
Introduction to Creating a First-Person
Shooter (FPS) with Unity

This tutorial will detail how to make a simple
First Person Shooter (FPS). It will introduce
fundamental 3D game programming
concepts and give tips on how to think like a
games programmer.

Time to complete: 3 - 4 hours.

Author: Graham McAllister

Contents

1. Aims of this tutorial
2. Prerequisites
3. Starting a new project
4. Importing the Game level
5. Player control
6. Weapons
7. Sound effects
8. Adding a GUI
9. Physics

Download the assets for
this tutorial from:
www.otee.dk/tutorials/
fps_assets.zip

1. Aims of this tutorial
This tutorial assumes a couple of things. Firstly it
assumes that you’re passionate about computer games,
this may be playing, designing or studying them. It also
assumes that you have some experience in a computer
programming / scripting language. Finally, it assumes
that you want to make great games.
This tutorial will teach you how to create a 3D first-
person shooter using Unity.

2. Prerequisites
You should already be familiar with the Unity interface
and basic scripting concepts. If necessary, complete
these tutorials beforehand.
The following development tools are recommended:

• 3D Modeling: Autodesk Maya 7, Cinema 4D,
Cheetah 3D or Blender

• 2D graphics: Adobe Photoshop

Note: any text that requires the user to take an action
begins with a ‘-’.

http://www.otee.dk/tutorials/fps_assets.zip
http://www.otee.dk/tutorials/fps_assets.zip
http://www.otee.dk/tutorials/fps_assets.zip
http://www.otee.dk/tutorials/fps_assets.zip

3. Starting a new project
- Start Unity. It’s a good idea to keep the icon for Unity

in the Dock.
- Create a new project.
In the Project Panel you will see Unity’s built in assets;
Standard Assets and maybe also Pro Standard Assets if
you have the Pro version of Unity. When we create new
assets, it’s best to put them in folders that group them
according to their function, e.g. Rocket, Explosion,
Audio etc.
- Download fps_assets.zip and double click on the

Unity package. This will import all the scripts and
graphics used in the tutorial into the project.

4. Setting up the game environment
Once the assets have been imported, you’ll notice
there are a lot of folders in the Project panel.
- Drag the mainLevelMesh from Objects/

mainLevelMesh/mainLevelMesh.
- With mainLevelMesh still selected in the Project

panel, select “Settings” at the top of this panel and
in the dialog box that opens, check that “Meshes
have colliders” is selected. If we don't do this, the
player will simply fall through the level (no
collision).

There is no need to add a light to the scene, the level is already fully lightmapped. The
imported level uses lightmaps for all lighting which allows us to use pre-baked shadows.
Lightmaps are very good for performance, especially if you want to create a complex
lighting setup. See the Lightmap HOWTO for more information.

You’re now ready to add a character into the environment.

5. Adding the Main Character
We’re now going to add in a character for the player to control. Unity has a built in prefab
specifically for a first-person controller. This can be found in the
Project panel under Standard Assets->Prefabs.
- To add the First Person Controller, click on the arrow beside

Standard Assets in the Project panel, a list of assets will
appear. Find the folder called Prefabs and click on the arrow
on the left hand side. You should now see the First Person
Controller asset. Drag this into the Scene view.

- You should see a cylinder object representing the player, 3

2

http://unity3d.com/tutorials/fps_assets.zip
http://unity3d.com/tutorials/fps_assets.zip
http://unity3d.com/Documentation/Manual/HOWTO-Lightmap.html
http://unity3d.com/Documentation/Manual/HOWTO-Lightmap.html

large arrows for altering the location in 3D space for the object, and a yellow mesh
which shows the object’s viewport (where it’s currently looking). The FPS Controller
has a viewport as part of its prefab contains a camera. The FPS Controller is now the
default camera, by moving this object, you change the current view in the Game View.
You’ll also notice that the FPS Controller has a camera icon on top of it. Move the
character so that it is above ground level in the environment.

- As we no longer have any need for the Main Camera, you can delete it.
- Press Play, you should now be able to move around the level by using the mouse and

keyboard (cursor keys to move or W,S,A,D).

You’ve now created a very simple FPS, let’s give the player a weapon.

6. Adding a weapon
We’re now going to give the player a grenade type object to
throw in the environment. To do this, you’ll need to create
some Javascript to tell Unity about the behaviour of the
weapon.
So what do we want to do? We want to allow the player to
shoot wherever the camera is pointing. However, let’s first
think about our game character and their weapons. Our
game character is seen through the first person view, with
the camera positioned at eye level. If the player fires a

weapon, the weapon should be launched from wherever their hands are, not from eye
level. This means we have to add in a game object to represent the grenade launcher,
and place it where the player’s hand would be when they hold this weapon. This ensures
that the object fires from the correct location.

Create the weapon launcher
Firstly, lets add in a game object to represent the grenade launcher. A game object is any
item in the 3D world (player, level, sound), components are the properties that the game
objects has. Therefore you apply components to game objects.
- From the main menu select Game Object->Create Empty, and rename the object to

Launcher in the Hierarchy panel. Note, this object is invisible as it is an empty object,
however it is just a placeholder for our missile launcher.

Now lets get in close to our FPS controller so we can see where to position the weapon
launcher.
- Select the FPS controller in the Hierarchy Panel and ensuring that your cursor is over

the Scene View, press ‘F’ (frame selected). This focuses us on the player (the currently
selected item).

- Now select the Launcher from the Hierarchy Panel and choose “Game Object->Move to
view” from the main menu. Notice how the Launcher object is now placed near the FPS
Controller. We can now use the handles to place the launcher approximately where the
hands should be. Note that you can make the character left or right-handed by altering
the location of this object, no need to change any code.

3

- Make sure your Unity GUI window layout is in 2 split mode (Window->Layouts->2 Split),
and press Play in the lower left-hand corner of the GUI. Make sure Launcher is
selected in the Hierarchy View and whilst watching the Scene View, move the character
around, you’ll notice that our Launcher object does not move with our character (you
can press Play to stop the game running now).

- To solve this problem drag the Launcher object onto the Main Camera object that
belongs to the FPS Controller in the Hierarchy panel. Now run the game again and
watch the Scene View, the Launcher should now move with our character. We have
associated the Launcher game object with an object that moves in all 3 axis (the
camera).

Create the Missile object
Let’s create the missile that will be launched when the user clicks the fire button.
- For now we’ll use something simple, a sphere. Create a new prefab object by clicking

on Assets->Create>Prefab from the Unity menu bar, and rename it to Missile.
- Now create a sphere (GameObject->Create Other->Sphere).
- Now drag the Sphere game object from the Hierarchy Panel onto the Missile prefab in

the Project Panel. The icon for the prefab will now change. You can delete the Missile
object from the Hierarchy View.
Tip: Any game object which you know you’ll need to instantiate at run-time should
generally be a prefab.

Write the Missile Launcher code
The FPS Controller is a prefab consisting of several game objects and components. The
FPS Controller itself is a cylinder mesh that only rotates around the y-axis, so if we attach
the launcher code (script) to this, then we won’t be able to shoot up and down. Therefore,
we’re going to attach our launcher code to the Main Camera inside the FPS Controller as
the camera has the ability to look in any direction.
Let’s create our first Javascript code which will describe the behaviour of the Launcher.
- Select Assets->Create->JavaScript, this creates a blank Javascript document.. A new

asset appears in the Project Panel entitled NewBehaviourScript. Rename this script to
MissileLauncher.

Tip: You can specify which external code editor you want Unity to use by clicking on
Unity->Preferences then selecting the External Script Editor box.

- Create a new directory inside your Project View called WeaponScripts, we’ll put all our
weapons scripts in here. Move your MissileLauncher Javascript into here, and also the
Missile prefab.
Let’s have a look at the complete Javascript for MissileLauncher:

4

var projectile : Rigidbody;

var speed = 20;	

function Update () {

 if (Input.GetButtonDown ("Fire1")) {

 var instantiatedProjectile : Rigidbody = Instantiate (projectile, transform.position,
transform.rotation);

 instantiatedProjectile.velocity = transform.TransformDirection(Vector3 (0,0,speed));

 Physics.IgnoreCollision(instantiatedProjectile.collider, transform.root.collider);

 }

}

Thinking from a high level, what do we want to do? Well, we want to detect when the
user has hit the fire button, then (1) instantiate a new missile, and (2) launch it with a
certain velocity towards where the user was aiming. Let’s examine the code in detail,
the numbers below refer to the arrow sections in the above code segment.

1. This detects when the user hits the fire button. Fire1 is mapped to both the left mouse
button and the current keyboard configuration (this can be edited from menu Edit-
>Project Settings->Input).

2. To instantiate an object in Unity we use the Instantiate keyword followed by three
parameters, (1) the object to instantiate, (2) the 3D position it should be created at, and
(3) the rotation the object should have. There is also another constructor, check the API
guide, but we’ll use this one for now.

The first part of this code seems reasonable, it is the reference variable to hold the
instantiated object. The type of this variable is RigidBody, this is because the missile
should have physics behaviour.

The first parameter, projectile, is the object we want to create. So what is projectile
anyway? The Projectile is set by you (i.e. what type of object does the user want to fire),
to make things easy we want to assign the projectile in the Unity GUI. To allow this to
happen, we declare the variable projectile outside of any function, this makes it public
and exposes it to the Unity GUI. The projectile object could have been created in code,
however if you want to modify (tweak) a variable, it’s better to do this from the Unity
GUI.

The second parameter, transform.position, creates the projectile at the same position in
3D space as the launcher. Why the launcher? Well, the script we’re creating will be
attached to the launcher so if we want to get our current 3D position, transform.position
gives that to us (transform talks about the transform the script is attached to).

The third parameter, transform.rotation, is similar to the second parameter, except it
creates the missile with the same rotation properties as the launcher.

5

2

3

4

1

http://www.otee.dk/Documentation/ScriptReference/Rigidbody.html
http://www.otee.dk/Documentation/ScriptReference/Rigidbody.html

3. This part makes our missile move. To do this, we give the missile a velocity, but in
which direction (x,y or z)? In the Scene View, click on the FPS Controller, the move
arrows appear (press W to make sure), one is red, one is green and one is blue. Red
denotes the x-axis, green denotes the y-axis and blue denotes the z-axis. As blue is
pointing in the direction that the player is facing, we want to give our missile a velocity in
the z-axis.

Velocity is a property of instantiatedProjectile, how did we know this? Well,
instantiatedProjectile is of type RigidBody, and if we look at the API we see that velocity
is a property. Take a look at some of the other properties that RigidBody has too. To
set the velocity we need to specify the speed in each axis. However, there is one slight
issue Objects in 3D are specified using two coordinate models; local and world. In
local space, coordinates are relative to the object you are working with. In world
space, coordinates are absolute, up, for example is always the same direction for all
objects. RigidBody.velocity must be specified in world space. So when assigning the
velocity, you need to convert from the z-axis in local space (the forward direction), to its
respective world space direction. You do this using the transform.TransformDirection
function which takes a Vector3 type as a parameter. The variable “speed” is also
exposed so we can tweak it in the GUI.

4. This turns off collisions between the missile and the player. If we didn’t do this the
missile would collide with the player when it was instantiated. Look this up in the API
under IgnoreCollision.

- Insert the described code into MissileLauncher Javascript, make sure to save it.
- Attach the MissileLauncher script to the Launcher in the FPS Controller. You can

confirm that the MissileLauncher script is now attached to the Launcher by selecting it in
the Hierarchy View and checking that the MissileLauncher script is shown in the
Inspector panel.

However, the missile we previously created has not been associated with the projectile
variable in our script, this is done in the Unity GUI. The projectile variable is of type
RigidBody, so firstly we must ensure that our missile has a RigidBody attached.
- To do this, click on Missile in the Project Panel, then from the main menu bar select

Components->Physics->RigidBody. This adds a RigidBody component to the missile
we want to fire. We have to do this as the type of object we want to fire must match the
type of variable we exposed in the script.

- Now to associate the missile with the projectile variable in the script. Firstly, click on
Launcher in the Hierarchy Panel, notice the variable Projectile in the MissileLauncher
script section in the Inspector Panel. All we need to do to associate the missile with this
variable, is drag the Missile prefab from the Project Panel and drop it onto the Projectile
variable.

- Now if you run the game you will be able to shoot a small sphere which will have gravity
attached. Try it!

6

http://www.otee.dk/Documentation/ScriptReference/Physics.html
http://www.otee.dk/Documentation/ScriptReference/Physics.html

7. Missile explosions
Now we’re going to add an explosion when the missile collides with another object. To do
this we need to attach behaviour to the missile, i.e., create a new script and add it to the
Missile game object.
- Create a new blank script by selecting Assets->Create->Javascript and rename this

new script to Projectile. Drag the new script to the Weapons folder in the Project
Panel.

So what do we want the Projectile script to do? We want to detect when the missile has
had a collision, then create an explosion at that point. Let’s look at the code:
var explosion : GameObject;

function OnCollisionEnter (collision : Collision) {

 	
 var contact : ContactPoint = collision.contacts[0];

	
 var rotation = Quaternion.FromToRotation(Vector3.up, contact.normal);

 	
 var instantiatedExplosion : GameObject = Instantiate (explosion, contact.point,
	
 	
 	
 rotation);

	
 Destroy(gameObject);

}

1. Any code that we put inside the OnCollisionEnter function is executed whenever the
object that the script is attached is in collision with another object.

2. The main task we want to do inside the OnCollisionEnter function is to instantiate a new
Explosion at the location in 3D space wherever the missile collided. So where did the
collision happen? The function OnCollisionEnter is passed a Collision class which
contains this information. The point at which the collision occurred is stored in the
ContactPoint variable.

3. Here we use the instantiate function to create an explosion. We know that instantiate
takes 3 parameters; (1) the object to instantiate, (2) the 3D position, and (3) the rotation
of the object.

We will assign this to a game object with a particle system later. We’ll also want to
assign this using the Unity GUI, so we’ll expose this variable by making it public
(declaring it outside of any function).

The second parameter, the 3D point at which to instantiate the explosion was
determined from the collision class in point 2.

The third parameter, the rotation to set the explosion to, needs some explanation. We
want the rotation of the explosion so that the y-axis of the explosion follows along the
surface normal of the surface the missile collided with. This means that for walls the
explosion should face outwards, for floors it will face upwards. So what we want to do
is to translate the y-axis of the explosion in local space (the y-axis is upwards), to the
surface normal (in world space) of the object that was collided with. Essentially the
rotation is saying ‘make the y-axis of the object point in the same direction as the
normal of the surface with which it collided’.

7

1
2

3

4

http://www.otee.dk/Documentation/ScriptReference/Collision.html
http://www.otee.dk/Documentation/ScriptReference/Collision.html

4. Finally, we want to make the missile disappear from the game as it has now collided, we
do this by calling the Destroy() function with gameObject as a parameter (gameObject
denotes the object the script is associated with).

- Add the code into the Projectile Javascript and save it.
- Attach the Projectile Javascript to the Missile.
Now we have to create the explosion that we want to occur whenever the missile collides.
- Firstly, create a new Prefab (call is Explosion) that will store the explosion asset. Drag

this into the Scene view so you can see how it will be displayed in the final game. Note
that the explosion particle system will repeat, only by pressing Play will you see the final
rendering (fades etc).

- The standard assets contain a nice explosion prefab with a particle system and a light
around the explosion. Drag the explosion prefab under Standard Assets->Particles-
>Explosion on top of Explosion variable in the Hierarchy View.

- When you’ve finished with the explosion (and you’ve happy with how it looks), drag the
Explosion from the Hierarchy view onto the Explosion Prefab in the Project view.

Now we can assign the explosion to the missile:
- Ensuring that Missile is selected, fill in the Explosion variable by dragging the Explosion

object in in Project view, onto the Missile’s Explosion variable in the Inspector Panel.

Defining Explosion Behaviour
Now we have to create one more script which will define the behaviour of the explosion
itself.
- Create a new script, call it Explosion, and put it in the Weapons folder. Double click on

the Explosion script to edit it.
Another common function type for scripts is called Start(). Code placed inside here is
executed only once when the object it belongs to is instantiated. All we want to do for now
is to delete the explosion from the game after a certain amount of time. To do this we use
the Destroy() function with a second parameter which specifies how long to wait before
deleting.
var explosionTime = 1.0;

function Start() {	

 Destroy (gameObject, explosionTime);
}

The explosionTime variable is exposed to the Unity GUI so it can be easily tweaked.
- Insert the above code into the Explosion script, delete the Update() function.
- Attach the Explosion script to the Explosion game object by firstly clicking on the

Explosion game object, and then selecting Components->Scripts->Explosion.
Notice how we’ve tried to group the behaviour as neatly as possibly, code that relates to
the explosion is contained within the script that is attached to the Explosion prefab.
- Run the game and wherever your missile collides with the environment, you should see

a spark particle system.

8

8. Sound effects
Our game world has been a little quiet so far, let’s add a
sound effect to our explosion effect.
Firstly let’s assign an audio clip to the Explosion prefab.
- To allow the Explosion object to be able to accept an audio
clip, we add the Audio Source component to it from the main
menu (Component->Audio->Audio Source). You’ll notice
one of the properties of this component is the Audio Clip.

- Assign Sounds->RocketLauncherImpact to the Explosion prefab’s “Audio Clip” exposed
variable. Unity can play .aiff (and most other uncompressed audio formats).

- Run the game again, our explosion sound effect should be heard when each missile
impacts.

9. Adding a GUI
Now let’s add a graphical user interface (GUI), more commonly known as a head up
display (HUD) to the game. Our simple GUI is only going to contain a crosshair cursor.

Adding a cursor
- Select Textures->aim then choose GameObject->Create

Other->GUI Texture.
Note how an aim type cursor appears in the Game view and an
aim variable has appeared in the Hierarchy view.
- Play the game. If the missile does not aim at the centre of

the cursor, you may want to move the Launcher game object
to a higher position.

10. Physics
Now we want objects in our environment to behave as naturally as possible, this is
achieved by adding physics. In this section, we’re going to add objects to the environment
which will move when hit with our missile. Firstly there are some new terms to explain.

Update
Previously, we have entered code inside an Update function, so that we can execute that
code every frame, for example to detect if the user has hit the fire button. However, frame
rate is not a regular value as it is dependent on the complexity of the scene etc. This
irregular timing between frames can lead to unstable physics. Therefore, whenever you
want to update objects in your game which involve physics (rigidbodies), code should be

9

placed inside a FixedUpdate function. The deltaTime value in Unity is used to determine
the time taken between rendering two consecutive frames.
A general distinction between Update and FixedUpdate functions is as follows:
- Update() - code inside this function typically updates player behaviour, game logic etc.

The value of deltaTime is not consistent when used within this function.
- FixedUpdate() - code inside this function typically updates rigidbodies over time

(physics behaviour). DeltaTime always returns the same value when called within a
FixedUpdate function.

The frequency with which FixedUpdate is called is specified by the Fixed Timestep
property in menu option Edit->Project Settings->Time, and can also be altered. This
property contains the time in seconds, to get the frames per second value, take the
reciprocal of this value.
Tip: When modifying the value for Fixed Timestep (effectively frames per second), be
careful to strike a balance; a greater framers per second value will give more stable
physics (more accuracy), however the game performance will suffer. Ensure that the
game runs quickly and the physics seem realistic.

The final term to explain in this section is yield. This can
be thought of as a statement to pause execution of the
current function.
So let’s get back to our game, what do we want to do:
1. Allow the user to fire a missile (already done).
2. If the missile collides with another rigidbody, determine
if there are any other objects in the vicinity which have
rigidbodies attached.
3. For each rigidbody within the force of the explosion,
give them a force in the upwards direction, causing them

to react to the missile.
Let’s look at the code for the Explosion Javascript:
var explosionTime = 1.0;
var explosionRadius = 5.0;
var explosionPower = 2000.0;

function Start () {
	
 // Destroy the explosion in x seconds,
	
 // this will give the particle system and audio enough time to finish playing
	
 Destroy (gameObject, explosionTime);
	

	
 // Find all nearby colliders
	
 var colliders : Collider[] = Physics.OverlapSphere (transform.position,
 explosionRadius);
	

 // Apply a force to all surrounding rigid bodies.
	
 for (var hit in colliders) {
	
 	
 if (hit.rigidbody)
	
 	
 {
	
 	
 	
 hit.rigidbody.AddExplosionForce(explosionPower, transform.position,
 explosionRadius);

10

1

2

3

	
 	
 }
	
 }
	

	
 // If we have a particle emitter attached, emit particles for .5 seconds	

	
 if (particleEmitter)
	
 {
	
 	
 particleEmitter.emit = true;
	
 	
 yield WaitForSeconds(0.5);
	
 	
 particleEmitter.emit = false;
	
 }
}

1. This determines if there are any objects with colliders close to where the missile landed.
The class function Physics.OverlapSphere() takes two parameters, a 3D position and
radius, and returns an array of colliders which are contained within the defined sphere.

2. Once the array has been obtained, each of the rigidbodies attached to the colliders can
be given a force in a certain direction.

3. This adds a force (explosionPower) in the upwards direction (y-axis), at the location
where the missile landed (transform.position). However, as the effect of explosions
diminish over distance, the force should not be constant over the entire radius.
Rigidbodies closer to the edge of the circumference should have a lesser effect applied
than objects at the epicentre of the explosion. This effect is taken into consideration by
this function. The exposed variables explosionPower and explosionRadius can be
easily tweaked to create a suitable effect.

4. If a particle emitter is attached to our Explosion game object, start it emitting, then wait
for 0.5 seconds (yield), then stop it emitting again.

- Update the Explosion Javascript with the new code, save the script.
- Let’s create objects to shoot. Create a cube and attach a rigidbody. Duplicate the cube

several times and scatter them around.
- Try the game again and shoot objects which have rigidbodies attached. they should

now react with an upwards force. Also, try to not shoot the objects directly, but close to
them, this will clearly demonstrate how the upwards explosion force is applied over a
radius and not only to each object directly.

- Save your scene.

Summary
This tutorial has presented a walkthrough on how to create a first person shooter using
Unity. You should now be familiar with the following terms:
- Assets
- Cameras
- Lights
- Viewports
- Prefab
- Colliders

11

4

- Rigidbodies
- Javascript
- Game object
- Update / FixedUpdate
- Local / World view

The next tutorial in the series will show you how to build upon these
fundamentals by introducing more advanced concepts such as AI and
multiple weapons.

12

