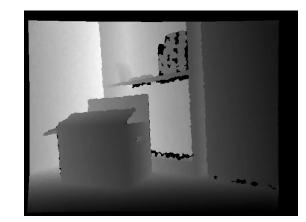
D-KHT: REAL-TIME PLANE DETECTION IN DEPTH IMAGES

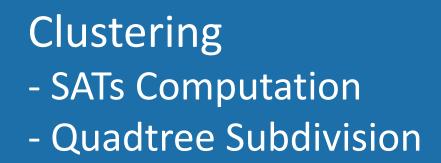
Eduardo Vera Sousa^A, Luiz Velho^B, Leandro A. F. Fernandes^C

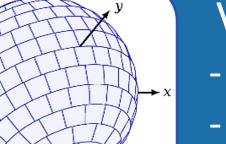

Instituto de Computação, Universidade Federal Fluminense (UFF), Brazil ^Aeduardovera@ic.uff.br, ^Blvelho@impa.br, ^Claffernandes@ic.uff.br

Abstract

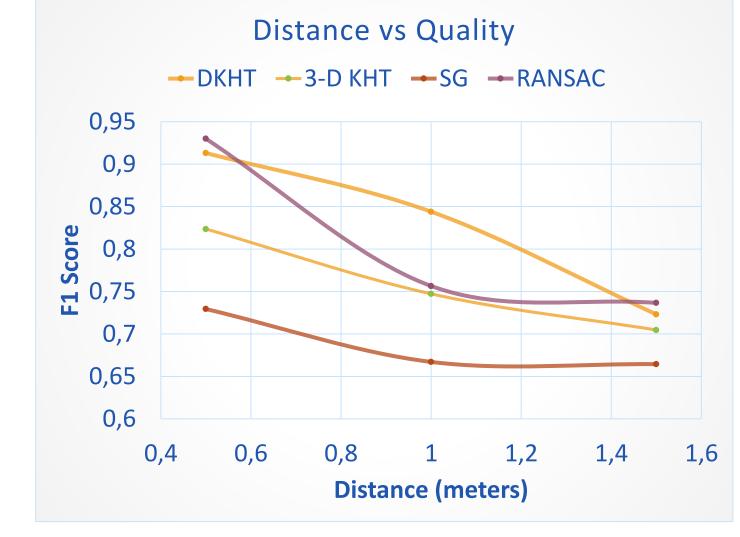
The automatic detection of geometric primitives in depth images provides the basis for solving many computer vision problems. In this paper, we present a <u>real-time</u> deterministic algorithm for plane detection in depth images. By using an <u>implicit quadtree</u> to cluster approximately coplanar points in the 2.5-D space associated with an efficient Hough Transform voting scheme and a hill climbing strategy to find local maxima, we are able to reach real-time detection.

Results

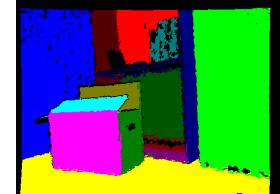

D-KHT	3-D KHT ^[2]	SG ^[3]	RANSAC ^[4]
30.7	116.2	186.6	1270.5
25.3	128.0	153.0	1410.3
12.0	120.9	125.5	1327.2
3.6	24.7	193.9	1380.8
5.5	96.5	138.2	1258.9
10.9	32.0	138.4	1308.5
4.4	27.5	135.8	1330.0
8.2	35.2	184.4	1363.3
9.6	22.6	163.8	1698.9
18.1	76.2	119.4	1086.2
	30.7 25.3 12.0 3.6 5.5 10.9 4.4 8.2 9.6	30.7116.225.3128.012.0120.93.624.75.596.510.932.04.427.58.235.29.622.6	30.7116.2186.625.3128.0153.012.0120.9125.53.624.7193.95.596.5138.210.932.0138.44.427.5135.88.235.2184.49.622.6163.8



Algorithm Workflow


Voting

- Compute Gaussian Kernel - Increment Spherical Accumulator Map^[1]


Peak Detection

- Smoothing
- Hill Climbing

R8	1.7	23.3	139.3	995.4

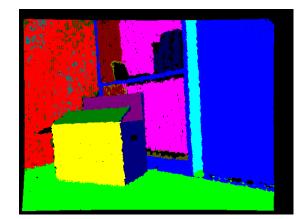
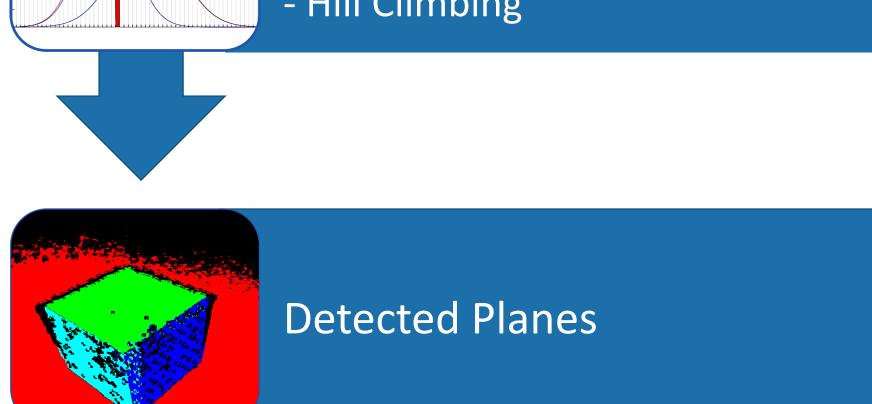



Fig: R2 Dataset. Input image and outputs for D-KHT, 3-D KHT, SG and RANSAC, respectivelly.

Conclusion

In this work, we presented a real-time approach to plane detection in depth images. To ensure the low computational cost of the technique, we took advantage of a few restrictions from the regular structure of the depth images. Experiments shows the effectiveness of the method with its comparison to state-of-the-art techniques when applied to datasets comprised of both synthetic and real images. Besides that, the analyzed datasets also had non-planar surfaces to evaluate algorithms resilience to detecting spurious planes, a common issue in this kind of technique.

[1] Borrmann, Dorit, et al. "The 3D Hough transform for plane detection in point clouds: A review and a new accumulator design." 3D Research 2.2 (2011): 3. [2] Limberger, Frederico A., and Manuel M. Oliveira. "Real-time detection of planar regions in unorganized point clouds." Pattern Recognition 48.6 (2015): 2043-2053. [3] Poppinga, Jann, et al. "Fast plane detection and polygonalization in noisy 3D range images." Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008. [4] Schnabel, Ruwen, Roland Wahl, and Reinhard Klein. "Efficient RANSAC for point-cloud shape detection." Computer graphics forum. Vol. 26. No. 2. Blackwell Publishing Ltd, 2007.

Acknowledgments

