

2D Texture Refinement Using Procedural Functions

E. Clua
1
 , M. Dreux

2
 and M. Gattass

3

Pontificia Universidade Católica do Rio de Janeiro – PUC-Rio
1, 3

Computer Science Department
2
Mechanical Engineering Department

1
esteban@inf.puc-rio.br
2
dreux@mec.puc-rio.br

3
gattass@tecgraf.puc-rio.br

Abstract
 In Computer Graphics, aliasing is a problem which

is always present when discrete elements are mapped to

continuous functions or vice-versa. Although there is no

general solution for this kind of problem, there are many

techniques that aim at reducing the effects of aliasing.

This work first discusses how interpolation methods are

usually applied in order to correct this problem and

shows the limitations of this techniques. The article

presents then another solution for this problem, that can

be used together with the interpolation and consists at

increasing details to the texture, making use of

procedural functions.

Keywords: Procedural functions, texture-

mapping, interpolation.

1 Introduction

During texture mapping, usually using an image,

there are some problems related to the texture sampling

due to the fact that a 2D discrete function is being

mapped onto a 3D continuous surface.

In such cases there are aliasing artifacts caused by

the image sampling. There are some antialiasing

techniques that reduce this problem, since it is not

possible to completely solve it. This problem can be

stated as follows: given a set of points P = { P1, P2, ...,

Pi }, i > 1, belonging to a continuous 3D surface S, with

all points within a sphere of radius ε, a discrete function

f (e.g. an image mapping) returns the same result for all

elements of P, producing jaggies. This problem

increases when working with low-resolution mapping

images.

A technique to reduce this problem makes use of

interpolation methods. Several interpolation methods

can be used, such as linear, spline, etc. This work also

presents a new interpolation method that better suits the

problem.

2 Interpolation

A texture function f to be mapped onto a surface

has U = (u1, u2, ..., ui) as its input parameters, where i is

the dimension of the domain of f, and in the case of a 2D

image i = 2. The output value of f is the mapping value,

e.g. the color. In the case of f being a discrete function

within the domain, U has to be approximated to a valid

number, e.g. only integer values. The linear interpolation

averages the distance from a desired point to

surrounding valid points, rather than simply using the

output of the nearest valid point:

Let:

U1 = (u1, u2, ..., ui)

U2 = (u1, u2, ..., ui)

 ...

Uk = (u1, u2, ..., ui)

and m1 = | U - U1|

 m2 = | U - U2|

 ...

 mk = | U - Uk|

where k = 2I.

Equation (1) is used in order to find the mapping of

a given surface point U using linear interpolation:

 (1)

where C is the interpolated result of the mapping

function.

This work proposes an alternative method to

evaluate C through a fractal interpolation. This

technique introduces a noise generated by a fractal

iteration of a given function. The previous equation

would be modified to:

 (2)

where r is a noise function with the following properties:

and

Although interpolation alone can reduce the jaggies

of a mapped texture, the result consists of a blurred

image, which in many situations does not improve the

image quality. The proposed method combines patterns

with the desired texture, including new data to the

original texture and refining the final image. These

patterns can be other images or procedural functions.

The use of procedural functions eliminates the

aliasing problems, since they are continuous and, hence,

for each input point there is a unique output point.

Nevertheless, the functions that can describe the

procedural textures are restricted. There are some cases

in which these functions do not work, e.g. it is

impossible to find a function that might describe an

artistic painting to be mapped onto a frame.

3 Basic Procedural Functions

This work makes use of the noise function, initially

described by [3]. This function has some relevant

characteristics for this work:

1) It is a repeatable pseudorandom function of its

inputs. This means that every time it is called with

the same parameters it returns the same output value.

2) It is continuous in a given interval of Rn, and band-

limited in the frequency domain. This means that the

function has no sudden changes, returning similar

values for similar parameters.

3) Statistical invariance under rotation and translation.

Basically, these properties guarantee that a sequence

of rendered images in an animation are consistent, not

changing the patterns for a specific region. Because of

the continuity, there will be a coherence between

neighboring points when the refinement is applied.

By using the noise function it is possible to derive

some useful functions that will also have the above

described properties.

One of these functions is the fractal Brownian

motion (fBm) [2], which is a fractal iteration of the noise

function over a point. Initially, a table of coefficients is

built. The coefficients are used to limit the result

obtained in each fractal iteration. The values must

decrease and be between 0 and 1, the first value being

equal to 1. The following pseudo-code shows how this

table can be constructed:

frequency = 1.0

i = 1

While (i < table length) do

Table[i] = frequency-H

Frequency = frequency x 2

k

k
k

k

k

mmm

m
Uf

mmm

m
Uf

mmm

m
UfC

+++

⋅

++

+++

⋅

+

+++

⋅=

...
)(

...
...

)(

...
)(

21

21

2
2

21

1
1

k

k
kk

k

k

mmm

m
UrUf

mmm

m
UrUf

mmm

m
UrUfC

+++

⋅⋅

++

+++

⋅⋅

+

+++

⋅⋅=

...
)()(

...
...

)()(

...
)()(

21

21

2
22

21

1
11

1)(...)()(21 =+++ kUrUrUr

1)(0 ≤≤ Ur

Any function that varies between 0 and 1, and is

decreasing is a candidate function. Different results are

obtained by simply changing the H exponents.

Therefore, the user should be allowed to interactively

modify these parameter.

Once the table is initialized, the fractal iterations are

performed using a chosen function applied to the surface

points. For each iteration the partial result is stored, and

the function is called again to the same point, but this

time with a small spatial displacement. This work uses

the noise function during the iterations.

For i = 1 to (Number of Fractal Iterations) do

 result = result + Noise(point) * Table[i]

 point = point * spatial displacement

The coefficient Table limits the value of each

iteration, as shown in the above pseudo-code. The point

spatial displacement means that a new point sampling is

made with a spatial resolution higher than the previous

one. A greater number of fractal iterations produces a

better refinement of the pattern being built.

This work applies texture refinement for natural

phenomena, such as water and landscapes. The fBm

function, described above, produces excellent results for

water, with a few number of iterations (2 or 3). As fBm

is a homogeneous function - equal distribution through

all the space - and isotropic - equal in all directions-, it

does not present excellent results for general landscapes.

So, for applications that deal with such features, best

results are obtained with an fBm variation: the multi-

fractal functions. They are similar to fBm but have a

heterogeneous distribution. [1] describes such functions,

providing also implementation details. (See color plate -

Figure 3.)

4 Texture Refinement Using Procedural
Functions

In order to use the method, it is necessary to choose

the procedural function that is adequate to the set of

textures to be refined. There are situations with excellent

results, and cases in which the method should not be

used. That choice could either be made by the program,

automatically, or by the user. The automatic choice, in

most cases, is not so precise, but sometimes it is strictly

necessary. For instance, a landscape scene could have

many different components such as rocks, earth, water,

etc, and several functions could be necessary to make

the refinement for each component. Finding the

appropriate functions is sometimes computationally

expensive. An alternative solution is to search for a

function, in a table, based only on the color of the pixel

(blue could be a function for water, green for grass, and

so on). Figure 3 from the color plate uses a appropriated

function for sand, and figure 5 was built using a function

for sand and another one for water.

As previously mentioned, the texture aliasing

problem happens because, for a given set of surface

points, the texture mapping value is the same. Since the

domain of the used procedural functions is continuous,

the returning values are not necessarily the same. So, for

each point that is being visualized, the procedural

function is called with the points coordinates as the input

parameters. As each point of a continuous surface may

only appear in a single pixel of the rendered image,

different data can be included for each point of a surface

that is receiving the same texture mapping value.

Although the results may be different for each point at

the surface, the function has to guarantee that close

points will produce values that form the desired patterns.

Once a value has been evaluated, by using a procedural

function for a given point, it is necessary to blend it with

the original texture.

It is important to remember that every time a

function is called with the same parameters its return

value is the same (see properties 1 and 3 of the noise

function). However, if a surface is moving between

frames, it is necessary to use local coordinates,

otherwise the texture would have different results for the

same surface point (to guarantee invariance under

rotation and translation).

Blending

There are different ways to perform the blending.

Ideally, the output value of the procedural function

should be the final texture value. This is only the case in

which the procedural function exactly describes the

mapping texture. Suppose that a sand texture has to be

mapped onto a surface. If there is a function than can

simulate its appearance, the aliasing problem is

completely eliminated. In most cases there is not such

function, and it is necessary to combine a procedural

function with the mapping texture. This blending could

be achieved as follows:

T(P) = Texture(P) * (1 - coef) + f(P) * coef (3)

where f is the chosen procedural function, and coef is the

blending coefficient, i.e., the percentage of procedural

texture contribution.

It is also possible to include another procedural

factor in order to achieve a non-uniform blending. This

new factor allows the generation of non-uniform

textures such as surfs, pieces of wood on a sandy soil,

etc. The above equation would be modified to:

T(P) = Texture(P) * (1 – coef*f2(P)) + f(P) * coef* f2(P) (4)

where f2 is the other procedural function applied to the

blending.

The use of fractal interpolation during the blending

process can produce impressive effects, especially when

the textures represent noisy surfaces such as sand, water,

marble, etc. (see color plates 3 and 5).

The general equation for the texture refinement,

using the fractal interpolation for a given point P, is the

following:

 (5)

where T(U1), T(U2), ..., T(Uk) correspond to the results of

the blending equation, with the values that surround the

point P.

Optimization

The blending process sometimes becomes a lengthy

task with calls to f(P), f2(P), and r(UI). Texture

refinement can be optimized if these functions are pre-

evaluated and stored in a table. On one hand, this

optimization generates lower-quality images, especially

for small tables, since there will be pattern repetitions.

On the other hand, it speeds up the rendering, as it

consists of a simple look-up table. The table´s input

parameters are the spatial coordinates of the desired

point. The images shown in color plates 3 and 5 were

generated making use of that optimization.

5 Conclusion and Future Research

This work has presented a new method for reducing

aliasing problems in texture mapping. It has introduced

procedurally-created patterns that are similar to the

original texture, and has proposed a method for blending

them. Some functions that simulate natural elements,

such as water, sand, grass, etc., have been explored, but

other patterns could also be used. This work has applied

the method proposed to the color attribute only, but this

study could be extended to other attributes (e.g. bump-

mapping).

Acknowledgements

The authors are grateful to TeCGraf, at PUC-Rio,

where this research was developed, and to Flávio

Szenberg, who made all his previous work available to

the authors. The first author would also like to thank

CAPES, whose grant partially sponsored this work. Also

thanks to Carolina Alfaro for the text review.

References

[1] Davis Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken

Perlin, Steve Worley. Texture and Modeling: A procedural

Approach. Academic Press, 1994.

[2] F. Kenton Musgrave, Craig E. Kolb and Robert S. Mace.

The synthesis and rendering of eroded fractal terrains.

Computer Graphics (SIGGRAPH ’89 Proceedings), volume

23, pp. 41-50, July 1989.

[3] Ken Perlin. An image synthesizer. In B. A. Barsky, editor,

Computer Graphics (SIGGRAPH ’85 Proceedings), volume

19, pp. 287-296, July 1985.

[4] Steve Worley. A Cellular Texture Basis Function

(SIGGRAPH ’96), volume 30, pp 291-294, August 1996.

k

k

kk

k

k

mmm

m
UrUT

mmm

m
UrUT

mmm

m
UrUTC

+++

⋅⋅

++

+++

⋅⋅

+

+++

⋅⋅=

...
)()(

...
...

)()(

...
)()(

21

21

2

22

21

1

11

Color Plates

Figure 1- Original terrain, without interpo-

lation and texture refinement.

Figure 2- Terrain with fractal interpolation

Figure 4- Texture of a lake in a terrain with

linear interpolation.

Figure 3- Terrain with fractal interpolation and

texture refinement, using multi-fractal functions.

Figure 5- The same lake of figure 4, with fractal

interpolation and texture refinement using fBm

function.

