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Abstract 
 In Computer Graphics, aliasing is a problem which 

is always present when discrete elements are mapped to 

continuous functions or vice-versa. Although there is no 

general solution for this kind of problem, there are many 

techniques that aim at reducing the effects of aliasing. 

This work first discusses how interpolation methods are 

usually applied in order to correct this problem and 

shows the limitations of this techniques. The article 

presents then another solution for this problem, that can 

be used together with the interpolation and consists at 

increasing details to the texture, making use of 

procedural functions. 

 

Keywords: Procedural functions, texture-

mapping, interpolation. 

  

 

1 Introduction 

 

During texture mapping, usually using an image,  

there are some problems related to the texture sampling 

due to the fact that a 2D discrete function is being 

mapped onto a 3D continuous surface. 

In such cases there are aliasing artifacts caused by 

the image sampling. There are some antialiasing 

techniques that reduce this problem, since it is not 

possible to completely solve it. This problem can be 

stated as follows: given a set of points P = { P1, P2, ..., 

Pi }, i > 1, belonging to a continuous 3D surface S, with 

all points within a sphere of radius ε, a discrete function 

f  (e.g. an image mapping) returns the same result for all 

elements of P, producing jaggies. This problem 

increases when working with low-resolution mapping 

images. 

A technique to reduce this problem makes use of 

interpolation methods. Several interpolation methods 

can be used, such as linear, spline, etc. This work also 

presents a new interpolation method that better suits the 

problem.  

2 Interpolation 

 

A texture function f  to be mapped onto a surface 

has U  = (u1, u2, ..., ui) as its input parameters, where i is 

the dimension of the domain of f, and in the case of a 2D 

image i = 2. The output value of  f is the mapping value, 

e.g. the color. In the case of f being a discrete function 

within the domain, U has to be approximated to a valid 

number, e.g. only integer values. The linear interpolation 

averages the distance from a desired point to 

surrounding valid points, rather than simply using the 

output of the nearest valid point: 

Let:  

U1 = (u1, u2, ..., ui) 

U2 = (u1, u2, ..., ui) 

 ... 

Uk = (u1, u2, ..., ui) 

 

and  m1 = | U - U1|  

       m2 = | U - U2| 

       ... 

       mk = | U - Uk|  



 

 

 

where k = 2I. 

 

Equation (1) is used in order to find the mapping of 

a given surface point U using linear interpolation: 

 

                                                           (1) 

 

where C is the interpolated result of the mapping 

function. 

This work proposes an alternative method to 

evaluate C through a fractal interpolation. This 

technique introduces a noise generated by a fractal 

iteration of a given function. The previous equation 

would be modified to: 

                                                                     (2) 

 

where r is a noise function with the following properties: 

 

and 

 

Although interpolation alone can reduce the jaggies 

of a mapped texture, the result consists of a blurred 

image, which in many situations does not improve the 

image quality. The proposed method combines patterns 

with the desired texture, including new data to the 

original texture and refining the final image. These 

patterns can be other images or procedural functions. 

The use of procedural functions eliminates the 

aliasing problems, since they are continuous and, hence, 

for each input point there is a unique output point. 

Nevertheless, the functions that can describe the 

procedural textures are restricted. There are some cases 

in which these functions do not work, e.g. it is 

impossible to find a function that might describe an 

artistic painting to be mapped onto a frame. 

3 Basic Procedural Functions 

 

This work makes use of the noise function, initially 

described by [3]. This function has some relevant 

characteristics for this work: 

1) It is a repeatable pseudorandom function of its 

inputs. This means that every time it is called with 

the same parameters it returns the same output value. 

2) It is continuous in a given interval of Rn, and band- 

limited in the frequency domain. This means that the 

function has no sudden changes, returning similar 

values for similar parameters.  

3) Statistical invariance under rotation and translation. 

Basically, these properties guarantee that a sequence 

of rendered images in an animation are consistent, not 

changing the patterns for a specific region. Because of 

the continuity, there will be a coherence between 

neighboring points when the refinement is applied. 

By using the noise function it is possible to derive 

some useful functions that will also have the above 

described properties. 

One of these functions is the fractal Brownian 

motion (fBm) [2], which is a fractal iteration of the noise 

function over a point. Initially, a table of coefficients is 

built. The coefficients are used to limit the result 

obtained in each fractal iteration. The values must 

decrease and be between 0 and 1, the first value being 

equal to 1. The following pseudo-code shows how this 

table can be constructed: 

 

frequency = 1.0 

i = 1 

While (i < table length) do 

Table[i] =  frequency-H 

Frequency =  frequency x 2 
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Any function that varies between 0 and 1, and is 

decreasing is a candidate function. Different results are 

obtained by simply changing the H exponents. 

Therefore, the user should be allowed to interactively 

modify these parameter.  

Once the table is initialized, the fractal iterations are 

performed using a chosen function applied to the surface 

points. For each iteration the partial result is stored, and 

the function is called again to the same point, but this 

time with a small spatial displacement. This work uses 

the noise function during the iterations. 

 

For i = 1 to (Number of Fractal Iterations) do 

     result = result + Noise(point) * Table[i] 

     point = point * spatial displacement 

 

The coefficient Table limits the value of each 

iteration, as shown in the above pseudo-code. The point 

spatial displacement means that a new point sampling is 

made with a spatial resolution higher than the previous 

one. A greater number of fractal iterations produces a 

better refinement of the pattern being built. 

This work applies texture refinement for natural 

phenomena, such as water and landscapes. The fBm 

function, described above, produces excellent results for 

water, with a few number of iterations (2 or 3). As fBm 

is a homogeneous function - equal distribution through 

all the space - and isotropic - equal in all directions-, it 

does not present excellent results for general landscapes. 

So, for applications that deal with such features, best 

results are obtained with an fBm variation: the multi-

fractal functions. They are similar to fBm but have a 

heterogeneous distribution. [1] describes such functions, 

providing also implementation details. (See color plate - 

Figure 3.) 

4 Texture Refinement Using Procedural 
Functions 

 

In order to use the method, it is necessary to choose 

the procedural function that is adequate to the set of 

textures to be refined. There are situations with excellent 

results, and cases in which the method should not be 

used. That choice could either be made by the program, 

automatically, or by the user. The automatic choice, in 

most cases, is not so precise, but sometimes it is strictly 

necessary. For instance, a landscape scene could have 

many different components such as rocks, earth, water, 

etc, and several functions could be necessary to make 

the refinement for each component. Finding the 

appropriate functions is sometimes computationally 

expensive. An alternative solution is to search for a 

function, in a table, based only on the color of the pixel 

(blue could be a function for water, green for grass, and 

so on).  Figure 3 from the color plate uses a appropriated 

function for sand, and figure 5 was built using a function 

for sand and another one for water. 

As previously mentioned, the texture aliasing 

problem happens because, for a given set of surface 

points, the texture mapping value is the same. Since the 

domain of the used procedural functions is continuous, 

the returning values are not necessarily the same. So, for 

each point that is being visualized, the procedural 

function is called with the points coordinates as the input 

parameters. As each point of a continuous surface may 

only appear in a single pixel of the rendered image, 

different data can be included for each point of a surface 

that is receiving the same texture mapping value. 

Although the results may be different for each point at 

the surface, the function has to guarantee that close 

points will produce values that form the desired patterns. 

Once a value has been evaluated, by using a procedural 

function for a given point, it is necessary to blend it with 

the original texture. 

It is important to remember that every time a 

function is called with the same parameters its return 

value is the same (see properties 1 and 3 of the noise 

function). However, if a surface is moving between 

frames, it is necessary to use local coordinates, 

otherwise the texture would have different results for the 

same surface point (to guarantee invariance under 

rotation and translation).   

Blending 

 

There are different ways to perform the blending. 

Ideally, the output value of the procedural function 

should be the final texture value. This is only the case in 

which the procedural function exactly describes the 

mapping texture. Suppose that a sand texture has to be 

mapped onto a surface. If there is a function than can 

simulate its appearance, the aliasing problem is 

completely eliminated. In most cases there is not such 

function, and it is necessary to combine a procedural 



 

 

function with the mapping texture. This blending could 

be achieved as follows: 

  

T(P) = Texture(P) * (1 - coef) + f(P) * coef                   (3) 

 

where f is the chosen procedural function, and coef is the 

blending coefficient, i.e., the percentage of procedural 

texture contribution. 

It is also possible to include another procedural 

factor in order to achieve a non-uniform blending. This 

new factor allows the generation of  non-uniform 

textures such as surfs, pieces of wood on a sandy soil, 

etc. The above equation would be modified to: 

 

T(P) = Texture(P) * (1 – coef*f2(P)) + f(P) * coef* f2(P)      (4) 

 

where f2 is the other procedural function applied to the 

blending.   

The use of fractal interpolation during the blending 

process can produce impressive effects, especially when 

the textures represent noisy surfaces such as sand, water, 

marble, etc. (see color plates 3 and 5). 

The general equation for the texture refinement, 

using the fractal interpolation for a given point P, is the 

following: 

                                                                                     (5) 

 

where T(U1), T(U2), ..., T(Uk) correspond to the results of 

the blending equation, with the values that surround the 

point P.  

Optimization 

 

The blending process sometimes becomes a lengthy 

task with calls to f(P), f2(P), and r(UI). Texture 

refinement can be optimized if these functions are pre-

evaluated and stored in a table. On one hand, this 

optimization generates lower-quality images, especially 

for small tables, since there will be pattern repetitions. 

On the other hand, it speeds up the rendering, as it 

consists of a simple look-up table. The table´s input  

parameters are the spatial coordinates of the desired 

point. The images shown in color plates 3 and 5 were 

generated making use of that optimization. 

5 Conclusion and Future Research 

 

This work has presented a new method for reducing 

aliasing problems in texture mapping. It has introduced 

procedurally-created patterns that are similar to the 

original texture, and has proposed a method for blending 

them. Some functions that simulate natural elements, 

such as water, sand, grass, etc., have been explored, but 

other patterns could also be used. This work has applied 

the method proposed to the color attribute only, but this 

study could be extended to other attributes (e.g. bump-

mapping). 
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Color Plates 

 

 

Figure 1- Original terrain, without interpo-

lation and texture refinement.  

 

 

Figure 2- Terrain with fractal interpolation 

 

  

 

Figure 4- Texture of a lake in a terrain with 

linear interpolation. 

 

 

Figure 3- Terrain with fractal interpolation and 

texture refinement, using multi-fractal functions. 

 

 

 

Figure 5- The same lake of figure 4, with fractal 

interpolation and texture refinement using fBm 

function. 

 

 


