coordinates of the k -th sample point. ( c x ,

c y ) 
T is the camera’s principal point, in pixels, and αx and αy 

represent focal length in terms of pixels. In our experiments, the

camera parameters were retrieved from the datasets or from the

calibration procedure of the device. 

In contrast to the 3-D KHT, we consider only a single param-

eter ( s t ) to guide the clustering step. According to our experience,

the single-layer spread of feature points in 3-D is influenced by

the relative angle between the principal axis of the camera and

the normal to the plane, making the definition of relative isotropy

used by the 3-D KHT a challenging task. Besides that, handling a

single parameter is more intuitive to the user. Also, depth images

allow the implicit construction of a quadtree instead of the ex-

plicit construction of the octree adopted by the 3-D KHT, because

the depth image is a height map from the camera’s perspective,

leading to the organization of 3-D points considering only the 2-D

coordinate system of the image. 

When using PCA on depth images, one must be aware that the

depth value, differently of pixel coordinates, is usually given in the

standard unit of measurement assumed by the capturing device.

Thus, in order to compute �( x,y,z ) one has to map valid pixels to

the actual 3-D space of the scene (see (4) ). 

By pre-computing SATs (nine, altogether), we are able to com-

pute each �( x,y,z ) in constant time since each summation in the

covariance (2) and mean (3) formulas can be evaluated by using

only four SAT references and three arithmetic operations. 
.2. Computing Gaussian kernels 

Let C be a cluster containing approximately coplanar point

amples in a leaf node of the quadtree. The plane that better fits

he samples in C passes through the mean point μ( x,y,z ) and has

nit normal vector 
−→ 

n = (n x , n y , n z ) T , where 
−→ 

n is the eigenvector

ssociated to the least eigenvalue of �( x,y,z ) . The Gaussian kernel

hat weights votes from C in the parameter space of the normal

quation of the plane is centered at: 

(ρ,φ,θ ) = 

( 

μρ

μφ

μθ

) 

= 

( 

n x μx + n y μy + n z μz 

cos −1 ( n z ) 

tan 

−1 
(

n y 
n x 

)
) 

. (5)

he covariance matrix of the Gaussian kernel in the parameter

pace can be computed using first-order error propagation as: 

(ρ,φ,θ ) = J �(x,y,z) J 
T , (6)

here J is the Jacobian of (5) , and �( x,y,z ) is defined by (1) . 

.3. Spherical accumulator map 

We have adopted Borrmann et al.’s [8] accumulator map in

ur approach. However, we assume the camera’s center and its

rincipal axis as, respectively, the origin and the z -axis of the 3-D

artesian space. In their work, [8] demonstrated that an unbiased

pherical accumulator map A is ideal for HTs tailored to detect

rbitrary planes in 3-D spaces. The axes of A are θ ∈ [ −π, + π) ,

∈ [0, π ), and ρ ∈ [0, ρhigh ], whose upper limit ρhigh defines the

adius of A . We choose ρhigh as the distance between the camera

nd the farthest point sample. The discrete values assumed by ρ
n A are defined by linear interpolation of the interval [0, ρhigh ].

he amount of linear samples in ρ and φ directions ( N ρ and N φ ,

espectively) are defined by the user based on his/her expectations

n the granularity of detection results. The linear discretization of

is given as a function of φ (see for details [8] ). 

.4. Kernel-based voting 

We use the Gaussian kernels computed according to

ection 3.2 to update the spherical accumulator map A de-

cribed in Section 3.3 . For a given kernel defined by a mean

arameter vector μ( ρ , φ, θ ) (5) and a covariance matrix �( ρ , φ, θ ) 

6) , we increment the bins of A that falls within two standard

eviations of the mean. Therefore, the contribution of a kernel is

onsidered significant only at the bins whose parameter vector

 = (ρ, φ, θ ) T satisfies: 

f (q ) ≥ f (μ(ρ,φ,θ ) + 2 

√ 

κ
−→ 

u ) , (7)

here { −→ 

u , κ} is any eigenpair of �( ρ , φ, θ ) , and f denotes the

robability density function (PDF) of the Gaussian distribution: 

f (q ) = 

1 √ 

(2 π) 3 | �(ρ,φ,θ ) | 
exp 

(
−1 

2 

δT �−1 
(ρ,φ,θ ) 

δ
)

, (8)
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or δ = q − μ(ρ,φ,θ ) . | �( ρ , φ, θ ) | and �−1 
(ρ,φ,θ ) 

denote, respectively, the

eterminant and the inverse of matrix �( ρ , φ, θ ) . Notice that the

ight side of (7) is a different constant value for each kernel. 

Since A is a discrete domain, we start voting at the bin that

ncludes μ( ρ , φ, θ ) and neighbor bins are reached in a flood-fill

ashion, having the condition (7) to stop the flooding. 

It is important to note that the density of points in the clusters

aries with camera distance, while the integral of (8) is one due to

he normalization axiom of probability. Therefore, kernel votes in

ach bin is composed by multiplying the evaluation of (8) to the

 C factor (9) computed for a given cluster C regarding the spatial

overage of its tree node and the number of samples. Similar

o [1] , but with appropriate adjustments for our clustering model,

e define 

 C = w a 
R area 

I area 
+ w d 

m 

n 

, (9) 

here I area and R area are the areas (in pixels) of the image and of

he rectangular region of the node, respectively. n is the number

f samples in the whole image, and m is the number of samples in

he cluster. The values of w a and w d are restricted to w a + w d = 1 .

n our experiments, we confirm the findings of Limberger and

liveira [1] that better results are reached by using w a = 0 . 75 and

 d = 0 . 25 . Thus, we favor number of pixels (area) against number

f samples. 

.5. Detecting peaks of votes 

After the voting process, the peaks of votes in the accumulator

ap correspond to the detected planes. However, it is essential

o apply a low-pass filter to consolidate local maxima [3] before

earching for peaks of votes. In our experiments, we computed

he convolution of the accumulator map and a six-connected filter

ith central weight of 0.2002 and neighbor weights of 0.1333. This

ltering operation smooths the voting map, helping to consolidate

djacent peaks as single detected planes. 

We apply a hill climbing strategy to detect peaks of votes

n the smoothed accumulator map. For each kernel used in the

oting procedure, we take the accumulator bin addressed by the

arameters μ( ρ , φ, θ ) of the mean plane and check whether this bin

orresponds to a local maximum. If the condition is true, the bin

s marked as a detected plane. Otherwise, we take the neighbor

in having more votes than the current bin and repeat the process

ntil we find a local maximum. 

Once we have the parameters of each plane detected by hill

limbing, the next step is to readjust the relevance of the planes

ith respect to the image. The relevance is given as function

f the weighting factor w C (9) of each cluster that has climbed

o a given local maximum. The relevance of a given peak P is

iven by the summation of the weights associated to the clusters

hat contributed to the peak. We have observed that this simple

trategy lead to better ordering of detected planes than the use of

he number of votes in datasets of real scenes. 

Given the parameter vector ( ρ , φ, θ ) T of a detected plane, its

ormal vector 
−→ 

n is computed as: 

 

n = 

( 

n x 

n y 

n z 

) 

= 

( 

sin φ cos θ
sin φ sin θ

cos φ

) 

. 

he normal vector 
−→ 

n and the distance ρ define the normal

quation of the plane supporting a subset of 3-D point entries. 

.6. Time complexity analysis 

Our plane detection approach is comprised of three steps hav-

ng linear asymptotic time complexity each. Therefore, the time
omplexity of the D-KHT is also O ( n ). Without loss of generality,

et’s assume an input depth image with d × d pixels and n = d 2 

oint samples for d ≥ 2 being a power of two. The D-KHT first

omputes a set of SATs and build an implicit quadtree to subdivide

he image into clusters of approximately coplanar samples. The

ost of computing each SAT is O ( n ) (see [16] ). By assuming the

orst-case scenario, the quadtree would subdivide the samples

nto n /2 clusters (tree leafs) defined by 2 × 2 image regions.

n that case, the height of the tree would be log 4 n , leading to
 log 4 n 

l=1 
4 l−1 = ( n − 1 ) / 3 nodes. At each node, we have to compute

 3 × 3 covariance matrix �( x,y,z ) and its eigendecomposition. The

ATs allow the computation of �( x,y,z ) in O (1) time. Decomposing

( x,y,z ) is accomplished in O (1) time, too. Therefore, the operations

n the whole clustering procedure are performed in O ( n ). 

The voting step consists of applying first-order error prop-

gation to compute the Gaussian distribution of the uncertain

lane of each cluster and update the accumulator map using those

istributions. The first operation is performed in time O (1), per

luster. The number of accumulator bins updated by each cluster

epends on the distribution of samples in the cluster, and on the

esolution of the accumulator. Nevertheless, it is typically much

maller than n . Therefore, we can safely handle the number of

pdated bins as a constant value, leading to time O (1), per cluster.

n the worst case we have n /4 clusters. Hence, the asymptotic time

or the voting step is O ( n ). 

Finally, filtering any given accumulator bin is performed in

 (1) time, for a total cost of O ( n ) by having only to filter bins

hat received votes. Hill climbing is accomplished for each cluster,

eading to a small amount of accesses to accumulator bins per

limbing process (much smaller than n ). Thus, the time complexity

f the peak detection step is O ( n ), and the overall time complexity

f the D-KHT is O ( n + n + n ) = O ( n ) . 

.7. Discussion 

Despite sharing the KHT pipeline [3] and using the same model

f accumulator map [8] , the D-KHT and the 3-D KHT have funda-

ental differences. First, they assume different types of input data

nd clustering strategies. The 3-D KHT expects unorganized point

louds as input and uses an octree to organize and to cluster the

oints. Thus, the clustering step of the 3-D KHT has an asymptotic

ost of O ( n log 8 n ). The D-KHT uses an implicit quadtree and SATs to

erform clustering in depth images with cost O ( n ). In addition, in

rder to find local maxima in the accumulator map, the 3-D KHT

orts the accumulator bins by the number of votes in descending

rder and checks whether a given bin has more votes than its

eighbors, leading to O ( n log n ) cost. Our approach detects peaks

y an efficient gradient climbing strategy with cost O ( n ). As will

e seen in Section 4.1 , the differences between the D-KHT and the

-D KHT are key for the performance of our approach. 

. Experiments and results 

We have compared the performance of the D-KHT against

tate-of-the-art plane detection techniques by using the refer-

nce implementation of the 3-D KHT provided by Limberger

nd Oliveira, the OpenCV implementation of SG, which is based

n [9] and [10] , and the reference implementation of the RANSAC

roposed by Schnabel et al. [12] for shape detection. Both D-KHT

nd 3-D KHT implementations use dlib for computing eigen-

ecomposition. However, while the 3-D KHT uses OpenMP to

arallelize the clustering procedure, our implementation is strictly

equential. The C ++ codes were compiled with Visual Studio 2013

nd the experiments were performed on an Intel Core i5-6200U

4-bits CPU with 2.3 GHz and 8Gb of RAM. We have converted
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Fig. 4. Frame 2453 from the Office 1 dataset compares the detection capability of several techniques in a noiseless scenario (best viewed in color): (a) Input depth image; 

and (b)–(e) planes detected in (a) by, respectively, D-KHT, 3-D KHT, SG, and RANSAC. In this example, all the techniques are able of retrieving the main planes of the scene 

but the D-KHT is ∼ 7 times faster than the 3-D KHT, and ∼ 7 and ∼ 65 times faster than SG and RANSAC, respectively. 

Fig. 5. The Kinect Scene 3 dataset (top) and Frame 4161 from the Copy Room dataset (bottom) compare the detection capability of several techniques in real scenarios: 

(a) Input depth images; and (b)–(e) planes detected in (a) by, respectively, D-KHT, 3-D KHT, SG, and RANSAC. As expected, SG is more sensitive to noise and discontinuities 

than HT-based approaches and RANSAC. Notice the double-detection of supporting planes for the wall and the floor. 
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depth images into point clouds to use them as input for the 3-D

KHT and RANSAC. All input depth images have 640 × 480 pixels. 

We have used depth images from thirty six different datasets

in our experiments. Figs. 1, 4 , and 5 present the results produced

for some of them. Supplementary Material A includes more results

due to space restrictions. The detected planes were rendered by

painting all entry points attending two conditions: they must

be sufficiently close to the given plane, and the normal vectors

estimated from the depth image must be sufficiently aligned to

the normal to the plane. Black regions correspond to non-planar

surfaces and noise. The synthetic datasets Living Room 1 and the

Office 1 , with 2,870 and 2,690 frames each, were provided by Choi

et al. [18] . The synthetic dataset Occlusion Room was built by us

and includes one frame. We have used thirty three real datasets.

The Kinect Scenes have one frame each. They were obtained with a

Microsoft Kinect by Oehler et al. [19] , and include ground truth in-

formation. Results of all the thirty scenes provided by Oehler et al.

[19] can be found in Supplementary Materials A–D. Due to space

restrictions, this section discusses only six Kinect Scenes . The Copy

Room dataset was captured by Zhou and Koltun [20] with an Asus

Xtion PRO LIVE camera. It is comprised of 5490 frames. We used a

Structure Sensor to capture the Cube and the Distance datasets. We

use the latter to analyze the stability of the algorithms in function

of distance. 

4.1. Computational performance 

The processing times of the techniques are affected by the

selected parameters. We choose parameter values that optimize

the execution times of each individual algorithm, while trying to

keep equivalent detection quality. We have set the same parameter

values for all frames of a given dataset in order to verify the pa-

rameter dependency of the techniques upon different viewpoints

of the same scene. Refer to Supplementary Material B for details

on the parameters assumed in our experiments. 

Table 1 summarizes the mean processing times (in millisec-

onds) involved in each step of the techniques (groups of columns)

considering all frames of each dataset (rows). The Total columns
resent the mean total times ( i.e., summation of the previous

olumns). Supplementary Material C presents the mean running

imes per frame considering 50 executions. The Distance dataset

as not included in this analysis. 

The complexity of the scenes is related to the number and

istribution of planar and non-planar surface patches in the envi-

onment, and the number of planes including one or more planar

atches. For instance, the Cube dataset is much less complex than

he Copy Room dataset considering all its frames. Table 1 shows

hat there is a relation between the mean frame rate and the

omplexity of the scene in the D-KHT. Notice that the proposed

pproach can achieve mean frame rate ranging from ∼ 55.2 ( Copy

oom ) to ∼ 588.2 fps ( Cube ) for all real datasets. The 3-D KHT,

n the other hand, was capable of achieve real-time performance

 i.e., more than 30 fps) only for the Kinect Scenes 1, 5, 7 , and 11 ,

nd for the Cube datasets. It achieved from ∼ 7.8 to ∼ 8.6 fps for

ynthetic datasets. SG could not achieve real-time performance,

nless the depth and the normal maps have been provided as

nput. RANSAC was not capable of detect planes in real-time. 

The use of SATs and an implicit quadtree makes the clustering

tep of the D-KHT from ∼ 2.4 to ∼ 36.3 times faster than the

ctree-based clustering strategy of the 3-D KHT. For synthetic

cenes like the Living Room 1 and the Office 1, i.e., where all pixels

ave valid depth information, the voting procedure dominates the

rocessing time of both techniques. For real datasets, the voting

rocedure barely dominates the time of the D-KHT, while the

eak detection is the slower step of the 3-D KHT. Finally, there

s a noticeable difference between the performances of the local

axima detection procedures of both techniques. The hill climbing

trategy of the D-KHT is up to ∼ 93.2 times faster than the 3-D

HT in this step ( e.g., Kinect Scene 3 dataset). The normal vectors

stimation had the longest execution time in SG and RANSAC for

ll the datasets, while the SG detection assuming the normal map

s input achieved from ∼ 15.2 to ∼ 51.1 fps for synthetic scenes

nd ∼ 11.9– ∼ 46.7 fps for real scenes. The model fitting step of

ANSAC alone achieve from ∼ 1.3 to ∼ 4.9 fps. Devices such as

tructure Sensor and Project Tango provide the normal map with
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Table 1 

Comparison of the performance of D-KHT, 3-D KHT, SG, and RANSAC. Mean times expressed in milliseconds. 

Dataset D-KHT 3-D KHT SG RANSAC 

Clust. Voting Peak Total Clust. Voting Peak Total Normal Growing Total Normal Fitting Total 

S1 - Living Room 1 0.6 15.3 14.8 30.7 21.2 46.1 48.9 116.2 120.6 66.0 186.6 955.1 315.4 1270.5 

S2 - Office 1 1.4 15.1 8.8 25.3 25.3 56.1 46.6 128.0 116.5 36.5 153.0 965.9 4 4 4.4 1410.3 

S3 - Occlusion Room 1.9 4.5 5.5 12.0 20.0 51.6 49.4 120.9 105.9 19.6 125.5 1017.3 309.8 1327.2 

R1 - Kinect Scene 1 1.3 1.2 1.1 3.6 14.3 2.0 8.4 24.7 110.2 83.7 193.9 966.0 414.8 1380.8 

R2 - Kinect Scene 3 0.7 2.3 2.5 5.5 12.5 15.2 68.7 96.5 112.5 25.7 138.2 939.0 319.9 1258.9 

R3 - Kinect Scene 5 0.7 4.7 5.5 10.9 13.8 3.4 14.8 32.0 114.3 24.1 138.4 934.9 373.6 1308.5 

R4 - Kinect Scene 7 1.0 1.8 1.6 4.4 19.0 1.8 6.7 27.5 113.8 22.0 135.8 927.5 402.4 1330.0 

R5 - Kinect Scene 10 1.1 4.2 2.9 8.2 13.9 2.8 18.4 35.2 115.2 69.2 184.4 924.5 438.8 1363.3 

R6 - Kinect Scene 11 4.4 1.8 3.4 9.6 10.4 2.2 10.0 22.6 110.4 53.4 163.8 930.2 768.7 1698.9 

R7 - Copy Room 3.1 10.5 4.6 18.1 12.2 23.3 40.7 76.2 93.8 25.7 119.4 753.3 332.9 1086.2 

R8 - Cube 0.4 0.5 0.8 1.7 13.0 2.8 7.5 23.3 117.9 21.4 139.3 792.0 203.4 995.4 
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Table 2 

Quality of detections. S# and R# denote synthetic and real datasets (see Table 1 ). 

The † symbol indicates noisy versions of synthetic datasets. 

Dataset/Technique Plane Point 

DP MD MP SP Precision Recall 

S1 D-KHT 4 0 4 2 0.98 0.96 

3-D KHT 4 0 4 0 0.72 0.97 

SG 4 1 4 2 0.74 0.94 

RANSAC 5 0 3 1 0.70 1.00 

S1 † D-KHT 4 0 4 2 0.71 0.86 

3-D KHT 3 1 5 2 0.66 0.70 

SG 4 1 4 3 0.72 0.87 

RANSAC 4 1 4 4 0.71 0.80 

S2 D-KHT 6 0 3 0 0.77 0.96 

3-D KHT 6 0 3 0 0.77 0.96 

SG 6 0 3 0 0.77 0.96 

RANSAC 6 0 3 2 0.76 0.98 

S2 † D-KHT 5 0 4 0 0.73 0.83 

3-D KHT 3 0 6 0 0.78 0.86 

SG 5 0 4 0 0.75 0.84 

RANSAC 6 0 3 0 0.75 0.78 

S3 D-KHT 13 0 4 0 0.85 0.95 

3-D KHT 13 0 4 0 0.96 0.88 

SG 14 4 3 3 0.92 0.85 

RANSAC 14 0 3 9 0.96 0.97 

S3 † D-KHT 7 0 10 1 0.83 0.80 

3-D KHT 3 0 14 1 0.93 0.93 

SG 9 0 8 4 0.90 0.72 

RANSAC 7 0 10 6 0.90 0.80 

R1 D-KHT 11 0 4 1 0.79 0.85 

3-D KHT 10 0 5 6 0.72 0.82 

SG 14 2 1 9 0.75 0.79 

RANSAC 12 2 3 7 0.72 0.62 

R2 D-KHT 9 7 4 0 0.95 0.91 

3-D KHT 9 1 4 1 0.93 0.87 

SG 11 1 2 3 0.91 0.84 

RANSAC 11 5 2 0 0.95 0.86 

R3 D-KHT 9 0 3 3 0.82 0.71 

3-D KHT 6 0 6 4 0.76 0.55 

SG 10 0 2 3 0.84 0.89 

RANSAC 11 0 1 3 0.84 0.77 

R4 D-KHT 6 2 7 3 0.86 0.77 

3-D KHT 7 1 6 2 0.79 0.83 

SG 12 0 1 6 0.83 0.74 

RANSAC 10 0 3 12 0.79 0.76 

R5 D-KHT 8 0 1 6 0.88 0.73 

3-D KHT 8 0 1 6 0.68 0.68 

SG 9 2 0 11 0.91 0.83 

RANSAC 9 3 0 12 0.87 0.87 

R6 D-KHT 8 0 6 8 0.79 0.67 

3-D KHT 8 0 6 6 0.70 0.77 

SG 14 2 0 9 0.78 0.65 

RANSAC 11 3 3 7 0.80 0.77 
he depth images. Even tough, experiments show that the D-KHT

s faster than the detection steps of these algorithms. 

.2. Quality of detections 

We have compared the quality of detections by using the

round truth information manually produced by us for the Living

oom 1 (frame 294), the Office 1 (frame 2453), and the Occlusion

oom datasets, and the ground truth information accompanying

ll the Kinect Scenes . In contrast to synthetic datasets, real datasets

re comprised of depth images with optical distortions, noise, as

ell as damaged and missing portions of depth data. So, we have

roduced noisy versions of the synthetic datasets by using the

istortion model introduced by Teichman et al. [21] . Such a model

ncorporates disparity-based quantization, realistic high-frequency 

oise, and low-frequency distortion estimated on real depth sen-

ors. We have applied the distortion model of a Microsoft Kinect

n this paper. 

Table 2 shows the amount of planes detected by each tech-

ique, and precision and recall measurements on points that are

orrectly assigned to their respective planes. The Plane columns

resent the number of existing planes detected ( DP ), the number

f existing planes that were detected multiple times ( MD ), the

umber of missing planes ( MP ), and the number of spurious

lanes detected ( SP ). Thus, each scene has DP+MP planes. A careful

nspection on those numbers reveals a known problem of SG and

ANSAC: High SP values. For instance, Kinect Scenes 1, 7, 10 , and 11

ave many spurious planes. This problem is caused by the random

ature of these approaches, which may prevent the selection

f appropriate seed points or candidate models. On the other

and, HT-based approaches seems to miss more planes than other

echniques. Nevertheless, the real-time performance of the D-KHT

llows the detection of those planes in subsequent video frames. 

According to Table 2 , precision and recall favor D-KHT over 3-D

HT in virtually all cases. Also, adding noise to synthetic images

S † datasets in Table 2 ) affects the DP, MD, MP , and SP values of

-KHT, 3-D KHT, and SG techniques in the same proportion, with

ANSAC being slightly more noise-resilient. 

Supplementary Material E presents additional experiments. 

.3. Distance analysis 

We have used the Distance dataset to observe the quality of

etection of three planar surfaces as the depth sensor gradually

oves away from them, with 50 frames captured every half

eter. The distance to the nearest surface ( N ) ranges from 0.5

first position) to 3.5 m (last position), while the average ( A ) and

arthest ( F ) surfaces are, respectively, 1.7 and 4.0 m apart from the

ensor’s first location. Supplementary Material F includes images

nd statistics regarding this experiment. 
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Table 3 

Quality of detections at different distances having N as reference. 

Plane/Tech. 0.5 meter 1.0 meter 1.5 meters 

Cos. Pre. Rec. Cos. Pre. Rec. Cos. Pre. Rec. 

N D-KHT 1.00 0.93 0.96 1.00 0.89 0.93 1.00 0.90 0.91 

3-D KHT 0.93 0.92 0.90 0.81 0.76 0.73 0.54 0.49 0.49 

SG 1.00 0.92 0.97 1.00 0.91 0.89 0.99 0.88 0.85 

RANSAC 1.00 0.94 0.99 1.00 0.89 0.98 0.69 0.54 0.67 

A D-KHT 1.00 1.00 0.84 1.00 1.00 0.73 0.96 0.96 0.58 

3-D KHT 0.99 1.00 0.70 0.98 0.98 0.55 1.00 0.99 0.60 

SG 1.00 0.99 0.50 0.94 0.93 0.52 0.96 0.93 0.60 

RANSAC 1.00 0.98 0.59 1.00 0.97 0.62 0.98 0.94 0.92 

F D-KHT 0.98 1.00 0.47 0.99 1.00 0.25 0.82 0.48 0.11 

3-D KHT 1.00 1.00 0.46 0.86 0.88 0.20 0.63 0.63 0.24 

SG 0.65 0.65 0.35 0.70 0.73 0.17 0.88 0.87 0.29 

RANSAC 0.98 0.96 0.81 1.00 0.96 0.32 0.98 0.95 0.83 
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Ground truth information such as pixel coverage and plane’s

orientation was produced by manual segmentation and calibration

procedures. We have used three metrics to measure the stability

of detections produced by D-KHT, 3-D KHT, SG, and RANSAC in

each of the seven sensor’s positions: The cosine similarity between

the normal to the planes, precision, and recall on points that are

correctly assigned to their surfaces. 

This experiment shows that the quality of detections decreases

as distances increases. This was expected because the depth sensor

precision falls off with distance. Due to space restrictions, Table 3

only presents mean metric values considering frames captured

at 0.5, 1.0 and 1.5 m from N . The metrics show that the D-KHT

outperforms other approaches at short distance (first three posi-

tions). From 2.5 m, the D-KHT and the 3-D KHT stop detecting the

surface N (the smallest one), and loose surface F in most frames

when it is at least 7.0 m away. The lack of precision of HT-based

techniques regarding distant noisy structures can be explained

by the discrete nature of their parameter space. As expected, SG

suffers from multiple detections of the same planes due to dis-

continuities. RANSAC was more resilient to noise at medium and

long distances, being capable of detecting all the three planes of

interest even in the most distant position. Unfortunately, RANSAC

can only process a couple of frames per second. 

The results presented in Tables 1 –3 depict D-KHT’s potential

for use in short-range real-time applications. 

4.4. Limitations 

As any HT-based approach, the performance and robustness of

the D-KHT are constrained to the discretization of the parameter

space. In addition, parallel close planes may be retrieved as a

single instance in noisy datasets. Furthermore, the presence of

non-planar surfaces may lead to the detection of spurious planes.

Fortunately, those planes often have lower importance, being

rejected with the choice of a suppression threshold. 

Not being applicable to point clouds may be a disadvantage of

detection techniques tailored to depth images. Many robotic appli-

cations deal with registered point clouds obtained from different

views. In those cases, the point cloud registration followed by

the detection step considering all the data from different sources

must be replaced by high-level feature detection in each source

( e.g., patch detection) followed by registration. 

5. Conclusion and future work 

We have presented an O ( n ) HT-based approach for real-time

plane detection in depth images, where n is the number of pix-

els in the input image. We use an implicit quadtree to identify

clusters of approximately coplanar points in the 2.5-D projection
f the scene. PCA and the desired minimum samples (valid depth

ixels) in tree nodes guide the subdivision criteria of the quadtree.

hus, the maximum height of the tree is known a priori , making

he computational cost of the detection procedure predictable.

or each cluster, our approach casts votes for a reduced set of

lanes in the accumulator representing the parameter space of

ossible planes. Casted votes are weighted by trivariate-Gaussian

istributions that models the uncertainty on the best-fitting plane

f the node samples in each cluster. Peaks of votes are retrieved by

n efficient hill climbing procedure. Our approach is deterministic,

ast, and robust to the detection of spurious planes, even in the

resence discontinuities. 

We are currently investigating how to reduce the memory

ootprint of our technique by considering only the subset of planes

hat cross the camera’s frustum. We also believe that there is a

elation between N ρ and s t . Thus, we are conducting experiments

n an attempt to set these two parameters as functions of a single

alue. As future work, we will investigate automatic ways to

earn ideal parameter values from examples. We are exploring the

roposed algorithm as part of a real-time solution for geometric

econstruction of indoor environments by stitching planar regions.

n this application, the input depth images are provided on-the-fly

y off-the-shelf depth sensors. 

cknowledgments 

We thank Limberger et al. and Schnabel et al. for kindly pro-

iding the reference implementations of their techniques, and

ouza for modeling the Occlusion Room . This work was sponsored

y CNPq -Brazil grants 456.016/2014-7 , 308.316/2014-2 , and FAPERJ

rants E-26/110.092/2014 , E-26/202.832/2015 . We thank the re-

iewers for their insightful suggestions. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.patrec.2017.12.027 . 

eferences 

[1] F.A. Limberger, M.M. Oliveira, Real-time detection of planar regions in unorga-

nized point clouds, Pattern Recognit. 48 (6) (2015) 2043–2053, doi: 10.1016/j.
patcog.2014.12.020 . 

[2] R.O. Duda, P.E. Hart, Use of the Hough transformation to detect lines and
curves in pictures, Commun. ACM 15 (1) (1972) 11–15, doi: 10.1145/361237.

361242 . 

[3] L.A.F. Fernandes, M.M. Oliveira, Real-time line detection through an improved
Hough transform voting scheme, Pattern Recognit. 41 (1) (2008) 299–314,

doi: 10.1016/j.patcog.20 07.04.0 03 . 
[4] N. Kiryati, Y. Eldar, A.M. Bruckstein, A probabilistic Hough transform, Pattern

Recognit. 24 (4) (1991) 303–316, doi: 10.1016/0 031-3203(91)90 073-E . 
[5] A. Yla-Jaaski, N. Kiryati, Adaptive termination of voting in the probabilistic cir-

cular Hough transform, IEEE Trans. Pattern Anal. Mach. Intell. 16 (9) (1994)

911–915, doi: 10.1109/34.310688 . 
[6] J. Matas, C. Galambos, J. Kittler, Progressive probabilistic Hough transform, in:

Proc. of BMVC, 1998, pp. 26.1–26.10, doi: 10.5244/C.12.26 . 
[7] L. Xu, E. Oja, P. Kultanen, A new curve detection method: randomized Hough

transform (RHT), Pattern Recogn. Lett. 11 (5) (1990) 331–338, doi: 10.1016/
0167- 8655(90)90042- Z . 

[8] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, The 3D Hough transform

for plane detection in point clouds: a review and a new accumulator design,
3D Research 2 (2) (2011) 1–13, doi: 10.1007/3DRes.02(2011)3 . 

[9] J. Poppinga, N. Vaskevicius, A. Birk, K. Pathak, Fast plane detection and polyg-
onalization in noisy 3D range images, in: Proc. of IROS, 2008, pp. 3378–3383,

doi: 10.1109/IROS.2008.4650729 . 
[10] J. Xiao, J. Zhang, J. Zhang, H. Zhang, H.P. Hildre, Fast plane detection for SLAM

from noisy range images in both structured and unstructured environments,
in: Proc. of ICMA, 2011, pp. 1768–1773, doi: 10.1109/ICMA.2011.5986247 . 

[11] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fit-

ting with applications to image analysis and automated cartography, Commun.
ACM 24 (6) (1981) 381–395, doi: 10.1145/358669.358692 . 

[12] R. Schnabel, R. Wahl, R. Klein, Efficient RANSAC for point-cloud shape detec-
tion, Comput. Graph. Forum 26 (2) (2007) 214–226, doi: 10.1111/j.1467-8659.

2007.01016.x . 

https://doi.org/10.13039/501100003593
https://doi.org/10.13039/501100004586
https://doi.org/10.1016/j.patrec.2017.12.027
https://doi.org/10.1016/j.patcog.2014.12.020
https://doi.org/10.1145/361237.361242
https://doi.org/10.1016/j.patcog.2007.04.003
https://doi.org/10.1016/0031-3203(91)90073-E
https://doi.org/10.1109/34.310688
https://doi.org/10.5244/C.12.26
https://doi.org/10.1016/0167-8655(90)90042-Z
https://doi.org/10.1007/3DRes.02(2011)3
https://doi.org/10.1109/IROS.2008.4650729
https://doi.org/10.1109/ICMA.2011.5986247
https://doi.org/10.1145/358669.358692
https://doi.org/10.1111/j.1467-8659.2007.01016.x


E. Vera et al. / Pattern Recognition Letters 103 (2018) 8–15 15 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[13] C. Erdogan, M. Paluri, F. Dellaert, Planar segmentation of RGBD images us-
ing fast linear fitting and Markov chain Monte Carlo, in: Proc. of CRV, 2012,

pp. 32–39, doi: 10.1109/CRV.2012.12 . 
[14] H.J. Hemmat, A. Pourtaherian, E. Bondarev, et al., Fast planar segmentation

of depth images, in: Proc. of SPIE/IS&T Electronic Imaging, 2015, pp. 93990I–
193990I, doi: 10.1117/12.2083340 . 

[15] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, 3D object recognition in clut-
tered scenes with local surface features: a survey, IEEE Trans. Pattern Anal.

Mach. Intell. 36 (11) (2014) 2270–2287, doi: 10.1109/TPAMI.2014.2316828 . 

[16] F.C. Crow, Summed-area tables for texture mapping, SIGGRAPH Comput. Graph.
18 (3) (1984) 207–212, doi: 10.1145/964965.808600 . 

[17] H. Samet, The quadtree and related hierarchical data structures, ACM Comput.
Surv. 16 (2) (1984) 187–260, doi: 10.1145/356924.356930 . 
[18] S. Choi, Q.-Y. Zhou, V. Koltun, Robust reconstruction of indoor scenes, in: Proc.
of CVPR, 2015, pp. 5556–5565, doi: 10.1109/CVPR.2015.7299195 . 

[19] B. Oehler, J. Stueckler, J. Welle, D. Schulz, S. Behnke, Efficient multi-resolution
plane segmentation of 3D point clouds, in: Proc. of ICIRA, 2011, pp. 145–156,

doi: 10.1007/978- 3- 642- 25489- 5 _ 15 . 
20] Q.-Y. Zhou, V. Koltun, Dense scene reconstruction with points of interest, ACM

Trans. Graph. 32 (4) (2013) 112:1–8, doi: 10.1145/2461912.2461919 . 
[21] A. Teichman, S. Miller, S. Thrun, Unsupervised intrinsic calibration of depth

sensors via SLAM, in: Proc. of Robotics: Science and Systems, 248, 2013,

pp. p27.1–p27.8, doi: 10.15607/RSS.2013.IX.027 . 

https://doi.org/10.1109/CRV.2012.12
https://doi.org/10.1117/12.2083340
https://doi.org/10.1109/TPAMI.2014.2316828
https://doi.org/10.1145/964965.808600
https://doi.org/10.1145/356924.356930
https://doi.org/10.1109/CVPR.2015.7299195
https://doi.org/10.1007/978-3-642-25489-5_15
https://doi.org/10.1145/2461912.2461919
https://doi.org/10.15607/RSS.2013.IX.027

	Hough Transform for real-time plane detection in depth images
	1 Introduction
	2 Related work
	3 Depth Kernel-Based Hough Transform
	3.1 Clustering depth data
	3.2 Computing Gaussian kernels
	3.3 Spherical accumulator map
	3.4 Kernel-based voting
	3.5 Detecting peaks of votes
	3.6 Time complexity analysis
	3.7 Discussion

	4 Experiments and results
	4.1 Computational performance
	4.2 Quality of detections
	4.3 Distance analysis
	4.4 Limitations

	5 Conclusion and future work
	 Acknowledgments
	 Supplementary material
	 References


